1
|
Rab MAE, Kanne CK, Boisson C, Bos J, van Oirschot BA, Houwing ME, Renoux C, Bartels M, Rijneveld AW, Nur E, Cnossen MH, Joly P, Nader E, Fort R, Connes P, van Wijk R, Sheehan VA, van Beers EJ. Oxygen gradient ektacytometry-derived biomarkers are associated with acute complications in sickle cell disease. Blood Adv 2024; 8:276-286. [PMID: 37976458 PMCID: PMC10824684 DOI: 10.1182/bloodadvances.2023011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT We investigated the potential of the point of sickling (PoS; the pO2 tension at which red cells start to sickle), determined by oxygen gradient ektacytometry to serve as a biomarker associated with the incidence of acute sickle cell disease-related complications in 177 children and 50 adults. In the pediatric cohort, for every 10 mmHg increase in PoS reflecting a greater likelihood of sickling, the likelihood of an individual experiencing >1 type of acute complication increased; the adjusted odds ratio (aOR) was 1.65. For every 0.1 increase in minimum elongation index (EImin; reflecting improved red blood cell deformability at hypoxia), the aOR was 0.50. In the adult cohort, for every 10 mmHg increase in PoS, we found an aOR of 3.00, although this was not significant after correcting for multiple testing. There was a trend for an association between higher PoS and greater likelihood of vaso-occlusive episodes (VOEs; children aOR, 1.35; adults aOR, 2.22). In children, only EImin was associated with VOEs (aOR, 0.68). When data of both cohorts were pooled, significant associations with PoS and/or EImin were found for all acute complications, independently and when >1 type of acute complication was assessed. These findings indicate that oxygen gradient ektacytometry generates novel biomarkers and provides a rationale for further development of these biomarkers in the assessment of clinical severity, evaluation of novel therapies, and as surrogate clinical trial end points. These biomarkers may be useful in assessing efficacy of novel therapies like pyruvate kinase activators, voxelotor, and L-glutamine.
Collapse
Affiliation(s)
- Minke A. E. Rab
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Celeste K. Kanne
- Department of Pediatrics Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Camille Boisson
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jennifer Bos
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Brigitte A. van Oirschot
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maite E. Houwing
- Department of Pediatric Hematology and Oncology, Erasmus Medical Center Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Céline Renoux
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
- Laboratory of Biochemistry and Molecular Biology, UF Biochemistry of Red Blood Cell Diseases, Est Center of Biology and Pathology, Hospices Civils de Lyon, Lyon, France
| | - Marije Bartels
- Van Creveldkliniek, Divison of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anita W. Rijneveld
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam University Medical Center, The Netherlands
| | - Marjon H. Cnossen
- Department of Pediatric Hematology and Oncology, Erasmus Medical Center Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Philippe Joly
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
- Laboratory of Biochemistry and Molecular Biology, UF Biochemistry of Red Blood Cell Diseases, Est Center of Biology and Pathology, Hospices Civils de Lyon, Lyon, France
| | - Elie Nader
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Romain Fort
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
- Department of Internal Medicine, Hospices Civils de Lyon, Lyon, France
| | - Philippe Connes
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vivien A. Sheehan
- Department of Pediatrics Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Eduard J. van Beers
- Van Creveldkliniek, Divison of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
He G, Yu W, Li H, Liu J, Tu Y, Kong D, Long Z, Liu R, Peng J, Wang Z, Liu P, Hai C, Yan W, Li W. Alpha-1 antitrypsin protects against phosgene-induced acute lung injury by activating the ID1-dependent anti-inflammatory response. Eur J Pharmacol 2023; 957:176017. [PMID: 37673367 DOI: 10.1016/j.ejphar.2023.176017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Phosgene is widely used as an industrial chemical, and phosgene inhalation causes acute lung injury (ALI), which may further progress into pulmonary edema. Currently, an antidote for phosgene poisoning is not known. Alpha-1 antitrypsin (α1-AT) is a protease inhibitor used to treat patients with emphysema who are deficient in α1-AT. Recent studies have revealed that α1-AT has both anti-inflammatory and anti-SARS-CoV-2 effects. Herein, we aimed to investigate the role of α1-AT in phosgene-induced ALI. We observed a time-dependent increase in α1-AT expression and secretion in the lungs of rats exposed to phosgene. Notably, α1-AT was derived from neutrophils but not from macrophages or alveolar type II cells. Moreover, α1-AT knockdown aggravated phosgene- and lipopolysaccharide (LPS)-induced inflammation and cell death in human bronchial epithelial cells (BEAS-2B). Conversely, α1-AT administration suppressed the inflammatory response and prevented death in LPS- and phosgene-exposed BEAS-2B cells. Furthermore, α1-AT treatment increased the inhibitor of DNA binding 1 (ID1) gene expression, which suppressed NF-κB pathway activation, reduced inflammation, and inhibited cell death. These data demonstrate that neutrophil-derived α1-AT acts as a self-protective mechanism, which protects against phosgene-induced ALI by activating the ID1-dependent anti-inflammatory response. This study may provide novel strategies for the treatment of patients with phosgene-induced ALI.
Collapse
Affiliation(s)
- Gaihua He
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongwei Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongmei Tu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Deqin Kong
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhao Wang
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Penghui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an, 710032, China.
| | - Wenli Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Li Y, Wang D, Guo R, Ma B, Miao L, Sun M, He L, Lin L, Pan Y, Ren J, Liu J. Neuroprotective effect of Astragali Radix on cerebral infarction based on proteomics. Front Pharmacol 2023; 14:1162134. [PMID: 37361203 PMCID: PMC10289882 DOI: 10.3389/fphar.2023.1162134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Objective: Astragali Radix (AR, Huangqi in Chinese) has a neuroprotective effect on cerebral infarction (CI). In order to explore the biological basis and therapeutic mechanism of AR in CI, a double-blind randomized controlled trial was established in this study, and proteomics analysis was carried out on serum samples of patients. Methods: The patients were divided into the AR group (n = 35) and the control group (n = 30). The curative effect was evaluated by the traditional Chinese medicine (TCM) syndrome score and clinical indicators, and the serum of the two groups was analyzed by proteomics. Based on bioinformatics analysis methods, the changes in differential proteins between two groups of samples were explored, and the key proteins were validated through enzyme-linked immunosorbent assay (ELISA). Results: The results of this study showed that the scores of deficiency of vital energy (DVE), blood stasis (BS), and NIH Stroke Scale (NIHSS) decreased significantly (p < 0.05), while the scores of the Barthel Index (BI) increased, indicating that AR could significantly improve the symptoms of CI patients. In addition, we found that compared with the control group, AR upregulated 43 proteins and downregulated 20 proteins, especially focusing on anti-atherosclerosis and neuroprotective effects. Moreover, ELISA indicated the levels of IL-6, TNF-α, VCAM-1, MCP-1, and ICAM-1 were significantly decreased in the serum of the AR group (p < 0.05, p < 0.01). Conclusion: This study found that AR can significantly recover the clinical symptoms of CI. Serum proteomics research results show that AR may act on IL-6, TNF-α, VCAM-1, MCP-1, and ICAM-1, and play anti-atherosclerosis and neuroprotective roles. Clinical Trial Registration: [clinicaltrials.gov], identifier [NCT02846207].
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongjuan Guo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Ma
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lan Miao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingqian Sun
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijuan He
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Lin
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Li Y, Miao L, Guo R, He L, Sun M, Pan Y, Lin L, Ren J, Liu J. To explore the regulatory effect of Buyang Huanwu Decoction on cerebral infarction based on quantitative proteomics. J Proteomics 2023; 277:104850. [PMID: 36813112 DOI: 10.1016/j.jprot.2023.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Buyang Huanwu Decoction (BYHW) contains chemical components such as ligustrazine, oxypaeoniflora, chlorogenic acid, and others. To explore the neuroprotective effect and potential target protein of BYHW in cerebral infarction (CI). A double-blind, randomized controlled trial was established and patients with CI were divided into the BYHW group (n = 35) and the control group (n = 30). To evaluate the efficacy by TCM syndrome score and clinical indicators, and to explore the changes of serum proteins by proteomics technology, so as to explore the mechanism of BYHW and potential target proteins. The study found that compared with the control group, the TCM syndrome score, including Deficiency of Vital Energy (DVE), Blood Stasis (BS), and NIHSS in the BYHW group decreased significantly (p < 0.05), and the Barthel Index (BI) score was significantly higher. A total of 99 differential regulatory proteins were identified by proteomics, which act on lipids and atherosclerosis, complement and coagulation cascade, and TNF-α signaling pathway. In addition, Elisa verified the results of proteomics and found that BYHW can reduce the neurological impairments focus on IL-1β, IL-6, TNF-α, MCP-1, MMP-9, and PAI-1. Significance: In this study, quantitative proteomics was used in combination with liquid chromatography-mass spectrometry (LC-MS/MS) to study the therapeutic effect of BYHW on cerebral infarction (CI) and potential changes in serum proteomics. In addition, the public proteomics database was used for bioinformatics analysis, and Elisa experiment verified the results of proteomics, further clarifying the potential protection mechanism of BYHW on CI.
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National clinical research center of cardiovascular disease of traditional Chinese Medicine, Beijing, 100000, China
| | - Lan Miao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National clinical research center of cardiovascular disease of traditional Chinese Medicine, Beijing, 100000, China
| | - Rongjuan Guo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Lijuan He
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Mingqian Sun
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National clinical research center of cardiovascular disease of traditional Chinese Medicine, Beijing, 100000, China
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Lin
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National clinical research center of cardiovascular disease of traditional Chinese Medicine, Beijing, 100000, China.
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National clinical research center of cardiovascular disease of traditional Chinese Medicine, Beijing, 100000, China.
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National clinical research center of cardiovascular disease of traditional Chinese Medicine, Beijing, 100000, China.
| |
Collapse
|
5
|
Does TGFBR3 Polymorphism Increase the Risk of Silent Cerebral Infarction in Egyptian Children with Sickle Cell Disease? Indian J Pediatr 2023; 90:146-152. [PMID: 35781614 PMCID: PMC9842542 DOI: 10.1007/s12098-022-04181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/27/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate the relationship between TGFBR3 rs284875 single nucleotide polymorphism (SNP) state and silent cerebral infarction (SCI) in asymptomatic patients with sickle cell disease (SCD). METHODS A cross-sectional study was conducted on 50 children with SCD above 2 y of age followed up at the hematology outpatient clinic of Alexandria University Children's Hospital in Egypt. Twenty-four healthy children were included as a control group. All patients included in the study were subjected to complete history and clinical examination. Real-time polymerase chain reaction was performed on patients and controls for identification of SNP rs284875 of the TGFBR3 gene. A magnetic resonance imaging (MRI) of the brain were performed only on patients for detection of SCI. RESULTS Fifty SCD patients were enrolled (26 males and 24 females), with a median age of 10.9 y (2.3-17.8 y), and 24 children as healthy control for the studied SNP. Thirty-five (70%) patients had homozygous SCD, while 30% had sickle β-thalassemia. The brain MRI was normal in all the patients except for 2 patients who had features of SCI. The TGFBR3 rs284875 SNP was detected in 15 (30%) patients in the homozygous state (GG) versus only 1 (4.2%) child from the control group (p = 0.003). The prevalence of SCI was low in the study population and there was no statistically significant relationship between the TGFBR3 rs284875 SNP status and the presence of SCI in the brain MRI (p = 0.621). CONCLUSIONS This study confirmed a low prevalence of SCI in the SCD patient included in the study. The TGFBR3 rs284875 SNP did not significantly increase SCI among those patients.
Collapse
|
6
|
Determinants of severity in sickle cell disease. Blood Rev 2022; 56:100983. [PMID: 35750558 DOI: 10.1016/j.blre.2022.100983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
Abstract
Sickle cell disease is a very variable condition, with outcomes ranging from death in childhood to living relatively symptom free into the 8th decade. Much of this variability is unexplained. The co-inheritance of α thalassaemia and factors determining HbF levels significantly modify the phenotype, but few other significant genetic variants have been identified, despite extensive studies. Environmental factors are undoubtedly important, with socio-economics and access to basic medical care explaining the huge differences in outcomes between many low- and high-income countries. Exposure to cold and windy weather seems to precipitate acute complications in many people, although these effects are unpredictable and vary with geography. Many studies have tried to identify prognostic factors which can be used to predict outcomes, particularly when applied in infancy. Overall, low haemoglobin, low haemoglobin F percentage and high reticulocytes in childhood are associated with worse outcomes, although again these effects are fairly weak and inconsistent.
Collapse
|
7
|
Li N, An P, Wang J, Zhang T, Qing X, Wu B, Sun L, Ding X, Niu L, Xie Z, Zhang M, Guo X, Chen X, Cai T, Luo J, Wang F, Yang F. Plasma proteome profiling combined with clinical and genetic features reveals the pathophysiological characteristics of β-thalassemia. iScience 2022; 25:104091. [PMID: 35378860 PMCID: PMC8976145 DOI: 10.1016/j.isci.2022.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022] Open
Abstract
The phenotype of β-thalassemia underlies multigene interactions, making clinical stratification complicated. An increasing number of genetic modifiers affecting the disease severity have been identified, but are still unable to meet the demand of precision diagnosis. Here, we systematically conducted a comparative plasma proteomic profiling on patients with β-thalassemia and healthy controls. Among 246 dysregulated proteins, 13 core protein signatures with excellent biomarker potential are proposed. The combination of proteome and patients' clinical data revealed patients with codons 41/42 -TTCT mutations have an elevated risk of higher iron burden, dysplasia, and osteoporosis than patients with other genotypes. Notably, 85 proteins correlating to fetal hemoglobin (Hb F) were identified, among which the abundance of 27 proteins may affect the transfusion burden in patients with β-thalassemia. The current study thus provides protein signatures as potential diagnostic biomarkers or therapeutic clues for β-thalassemia. 246 dysregulated proteins are detected in plasma of patients with β-thalassemia 13 potential biomarkers and 27 proteins related to disease progression are found Variations in plasma proteome reveal the disease pathophysiological characteristics Codons 41/42 -TTCT carriers have higher ferritin levels compared to non-carriers
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Qing
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengmeng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058 , China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
A randomized, placebo-controlled, double-blind trial of canakinumab in children and young adults with sickle cell anemia. Blood 2022; 139:2642-2652. [PMID: 35226723 DOI: 10.1182/blood.2021013674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Excessive intravascular release of lysed cellular contents from damaged red blood cells (RBCs) in patients with sickle cell anemia (SCA) can activate the inflammasome, a multiprotein oligomer promoting maturation and secretion of pro-inflammatory cytokines, including interleukin 1-beta (IL-1b). We hypothesized that IL-1b blockade by canakinumab in patients with SCA would reduce markers of inflammation and clinical disease activity. In this randomized, double-blind, multi-center phase 2a study, patients aged 8-20 years old with SCA (HbSS or HbSb0thalassemia), history of acute pain episodes and elevated hsCRP >1.0 mg/L at screening were randomized 1:1 to received 6 monthly treatments with 300 mg s.c. canakinumab or placebo. Measured outcomes at baseline and weeks 4, 8, 12, 16, 20 and 24 included electronic patient-reported outcomes, hospitalization rate and adverse events (AEs) and serious AEs (SAEs). All but one of the 49 enrolled patients were receiving stable background hydroxyurea therapy. Although the primary objective (pre-specified reduction of pain) was not met, compared to placebo-arm patients, canakinumab-treated patients had reductions in markers of inflammation, occurrence of SCA-related AE and SAE, and number and duration of hospitalizations, as well as trends for improvement in pain intensity, fatigue and absences from school or work. Post-hoc analysis revealed treatment effects on weight, restricted to pediatric patients. Canakinumab was well tolerated with no treatment-related SAEs and no new safety signal. These findings demonstrate that the inflammation associated with SCA can be reduced by selective IL-1b blockade by canakinumab with potential for therapeutic benefits. This trial was registered at www.clinicaltrials.gov as NCT02961218.
Collapse
|
9
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Lance EI, Faulcon LM, Fu Z, Yang J, Whyte-Stewart D, Strouse JJ, Barron-Casella E, Jones K, Van Eyk JE, Casella JF, Everett AD. Proteomic discovery in sickle cell disease: Elevated neurogranin levels in children with sickle cell disease. Proteomics Clin Appl 2021; 15:e2100003. [PMID: 33915030 PMCID: PMC8666096 DOI: 10.1002/prca.202100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes stroke and silent cerebral infarct (SCI). Our aim was to identify markers of brain injury in SCD. EXPERIMENTAL DESIGN Plasma proteomes were analyzed using a sequential separation approach of hemoglobin (Hb) and top abundant plasma protein depletion, followed by reverse phase separation of intact proteins, trypsin digestion, and tandem mass spectrometry. We compared plasma proteomes of children with SCD with and without SCI in the Silent Cerebral Infarct Multi-Center Clinical Trial (SIT Trial) to age-matched, healthy non-SCD controls. RESULTS From the SCD group, 1172 proteins were identified. Twenty-five percent (289/1172) were solely in the SCI group. Twenty-five proteins with enriched expression in the human brain were identified in the SCD group. Neurogranin (NRGN) was the most abundant brain-enriched protein in plasma of children with SCD. Using a NRGN sandwich immunoassay and SIT Trial samples, median NRGN levels were higher at study entry in children with SCD (0.28 ng/mL, N = 100) compared to control participants (0.12 ng/mL, N = 25, p < 0.0004). CONCLUSIONS AND CLINICAL RELEVANCE NRGN levels are elevated in children with SCD. NRGN and other brain-enriched plasma proteins identified in plasma of children with SCD may provide biochemical evidence of neurological injury.
Collapse
Affiliation(s)
- Eboni I. Lance
- Department of Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Zongming Fu
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Yang
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donna Whyte-Stewart
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John J. Strouse
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Emily Barron-Casella
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly Jones
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer E. Van Eyk
- Division of Cardiology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - James F. Casella
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Brewin JN, Rooks H, Gardner K, Senior H, Morje M, Patel H, Calvet D, Bartolucci P, Thein SL, Menzel S, Rees DC. Genome wide association study of silent cerebral infarction in sickle cell disease (HbSS and HbSC). Haematologica 2021; 106:1770-1773. [PMID: 33353285 PMCID: PMC8168512 DOI: 10.3324/haematol.2020.265827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 11/09/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- John N Brewin
- Kings College London, UK; Kings College Hospital, London.
| | | | - Kate Gardner
- Kings College London, UK; Guys and St Thomas Hospital, London
| | | | | | | | | | | | | | | | - David C Rees
- Kings College London, UK; Kings College Hospital, London
| |
Collapse
|
12
|
Houwing ME, Grohssteiner RL, Dremmen MHG, Atiq F, Bramer WM, de Pagter APJ, Zwaan CM, White TJH, Vernooij MW, Cnossen MH. Silent cerebral infarcts in patients with sickle cell disease: a systematic review and meta-analysis. BMC Med 2020; 18:393. [PMID: 33349253 PMCID: PMC7754589 DOI: 10.1186/s12916-020-01864-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE Silent cerebral infarcts (SCIs) are the most common neurological complication in children and adults with sickle cell disease (SCD). In this systematic review, we provide an overview of studies that have detected SCIs in patients with SCD by cerebral magnetic resonance imaging (MRI). We focus on the frequency of SCIs, the risk factors involved in their development and their clinical consequences. METHODS The databases of Embase, MEDLINE ALL via Ovid, Web of Science Core Collection, Cochrane Central Register of Trials via Wiley and Google Scholar were searched from inception to June 1, 2019. RESULTS The search yielded 651 results of which 69 studies met the eligibility criteria. The prevalence of SCIs in patients with SCD ranges from 5.6 to 80.6% with most studies reported in the 20 to 50% range. The pooled prevalence of SCIs in HbSS and HbSβ0 SCD patients is 29.5%. SCIs occur more often in patients with the HbSS and HbSβ0 genotype in comparison with other SCD genotypes, as SCIs are found in 9.2% of HbSC and HbSβ+ patients. Control subjects showed a mean pooled prevalence of SCIs of 9.8%. Data from included studies showed a statistically significant association between increasing mean age of the study population and mean SCI prevalence. Thirty-three studies examined the risk factors for SCIs. The majority of the risk factors show no clear association with prevalence, since more or less equal numbers of studies give evidence for and against the causal association. CONCLUSIONS This systematic review and meta-analysis shows SCIs are common in patients with SCD. No clear risk factors for their development were identified. Larger, prospective and controlled clinical, neuropsychological and neuroimaging studies are needed to understand how SCD and SCIs affect cognition.
Collapse
Affiliation(s)
- Maite E Houwing
- Department of Pediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, NC-825, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Rowena L Grohssteiner
- Department of Pediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, NC-825, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Marjolein H G Dremmen
- Department of Pediatric Radiology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ferdows Atiq
- Department of Haematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Anne P J de Pagter
- Department of Pediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, NC-825, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Department of Pediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, NC-825, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tonya J H White
- Department of Child and Adolescent Psychiatry, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, NC-825, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
13
|
de Azevedo JTC, Malmegrim KCR. Immune mechanisms involved in sickle cell disease pathogenesis: current knowledge and perspectives. Immunol Lett 2020; 224:1-11. [PMID: 32437728 DOI: 10.1016/j.imlet.2020.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the β-chain of the hemoglobin gene that results in the replacement of glutamic acid with valine in the hemoglobin protein. However, recent studies have demonstrated that alterations in several other genes, especially immune related genes, may be associated with complications of SCD. In fact, higher chronic inflammatory status is related to more severe clinical symptoms in SCD patients, suggesting crucial roles of the immune system in SCD physiopathology. Nevertheless, although participation of innate immune cells in SCD pathogenesis has been broadly and extensively described, little is known about the roles of the adaptive immune system in this disease. In addition, the influence of treatments on the immune system of SCD patients and their complications (such as alloimmunization) are not yet completely understood. Thus, we reviewed the current knowledge about the immune mechanisms involved in SCD pathogenesis. We suggest recommendations for future studies to allow for a broader understanding of SCD pathogenesis, helping in the development of new therapies and improvement in the life quality and expectancy of patients.
Collapse
Affiliation(s)
- Júlia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
14
|
Lance EI, Barron-Casella E, Everett AD, Casella JF. Brain-derived neurotrophic factor levels in pediatric sickle cell disease. Pediatr Blood Cancer 2020; 67:e28076. [PMID: 31736231 PMCID: PMC7171877 DOI: 10.1002/pbc.28076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Children with sickle cell disease (SCD) have an increased risk of neurological complications, particularly stroke and silent cerebral infarction (SCI). Brain-derived neurotrophic factor (BDNF) is a nerve growth factor associated with neuronal survival, synaptic plasticity, elevated transcranial Doppler (TCD) velocities and increased risk of stroke in patients with SCD. The objective of this study was to analyze plasma BDNF protein levels in children with SCD participating in the Silent Cerebral Infarct Transfusion Multi-Center Clinical Trial (SIT Trial), comparing plasma samples of children with SCD and SCI to plasma samples from children with SCD without SCI, as well as healthy pediatric control participants. PROCEDURE Entry, exit, and longitudinal blood samples were collected from 190 SIT Trial participants with SCD and healthy pediatric controls over time. BDNF levels were measured by enzyme-linked immunosorbent assay. Sample collection was not optimized for measurements of BDNF, but factors affecting BDNF levels were accounted for in analyses. RESULTS BDNF levels were significantly higher in children with SCD in comparison to healthy pediatric control subjects. BDNF levels significantly increased over time in SCD participants. BDNF levels did not show any significant associations with the presence or absence of SCI or new/progressive SCI/stroke or TCD velocities. CONCLUSIONS Plasma BDNF levels are elevated and increase over time in children with SCD. Additional studies with more longitudinal samples are needed to address the reasons for those increased levels.
Collapse
Affiliation(s)
- Eboni I. Lance
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute,Department of Neurology, the Johns Hopkins University School of Medicine
| | - Emily Barron-Casella
- Department of Pediatrics, Division of Hematology, the Johns Hopkins University School of Medicine
| | - Allen D. Everett
- Department of Pediatrics, Division of Cardiology, the Johns Hopkins University School of Medicine
| | - James F. Casella
- Department of Pediatrics, Division of Hematology, the Johns Hopkins University School of Medicine
| |
Collapse
|
15
|
Farrell AT, Panepinto J, Carroll CP, Darbari DS, Desai AA, King AA, Adams RJ, Barber TD, Brandow AM, DeBaun MR, Donahue MJ, Gupta K, Hankins JS, Kameka M, Kirkham FJ, Luksenburg H, Miller S, Oneal PA, Rees DC, Setse R, Sheehan VA, Strouse J, Stucky CL, Werner EM, Wood JC, Zempsky WT. End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain. Blood Adv 2019; 3:3982-4001. [PMID: 31809538 PMCID: PMC6963237 DOI: 10.1182/bloodadvances.2019000882] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
To address the global burden of sickle cell disease (SCD) and the need for novel therapies, the American Society of Hematology partnered with the US Food and Drug Administration to engage the work of 7 panels of clinicians, investigators, and patients to develop consensus recommendations for clinical trial end points. The panels conducted their work through literature reviews, assessment of available evidence, and expert judgment focusing on end points related to: patient-reported outcomes (PROs), pain (non-PROs), the brain, end-organ considerations, biomarkers, measurement of cure, and low-resource settings. This article presents the findings and recommendations of the PROs, pain, and brain panels, as well as relevant findings and recommendations from the biomarkers panel. The panels identify end points, where there were supporting data, to use in clinical trials of SCD. In addition, the panels discuss where further research is needed to support the development and validation of additional clinical trial end points.
Collapse
Affiliation(s)
| | - Julie Panepinto
- Pediatric Hematology, Medical College of Wisconsin/Children's Wisconsin, Milwaukee, WI
| | - C Patrick Carroll
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Ankit A Desai
- Krannert Institute of Cardiology, Indiana University, Bloomington, IN
| | - Allison A King
- Division of Hematology and Oncology in Pediatrics and Medicine, Washington University School of Medicine, St. Louis, MO
| | - Robert J Adams
- Department of Neurology, Medical University of South Carolina, Charleston, SC
| | | | - Amanda M Brandow
- Pediatric Hematology, Medical College of Wisconsin/Children's Wisconsin, Milwaukee, WI
| | - Michael R DeBaun
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences
- Department of Neurology, and
- Department of Psychiatry, School of Medicine, Vanderbilt University, Nashville, TN
| | - Kalpna Gupta
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN
| | - Jane S Hankins
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Michelle Kameka
- Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL
| | - Fenella J Kirkham
- Developmental Neurosciences Unit and
- Biomedical Research Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Harvey Luksenburg
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - David C Rees
- Department of Haematological Medicine, King's College Hospital, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - John Strouse
- Division of Hematology, Department of Medicine, and
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Ellen M Werner
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John C Wood
- Children's Hospital Los Angeles, Los Angeles, CA; and
| | - William T Zempsky
- Department of Pediatrics, Connecticut Children's/School of Medicine, University of Connecticut, Hartford, CT
| |
Collapse
|
16
|
Stotesbury H, Kawadler JM, Hales PW, Saunders DE, Clark CA, Kirkham FJ. Vascular Instability and Neurological Morbidity in Sickle Cell Disease: An Integrative Framework. Front Neurol 2019; 10:871. [PMID: 31474929 PMCID: PMC6705232 DOI: 10.3389/fneur.2019.00871] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
It is well-established that patients with sickle cell disease (SCD) are at substantial risk of neurological complications, including overt and silent stroke, microstructural injury, and cognitive difficulties. Yet the underlying mechanisms remain poorly understood, partly because findings have largely been considered in isolation. Here, we review mechanistic pathways for which there is accumulating evidence and propose an integrative systems-biology framework for understanding neurological risk. Drawing upon work from other vascular beds in SCD, as well as the wider stroke literature, we propose that macro-circulatory hyper-perfusion, regions of relative micro-circulatory hypo-perfusion, and an exhaustion of cerebral reserve mechanisms, together lead to a state of cerebral vascular instability. We suggest that in this state, tissue oxygen supply is fragile and easily perturbed by changes in clinical condition, with the potential for stroke and/or microstructural injury if metabolic demand exceeds tissue oxygenation. This framework brings together recent developments in the field, highlights outstanding questions, and offers a first step toward a linking pathophysiological explanation of neurological risk that may help inform future screening and treatment strategies.
Collapse
Affiliation(s)
- Hanne Stotesbury
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Jamie M Kawadler
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Patrick W Hales
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Dawn E Saunders
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom.,Department of Radiology, Great Ormond Hospital, London, United Kingdom
| | - Christopher A Clark
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Fenella J Kirkham
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom.,Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom.,Department of Child Health, University Hospital Southampton, Southampton, United Kingdom.,Department of Paediatric Neurology, Kings College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Hirtz D, Kirkham FJ. Sickle Cell Disease and Stroke. Pediatr Neurol 2019; 95:34-41. [PMID: 30948147 DOI: 10.1016/j.pediatrneurol.2019.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/04/2023]
Abstract
Cerebral infarction is a common complication of sickle cell disease and may manifest as overt stroke or cognitive impairment associated with "silent" cerebral infarction on magnetic resonance imaging. Vasculopathy may be diagnosed on transcranial Doppler or magnetic resonance angiography. The risk factors in sickle cell disease for cognitive impairment, overt ischemic stroke, silent cerebral infarction, overt hemorrhagic stroke, and vasculopathy defined by transcranial Doppler or magnetic resonance angiography overlap, with severe acute and chronic anemia, acute chest crisis, reticulocytosis, and low oxygen saturation reported with the majority. However, there are differences reported in different cohorts, which may reflect age, geographic location, or neuroimaging techniques, for example, magnetic resonance imaging field strength. Regular blood transfusion reduces, but does not abolish, the risk of neurological complications in children with sickle cell disease and either previous overt stroke or silent cerebral infarction or abnormal transcranial Doppler. There are relatively few data on the use of hydroxyurea or other management strategies. Early assessment of the risk of neurocognitive complications is likely to become increasingly important in the management of sickle cell disease.
Collapse
Affiliation(s)
- Deborah Hirtz
- University of Vermont School of Medicine, Burlington, Vermont
| | - Fenella J Kirkham
- Developmental Neurosciences Section and Biomedical Research Unit, Clinical and Experimental Sciences, University of Southampton, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
18
|
Brewin J, Tewari S, Menzel S, Kirkham F, Inusa B, Renney G, Ward M, Rees DC. The effects of hydroxycarbamide on the plasma proteome of children with sickle cell anaemia. Br J Haematol 2019; 186:879-886. [DOI: 10.1111/bjh.15996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- John Brewin
- Red Cell Biology Unit King's College HospitalKing's College London
| | - Sanjay Tewari
- Red Cell Biology Unit King's College HospitalKing's College London
| | - Stephan Menzel
- Red Cell Biology Unit King's College HospitalKing's College London
| | - Fenella Kirkham
- Developmental Neurosciences and Biomedical Research Centre UCL Great Ormond Street Institute of Child Health London
- Clinical and Experimental Sciences University of Southampton Southampton
| | - Baba Inusa
- Paediatric Haematology Evelina Children's HospitalGuy's and St Thomas’ Hospital London
| | - George Renney
- Proteomics LaboratoryInstitute of Psychiatry King's College London UK
| | - Malcolm Ward
- Proteomics LaboratoryInstitute of Psychiatry King's College London UK
| | - David C. Rees
- Red Cell Biology Unit King's College HospitalKing's College London
| |
Collapse
|
19
|
Abstract
INTRODUCTION Plasma proteomics has been extensively utilized for studies that investigate various disease settings (e.g. cardiovascular disease), as well as to monitor the effect of pharmaceuticals on the plasma proteome (e.g. chemotherapy). However, plasma proteomic studies focusing on children represent a very small proportion of the plasma proteomic studies completed to date. Early disease detection and prevention is critical in pediatrics, as children must live with the disease outcomes for many years and often carry negative outcomes into adulthood. Pediatrics represents an area of plasma proteomics that is about to undergo a significant expansion. Areas covered: This review is based on a PubMed search focusing on five keywords that are plasma, biomarkers, pediatric, proteomics, and children. It is a comprehensive summary of plasma proteomic studies specific to the pediatric patient and discusses aspects such as the clinical setting, sample size, methodological approaches and outlines the significance of the findings. Expert commentary: Plasma proteomics is expanding significantly as a result of major advancements in proteomic technology. This is in synergy with the growing focus on true early disease detection and prevention in early life. We are about to see a new era of advanced medical science built from pediatric proteomics.
Collapse
Affiliation(s)
- Conor McCafferty
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia
| | - Jessica Chaaban
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia
| | - Vera Ignjatovic
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia.,b Department of Paediatrics , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
20
|
Miao X, Choi S, Tamrazi B, Chai Y, Vu C, Coates TD, Wood JC. Increased brain iron deposition in patients with sickle cell disease: an MRI quantitative susceptibility mapping study. Blood 2018; 132:1618-1621. [PMID: 30045839 PMCID: PMC6182265 DOI: 10.1182/blood-2018-04-840322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Xin Miao
- Department of Biomedical Engineering and
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA; and
- Division of Cardiology
| | | | | | - Chau Vu
- Department of Biomedical Engineering and
| | - Thomas D Coates
- Hematology Section, Children's Center for Cancer, Blood Diseases and Bone Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA
| | - John C Wood
- Department of Biomedical Engineering and
- Division of Cardiology
| |
Collapse
|