1
|
Fujii S, Miura Y. Lenalidomide and pomalidomide modulate hematopoietic cell expansion and differentiation in the presence of MSC. Int J Hematol 2024; 120:278-289. [PMID: 38995485 PMCID: PMC11362235 DOI: 10.1007/s12185-024-03815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Cytopenia is a well-documented complication in the treatment of hematological malignancies with lenalidomide and pomalidomide. Although prior studies have highlighted direct effects on hematopoietic cells to explain this adverse effect, the involvement of hematopoietic-supportive stroma remains less understood. This study examined the effects of lenalidomide/pomalidomide on the expansion and differentiation of human CD34+ hematopoietic stem/progenitor cells (HSPCs) in vitro, in co-culture with human bone-marrow mesenchymal stromal/stem cells (MSCs). Our findings indicate that lenalidomide/pomalidomide increases the population of immature CD34+CD38- cells while decreasing the number of mature CD34+CD38+ cells, suggesting a mechanism that inhibits early HSPC maturation. This effect persisted across myeloid, megakaryocytic, and erythroid lineages, with MSCs playing a key role in preserving immature progenitors and inhibiting their differentiation. Furthermore, in myeloid differentiation assays augmented by granulocyte-colony stimulating factor, lenalidomide/pomalidomide not only enhanced the presence of CD34+ cells with mature myeloid markers such as CD11b but also reduced the populations lacking CD34 yet positive for these markers, irrespective of MSC presence. Thus, while MSCs support the presence of these immature cell populations, they simultaneously inhibit their maturation. This finding provides novel mechanistic insights into lenalidomide- and pomalidomide-induced cytopenia, and could guide therapeutic strategies for its mitigation.
Collapse
Affiliation(s)
- Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, 606-8507, Japan.
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, 606-8507, Japan
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
2
|
Liu Y, Mo CC, Hartley-Brown MA, Sperling AS, Midha S, Yee AJ, Bianchi G, Piper C, Tattersall A, Nadeem O, Laubach JP, Richardson PG. Targeting Ikaros and Aiolos: reviewing novel protein degraders for the treatment of multiple myeloma, with a focus on iberdomide and mezigdomide. Expert Rev Hematol 2024; 17:445-465. [PMID: 39054911 DOI: 10.1080/17474086.2024.2382897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The treatment of multiple myeloma (MM) is evolving rapidly. Quadruplet regimens incorporating proteasome inhibitors, immunomodulatory drugs (IMiDs), and CD38 monoclonal antibodies have emerged as standard-of-care options for newly diagnosed MM, and numerous novel therapies have been approved for relapsed/refractory MM. However, there remains a need for novel options in multiple settings, including refractoriness to frontline standards of care. AREAS COVERED Targeting degradation of IKZF1 and IKZF3 - Ikaros and Aiolos - through modulation of cereblon, an E3 ligase substrate recruiter/receptor, is a key mechanism of action of the IMiDs and the CELMoD agents. Two CELMoD agents, iberdomide and mezigdomide, have demonstrated substantial preclinical and clinical activity in MM and have entered phase 3 investigation. Using a literature search methodology comprising searches of PubMed (unlimited time-frame) and international hematology/oncology conference abstracts (2019-2023), this paper reviews the importance of Ikaros and Aiolos in MM, the mechanism of action of the IMiDs and CELMoD agents and their relative potency for targeting Ikaros and Aiolos, and preclinical and clinical data on iberdomide and mezigdomide. EXPERT OPINION Emerging data suggest that iberdomide and mezigdomide have promising activity, including in IMiD-resistant settings and, pending phase 3 findings, may provide additional treatment options for patients with MM.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Monique A Hartley-Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shonali Midha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew J Yee
- Massachusetts General Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine Piper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Alice Tattersall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Jacob P Laubach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Barberio J, Lash TL, Nooka AK, Naimi AI, Patzer RE, Kim C. Real-World Risk of Severe Cytopenias in Multiple Myeloma Patients Sequentially Treated with Immunomodulatory Drugs. Acta Haematol 2024; 148:135-147. [PMID: 38735288 DOI: 10.1159/000539127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Most multiple myeloma (MM) patients experience cytopenias, likely driven by both disease and treatment-related factors. Immunomodulatory agents (IMiDs), which form the backbone of most anti-myeloma regimens, are known to cause higher grade cytopenias. In this context, the impact of sequential IMiD treatments on cytopenia risk is unknown. METHODS We evaluated the cumulative risks of severe cytopenias following second line of therapy (LOT) initiation in 5,573 MM patients in the Flatiron Health database. Patients for whom both LOTs 1 and 2 contained IMiDs were considered "sequentially exposed"; those for whom neither contained IMiDs were "never exposed." RESULTS For the neutropenia outcome, compared to the never exposed, the sequentially exposed had the highest 1-year risk (risk difference [RD] 12%), followed by those only recently exposed during LOT 2 (RD 8%), then by those with only past exposure during LOT 1 (RD 5%). A similar pattern was observed for leukopenia, but no meaningful differences were observed for anemia or thrombocytopenia. The associations between sequential exposure, versus never, with neutropenia and leukopenia were even stronger among those with a recent cytopenia history. CONCLUSION Results suggest that sequential exposure to IMiDs is a risk factor for higher grade cytopenias. These findings have profound clinical implications in choosing newer LOTs with potential risks of cytopenia.
Collapse
Affiliation(s)
- Julie Barberio
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Center for Observational Research, Amgen Inc., Thousand Oaks, California, USA
| | - Timothy L Lash
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Ajay K Nooka
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ashley I Naimi
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Rachel E Patzer
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Regenstrief Institute, Indianapolis, Indiana, USA
| | - Christopher Kim
- Center for Observational Research, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
4
|
Shin E, Park C, Park T, Chung H, Hwang H, Bak SH, Chung KS, Yoon SR, Kim TD, Choi I, Lee CH, Jung H, Noh JY. Deficiency of thioredoxin-interacting protein results in age-related thrombocytopenia due to megakaryocyte oxidative stress. J Thromb Haemost 2024; 22:834-850. [PMID: 38072375 DOI: 10.1016/j.jtha.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Platelets are generated from megakaryocytes (MKs), mainly located in the bone marrow (BM). Megakaryopoiesis can be affected by genetic disorders, metabolic diseases, and aging. The molecular mechanisms underlying platelet count regulation have not been fully elucidated. OBJECTIVES In the present study, we investigated the role of thioredoxin-interacting protein (TXNIP), a protein that regulates cellular metabolism in megakaryopoiesis, using a Txnip-/- mouse model. METHODS Wild-type (WT) and Txnip-/- mice (2-27-month-old) were studied. BM-derived MKs were analyzed to investigate the role of TXNIP in megakaryopoiesis with age. The global transcriptome of BM-derived CD41+ megakaryocyte precursors (MkPs) of WT and Txnip-/- mice were compared. The CD34+ hematopoietic stem cells isolated from human cord blood were differentiated into MKs. RESULTS Txnip-/- mice developed thrombocytopenia at 4 to 5 months that worsened with age. During ex vivo megakaryopoiesis, Txnip-/- MkPs remained small, with decreased levels of MK-specific markers. Critically, Txnip-/- MkPs exhibited reduced mitochondrial reactive oxygen species, which was related to AKT activity. Txnip-/- MkPs also showed elevated glycolysis alongside increased glucose uptake for ATP production. Total RNA sequencing revealed enrichment for oxidative stress- and apoptosis-related genes in differentially expressed genes between Txnip-/- and WT MkPs. The effects of TXNIP on MKs were recapitulated during the differentiation of human cord blood-derived CD34+ hematopoietic stem cells. CONCLUSION We provide evidence that the megakaryopoiesis pathway becomes exhausted with age in Txnip-/- mice with a decrease in terminal, mature MKs that response to thrombocytopenic challenge. Overall, this study demonstrates the role of TXNIP in megakaryopoiesis, regulating mitochondrial metabolism.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea
| | - Charny Park
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Hyunmin Chung
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Hyeyeong Hwang
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Stem Cell Convergence Research Center and Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Tae-Don Kim
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Chang Hoon Lee
- R&D Center, SCBIO Co, Ltd, Munji-ro, Yuseong-gu, Daejeon, Korea; Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
5
|
Al Qaryoute A, Fallatah W, Dhinoja S, Raman R, Jagadeeswaran P. Role of microRNAs and their downstream target transcription factors in zebrafish thrombopoiesis. Sci Rep 2023; 13:16066. [PMID: 37752184 PMCID: PMC10522587 DOI: 10.1038/s41598-023-42868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b, and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b, and mir-223 knockdowns. These results suggested mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa, and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223. We also identified that tgif1, cebpa, ikzf1, irf5, irf8, and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.
Collapse
Affiliation(s)
- Ayah Al Qaryoute
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Weam Fallatah
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Revathi Raman
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA.
| |
Collapse
|
6
|
Qaryoute AA, Fallatah W, Dhinoja S, Raman R, Jagadeeswaran P. Role of MicroRNAs and their Downstream Target Transcription Factors in Zebrafish Thrombopoiesis. RESEARCH SQUARE 2023:rs.3.rs-2807790. [PMID: 37162944 PMCID: PMC10168436 DOI: 10.21203/rs.3.rs-2807790/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b , and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b , and mir-223 knockdowns. These results suggested mir-7148, let-7b , and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8 , and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa , and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223 . We also identified that tgif1, cebpa, ikzf1, irf5 , irf8 , and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.
Collapse
|
7
|
Schlüter J, Cunningham S, Zimmermann R, Achenbach S, Kramer R, Erdmann M, Beckmann M, Heinzerling L, Hackstein H. Characterization of the impact of immune checkpoint inhibitors on platelet activation and aggregation. Immunobiology 2023; 228:152311. [PMID: 36495598 DOI: 10.1016/j.imbio.2022.152311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are effective oncological drugs which block cellular check-point receptors typically targeted by tumor immune evasion strategies. Despite their benefits, clinicians have reported treatment-associated thromboembolism during ICI therapy in recent years. Though several theories on this ICI-associated pathogenesis exist, the direct effects of ICIs on platelets remains unknown. We therefore investigated the potential direct and indirect effect of PD-1, PD-L1 and CTLA-4-targeting ICIs on platelet functionality in multifaceted in vitro experiments. Interestingly, we could not observe a clear effect of ICI on platelet aggregation and primary hemostasis in whole blood and platelet concentrate-based assays. Furthermore, the presence of ICIs in toll-like receptor stimulation had no significant impact on platelet surface marker expression. In a second approach, we investigated the indirect immunological impact of ICIs on platelet activation by exposing platelets to supernatants from ICI- and Staphylococcal enterotoxin B-exposed PBMCs. Whereas ICIs affected IL-2 levels in supernatants, we could not detect clear differences in the secretion of pro-thrombogenic factors and platelet responses. The obtained data suggest that the direct influence of ICIs on platelet activation or the influence of altered T cell function on platelet activation cannot be considered a major factor in the development of thrombotic events.
Collapse
Affiliation(s)
- Julian Schlüter
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany.
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Rafaela Kramer
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Michael Erdmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Malte Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Lucie Heinzerling
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany; Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich 80539, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| |
Collapse
|
8
|
CRL4 CRBN E3 Ligase Complex as a Therapeutic Target in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14184492. [PMID: 36139651 PMCID: PMC9496858 DOI: 10.3390/cancers14184492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Immunomodulatory drugs (IMiDs) are effective in the treatment of multiple myeloma (MM) and other hematological malignancies. Cereblon (CRBN), a target of IMiDs, forms the CRL4 E3 ubiquitin ligase complex (CRL4CRBN) with DDB1, CUL4A and RBX1. The insight into the molecular mechanism of IMiDs action has advanced dramatically since the identification of cereblon (CRBN) as their direct target. Targeting CRBN by IMiDs modifies CRL4CRBN substrate specificity towards non-physiological protein targets which are subsequently ubiquitinated and degraded by the proteasome. To date, IMiDs are the only known group of protein degraders used in clinical practice. This review provides the current state of knowledge about thalidomide and its derivatives’ mechanisms of action, and highlights the future perspectives for targeted protein degraders. Abstract Multiple myeloma (MM) is the second most common hematological malignancy with a recurrent clinical course. The introduction of immunomodulatory drugs (IMiDs) was one of the milestones in MM therapy leading to a significant improvement in patients’ prognosis. Currently, IMiDs are the backbone of MM therapy in newly diagnosed and relapsed/refractory settings. It is now known that IMiDs exert their anti-myeloma activity mainly by binding cereblon (CRBN), the substrate receptor protein of the CRL4 E3 ubiquitin ligase (CRL4CRBN) complex. By binding CRBN, IMiDs alter its substrate specificity, leading to ubiquitination and proteasomal degradation of proteins essential for MM cell survival. Following the success of IMiDs, it is not surprising that the possibility of using the CRL4CRBN complex’s activity to treat MM is being further explored. In this review, we summarize the current state of knowledge about novel players in the MM therapeutic landscape, namely the CRBN E3 ligase modulators (CELMoDs), the next generation of IMiDs with broader biological activity. In addition, we discuss a new strategy of tailored proteolysis called proteolysis targeting chimeras (PROTACs) using the CRL4CRBN to degrade typically undruggable proteins, which may have relevance for the treatment of MM and other malignancies in the future.
Collapse
|
9
|
Kim D, Shin DY, Liu J, Jeong NR, Koh Y, Hong J, Huang X, Broxmeyer HE, Yoon SS. Expansion of Human Megakaryocyte-Lineage Progeny via Aryl Hydrocarbon Receptor Antagonism with CH223191. Stem Cell Rev Rep 2022; 18:2982-2994. [PMID: 35687264 DOI: 10.1007/s12015-022-10386-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
Abstract
Aryl hydrocarbon receptor (AhR) antagonism is known to expand human hematopoietic stem cells (HSCs). However, its regulatory effect on the lineage-skewed differentiation of HSCs has not been sufficiently studied. Here, we investigate the effect of the AhR-selective antagonist CH223191 on the regulation of HSC differentiation. Consistent with the well-known effects of AhR antagonists, CH223191 treatment increase phenotypic HSCs (Lin-CD34 + CD38-CD90 + CD45RA-) and preserves their functionality. On the other hand, CH223191 leads to an overall expansion of megakaryocyte (MK)-lineage populations, such as MK progenitors (MKps, CD34 + CD41 +), immature MKs (CD41 + CD42b-), and mature MKs (CD41 + CD42b +), and it also activates MK/platelet-associated signaling pathways. Furthermore, CH223191 expands MKps, mature MKs, and p-selectin (CD62p)-positive platelet-like particles in immune thrombocytopenia (ITP) patient bone marrow (BM). These results highlight the numerical expansion of human MK-lineage progeny through AhR antagonism with CH223191. This approach using CH2231291 may be applicable in the development of auxiliary treatment regimens for patients with abnormal thrombopoiesis.
Collapse
Affiliation(s)
- Dongchan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Jun Liu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Na-Rae Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Xinxin Huang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
10
|
Molecular Mechanisms of Cereblon-Interacting Small Molecules in Multiple Myeloma Therapy. J Pers Med 2021; 11:jpm11111185. [PMID: 34834536 PMCID: PMC8623651 DOI: 10.3390/jpm11111185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Thalidomide analogues (or immunomodulatory imide drugs, IMiDs) are cornerstones in the treatment of multiple myeloma (MM). These drugs bind Cereblon (CRBN), a receptor for the Cullin-ring 4 ubiquitin-ligase (CRL4) complex, to modify its substrate specificity. IMiDs mediate CRBN-dependent engagement and proteasomal degradation of ‘neosubstrates’, Ikaros (IKZF1) and Aiolos (IKZF3), conveying concurrent antimyeloma activity and T-cell costimulation. There is now a greater understanding of physiological CRBN functions, including endogenous substrates and chaperone activity. CRISPR Cas9-based genome-wide screening has further elucidated the complex cellular machinery implicated in IMiD sensitivity, including IKZF1/3-independent mechanisms. New-generation IMiD derivatives with more potent anti-cancer properties—the CELMoDs (Cereblon E3 ligase modulators)—are now being evaluated. Rational drug design also allows ‘hijacking’ of CRL4CRBN utilising proteolysis targeting chimeras (PROTACs) to convey entirely distinct substrate repertoires. As all these chemotypes—thalidomide, IMiDs, CELMoDs and PROTACs—engage CRBN and modify its functions, we describe them here in aggregate as ‘CRBN-interacting small molecules’ (CISMs). In this review, we provide a contemporary summary of the biological consequences of CRBN modulation by CISMs. Detailed molecular insight into CRBN–CISM interactions now provides an opportunity to more effectively target previously elusive cancer dependencies, representing a new and powerful tool for the implementation of precision medicine.
Collapse
|
11
|
Cova G, Taroni C, Deau MC, Cai Q, Mittelheisser V, Philipps M, Jung M, Cerciat M, Le Gras S, Thibault-Carpentier C, Jost B, Carlsson L, Thornton AM, Shevach EM, Kirstetter P, Kastner P, Chan S. Helios represses megakaryocyte priming in hematopoietic stem and progenitor cells. J Exp Med 2021; 218:e20202317. [PMID: 34459852 PMCID: PMC8406645 DOI: 10.1084/jem.20202317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of cell fate decisions in hematopoietic stem cells is incomplete. Here, we show that the transcription factor Helios is highly expressed in murine hematopoietic stem and progenitor cells (HSPCs), where it is required to suppress the separation of the platelet/megakaryocyte lineage from the HSPC pool. Helios acts mainly in quiescent cells, where it directly represses the megakaryocyte gene expression program in cells as early as the stem cell stage. Helios binding promotes chromatin compaction, notably at the regulatory regions of platelet-specific genes recognized by the Gata2 and Runx1 transcriptional activators, implicated in megakaryocyte priming. Helios null HSPCs are biased toward the megakaryocyte lineage at the expense of the lymphoid and partially resemble cells of aging animals. We propose that Helios acts as a guardian of HSPC pluripotency by continuously repressing the megakaryocyte fate, which in turn allows downstream lymphoid priming to take place. These results highlight the importance of negative and positive priming events in lineage commitment.
Collapse
Affiliation(s)
- Giovanni Cova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Chiara Taroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Marie-Céline Deau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Qi Cai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Vincent Mittelheisser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Muriel Philipps
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Marie Cerciat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Christelle Thibault-Carpentier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Angela M. Thornton
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ethan M. Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Noh JY. Megakaryopoiesis and Platelet Biology: Roles of Transcription Factors and Emerging Clinical Implications. Int J Mol Sci 2021; 22:ijms22179615. [PMID: 34502524 PMCID: PMC8431765 DOI: 10.3390/ijms22179615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play a critical role in hemostasis and thrombus formation. Platelets are small, anucleate, and short-lived blood cells that are produced by the large, polyploid, and hematopoietic stem cell (HSC)-derived megakaryocytes in bone marrow. Approximately 3000 platelets are released from one megakaryocyte, and thus, it is important to understand the physiologically relevant mechanism of development of mature megakaryocytes. Many genes, including several key transcription factors, have been shown to be crucial for platelet biogenesis. Mutations in these genes can perturb megakaryopoiesis or thrombopoiesis, resulting in thrombocytopenia. Metabolic changes owing to inflammation, ageing, or diseases such as cancer, in which platelets play crucial roles in disease development, can also affect platelet biogenesis. In this review, I describe the characteristics of platelets and megakaryocytes in terms of their differentiation processes. The role of several critical transcription factors have been discussed to better understand the changes in platelet biogenesis that occur during disease or ageing.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
13
|
Abstract
In vitro, the differentiation of megakaryocytes (MKs) is improved by aryl-hydrocarbon receptor (AHR) antagonists such as StemRegenin 1 (SR1), an effect physiologically recapitulated by the presence of stromal mesenchymal cells (MSC). This inhibition promotes the amplification of a CD34+CD41low population able to mature as MKs with a high capacity for platelet production. In this short report, we showed that the emergence of the thrombocytogenic precursors and the enhancement of platelet production triggered by SR1 involved IKAROS. The downregulation/inhibition of IKAROS (shRNA or lenalidomide) significantly reduced the emergence of SR1-induced thrombocytogenic population, suggesting a crosstalk between AHR and IKAROS. Interestingly, using a proximity ligation assay, we could demonstrate a physical interaction between AHR and IKAROS. This interaction was also observed in the megakaryocytic cells differentiated in the presence of MSCs. In conclusion, our study revealed a previously unknown AHR/ IKAROS -dependent pathway which prompted the expansion of the thrombocytogenic precursors. This AHR- IKAROS dependent checkpoint controlling MK maturation opens new perspectives to platelet production engineering.
Collapse
|
14
|
Huang J, Huang S, Ma Z, Lin X, Li X, Huang X, Wang J, Ye W, Li Y, He D, Yang M, Pan J, Ling Q, Li F, Mao S, Wang H, Wang Y, Jin J. Ibrutinib Suppresses Early Megakaryopoiesis but Enhances Proplatelet Formation. Thromb Haemost 2021; 121:192-205. [PMID: 32961571 DOI: 10.1055/s-0040-1716530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, has a favorable safety profile in patients with B cell-related malignancies. A primary adverse effect of ibrutinib is thrombocytopenia in the early stages of treatment, but platelet counts increase or recover as treatment continues. Currently, the effects of ibrutinib on megakaryopoiesis remain unclear. In this study, we investigated the mechanism by which ibrutinib induces thrombocytopenia using cord blood CD34+ hematopoietic stem cells (HSCs), a human megakaryoblastic cell line (SET-2), and C57BL/6 mice. We show that treatment with ibrutinib can suppress CD34+ HSC differentiation into megakaryocytes (MKs) and decrease the number of colony-forming unit-MKs (CFU-MKs). The ibrutinib-dependent inhibition of early megakaryopoiesis seems to mainly involve impaired proliferation of progenitor cells without induction of apoptosis. The effects of ibrutinib on late-stage megakaryopoiesis, in contrast to early-stage megakaryopoiesis, include enhanced MK differentiation, ploidy, and proplatelet formation in CD34+ HSC-derived MKs and SET-2 cells. We also demonstrated that MK adhesion and spreading, but not migration, were inhibited by ibrutinib. Furthermore, we revealed that integrin αIIbβ3 outside-in signaling in MKs was inhibited by ibrutinib. Consistent with previous clinical observations, in C57BL/6 mice treated with ibrutinib, platelet counts decreased by days 2 to 7 and recovered to normal levels by day 15. Together, these results reveal the pathogenesis of ibrutinib-induced transient thrombocytopenia. In conclusion, ibrutinib suppresses early megakaryopoiesis, as evidenced by inhibition of MK progenitor cell proliferation and CFU-MK formation. Ibrutinib enhances MK differentiation, ploidy, and proplatelet formation, while it impairs integrin αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Martinez-Høyer S, Karsan A. Mechanisms of lenalidomide sensitivity and resistance. Exp Hematol 2020; 91:22-31. [PMID: 32976949 DOI: 10.1016/j.exphem.2020.09.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
The discovery that the immunomodulatory imide drugs (IMiDs) possess antitumor properties revolutionized the treatment of specific types of hematological cancers. Since then, much progress has been made in understanding why the IMiDs are so efficient in targeting the malignant clones in difficult-to-treat diseases. Despite their efficacy, IMiD resistance arises eventually. Herein we summarize the mechanisms of sensitivity and resistance to lenalidomide in del(5q) myelodysplastic syndrome and multiple myeloma, two diseases in which these drugs are at the therapeutic frontline. Understanding the molecular and cellular mechanisms underlying IMiD efficacy and resistance may allow development of specific strategies to eliminate the malignant clone in otherwise incurable diseases.
Collapse
Affiliation(s)
- Sergio Martinez-Høyer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
17
|
Li S, Vallet S, Sacco A, Roccaro A, Lentzsch S, Podar K. Targeting transcription factors in multiple myeloma: evolving therapeutic strategies. Expert Opin Investig Drugs 2019; 28:445-462. [DOI: 10.1080/13543784.2019.1605354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shirong Li
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Aldo Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Suzanne Lentzsch
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|