1
|
Ekaney ML, Bartl NE, McKillop IH, Evans SL. Comparative analysis of cold-stored apheresis platelet units in additive solution with or without pathogen reduction: Implications of cytochrome c supplementation. J Trauma Acute Care Surg 2025; 98:327-336. [PMID: 39722184 DOI: 10.1097/ta.0000000000004502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
BACKGROUND Platelets are limited in supply, and the preservation of platelet function during storage remains challenging. Novel storage approaches are being explored to improve platelet quality, extend shelf life, and reduce risk of infection. This study sought to elucidate platelet function in cold-stored apheresis units in additive solution (platelet additive solution [PAS]) and subjected to pathogen reduction (PR) as well as the impact of cytochrome c (cyt c) supplementation. We hypothesized that the PR would decrease stored platelet function, regardless of cyt c supplementation. METHODS Platelet apheresis units (PAS) were collected (N = 5 volunteers) and divided into PR or no PR (PAS) and supplemented with vehicle or cyt c (100 μM). Units were stored at 4°C for 15 days, sequential aliquots were removed, and platelet/mitochondrial respiratory function and biochemical parameters were analyzed. RESULTS There was no difference in platelet aggregation in response to adenosine diphosphate between PAS and PR platelets. Aggregation function in response to arachidonic acid was higher in PR versus PAS platelets. Maximum clot strength was not different between PAS and PR from Day 0 to Day 5 but declined in PR platelets on Days 10 and 15. Oxygen consumption declined at the same rate in PAS and PR platelets, while rate of lactate and TCO 2 decrease was greater in PR platelets than in PAS platelets. Supplementation with cyt c did not alter platelet function or biochemical parameters in PAS or PR platelets. CONCLUSION Platelet additive solution and PR platelets show similar declines in respiratory capacity, and biochemical parameters during cold storage, but PR platelets demonstrated significantly increased arachidonic acid-induced aggregation across all time points. Further understanding this mechanism may provide a means to prolong platelet shelf life.
Collapse
Affiliation(s)
- Michael L Ekaney
- From the FH "Sammy" Ross Trauma Center, Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | | | | | | |
Collapse
|
2
|
Drossos PV, Fortis SP, Anastasiadi AT, Pavlou EG, Tsantes AG, Spyratos GA, Papageorgiou EG, Nomikou EG, Stamoulis KE, Dryllis G, Tzounakas VL, Politou M, Valsami S, Kriebardis AG. Cold vs. Room Temperature: A Comparative Analysis of Platelet Functionality in Cold Storage. Biomedicines 2025; 13:310. [PMID: 40002723 PMCID: PMC11852762 DOI: 10.3390/biomedicines13020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The platelet functionality of cold-stored platelets remains a subject of debate. Our aim was to investigate the effect of temperature on the hemostatic properties of stored platelets. Methods: Ten split pooled platelets stored at cold and at room temperature were evaluated in vitro on storage days 1, 5, 10, and 15 for metabolic, physiological, and vesiculation parameters, as well as their hemostatic profile using rotational thromboelastometry (ROTEM®). Results: The integrity profile was better preserved in the cold-stored platelets, as lower lactate dehydrogenase levels were documented (e.g., day 10: 261 ± 46 vs. 572 ± 220 U/L, 4 vs. 22 °C, p = 0.004). A time-dependent decrease in hemostatic capacity was evident regardless of the temperature, but the cold-stored units were linked to shorter clot initiation times and increased elasticity, strength, and firmness parameters, especially during extended storage (e.g., maximum clot firmness, INTEM day 15: 81 ± 2 vs. 19 ± 4 mm, 4 vs. 22 °C, p = 0.0008). Additionally, the aggregation of cold-stored platelets was superior after the addition of any agonist tested. Regarding vesiculation parameters, the extracellular vesicles of the units at 4 °C were characterized by a larger size from day 10 onwards, when they also presented higher procoagulant activity (e.g., phospholipid-dependent clotting time of day 15: 21.4 ± 2.3 vs. 25.0 ± 3.0 s, 4 vs. 22 °C, p = 0.016). Conclusion: Our results indicate that cold-stored platelets perform better than those stored at room temperature, demonstrating superior clot formation and stability. This suggests that cold storage may more effectively preserve platelet function, potentially offering advantages for transfusion therapy and the extension of shelf-life. However, the clinical relevance of these findings requires further investigation.
Collapse
Affiliation(s)
- Panagiotis V. Drossos
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Efthymia G. Pavlou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
- Blood Bank and Hemophilia Unit, Hippokration Hospital, 11527 Athens, Greece;
| | - Andreas G. Tsantes
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
- Laboratory of Haematology and Blood Bank Unit, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gerasimos A. Spyratos
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Efrosyni G. Nomikou
- Blood Bank and Hemophilia Unit, Hippokration Hospital, 11527 Athens, Greece;
| | | | - Georgios Dryllis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Marianna Politou
- Hematology Laboratory—Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Serena Valsami
- Hematology Laboratory—Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| |
Collapse
|
3
|
Chen S, Han J, Deng H, Lu Y, Wang Z, Zhang Q, Xia R. Platelet PD-L1 inhibits storage-induced apoptosis by sustaining activation of the AKT signalling pathway. Thromb Res 2024; 240:109056. [PMID: 38878739 DOI: 10.1016/j.thromres.2024.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/07/2024]
Abstract
Platelet apoptosis is irreversible under current storage conditions in blood banks. Studies have shown that programmed cell death ligand 1 (PD-L1) in tumour cells is required for neoplastic progression, tumour recurrence and metastasis by regulating apoptosis. However, whether PD-L1 is involved in storage-induced apoptosis in platelets remains poorly understood. In this study, we explored whether PD-L1 on platelets participated in the regulation of storage-induced apoptosis under blood bank conditions, as well as the underlying mechanism. Several apoptotic events in platelets from humans and PD-L1-knockout mice during storage under blood bank conditions were measured. The mechanism by which storage-induced apoptosis was regulated by platelet-intrinsic PD-L1 signalling was further investigated. Our results showed that PD-L1 in platelets progressively decreased. There was a strong negative correlation between platelet PD-L1 expression and the phosphatidylserine (PS) externalization rate and cleaved caspase-3 level and a positive correlation with anti-apoptosis protein Bcl-xl. Ex vivo, PD-L1-/- platelets stored at 22 °C showed rapid apoptosis via an intrinsic mitochondria-dependent pathway over time. Likewise, inhibiting PD-L1 signalling with BMS-1166 accelerated apoptosis by intrinsic mitochondria-dependent pathway. Coimmunoprecipitation analysis revealed that PD-L1 could bind AKT in platelets, and the binding capacity of both showed a progressive decrease with time. Finally, the decrease in PD-L1 expression levels during storage could be attributed to a complex process of progressive secretion. Therefore, platelet PD-L1 inhibits storage-induced apoptosis by sustaining activation of the AKT signalling pathway, which is expected to become a target for alleviating platelet storage lesions (PSLs) under current blood bank conditions.
Collapse
Affiliation(s)
- Shaoheng Chen
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Transfusion Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Han
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huimin Deng
- Department of Transfusion Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanshan Lu
- Department of Transfusion Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Trochanowska-Pauk N, Walski T, Bohara R, Mikolas J, Kubica K. Platelet Storage-Problems, Improvements, and New Perspectives. Int J Mol Sci 2024; 25:7779. [PMID: 39063021 PMCID: PMC11277025 DOI: 10.3390/ijms25147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage.
Collapse
Affiliation(s)
- Natalia Trochanowska-Pauk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D.Y. Patil Educational Society, Kolhapur 416006, India;
| | - Julia Mikolas
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Krystian Kubica
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
5
|
Kogler VJ, Miles JA, Özpolat T, Bailey SL, Byrne DA, Bawcom-Randall M, Wang Y, Larsen HJ, Reed F, Fu X, Stolla M. Platelet dysfunction reversal with cold-stored vs room temperature-stored platelet transfusions. Blood 2024; 143:2073-2088. [PMID: 38427589 PMCID: PMC11143524 DOI: 10.1182/blood.2023022593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
ABSTRACT Platelets are stored at room temperature for 5 to 7 days (room temperature-stored platelets [RSPs]). Because of frequent and severe shortages, the US Food and Drug Administration recently approved up to 14-day cold-stored platelets (CSPs) in plasma. However, the posttransfusion function of CSPs is unknown and it is unclear which donors are best suited to provide either RSPs or CSPs. In this study, we sought to evaluate the posttransfusion platelet function and its predictors for platelets stored for the maximum approved storage times (7-day RSPs and 14-day CSPs) in healthy volunteers on acetylsalicylic acid (ASA). We conducted a randomized crossover study in 10 healthy humans. Individuals donated 1 platelet unit, stored at either 22°C or 4°C based on randomization. Before transfusion, participants ingested ASA to inhibit endogenous platelets. Transfusion recipients were tested for platelet function and lipid mediators. Platelet units were tested for lipid mediators only. A second round of transfusion with the alternative product was followed by an identical testing sequence. RSPs reversed platelet inhibition significantly better in αIIbβ3 integrin activation-dependent assays. In contrast, CSPs in recipients led to significantly more thrombin generation, which was independent of platelet microparticles. Lysophosphatidylcholine-O species levels predicted the procoagulant capacity of CSPs. In contrast, polyunsaturated fatty acid concentrations predicted the aggregation response of RSPs. In summary, we provide, to our knowledge, the first efficacy data of extended-stored CSPs in plasma. Our results suggest that identifying ideal RSP and CSP donors is possible, and pave the way for larger studies in the future. This trial is registered at www.ClinicalTrials.gov as #NCT0511102.
Collapse
Affiliation(s)
- Valery J. Kogler
- Bloodworks Northwest Research Institute, Seattle, WA
- Department of Pathology and Laboratory Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Jeffrey A. Miles
- Bloodworks Northwest Research Institute, Seattle, WA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Tahsin Özpolat
- Bloodworks Northwest Research Institute, Seattle, WA
- Department of Medicine, Division of Nephrology, University of Arizona, School of Medicine, Tucson, AZ
| | | | | | | | - Yi Wang
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | - Franklin Reed
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
6
|
von Behren JM, Wesche J, Greinacher A, Aurich K. Indocyanine Green-Labeled Platelets for Survival and Recovery Studies. Transfus Med Hemother 2024; 51:66-75. [PMID: 38584698 PMCID: PMC10996059 DOI: 10.1159/000533623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/13/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction Before being implemented in daily clinical routine, new production strategies for platelet concentrates (PCs) must be validated for their efficacy. Besides in vitro testing, the establishment of new methods requires the labeling of platelets for in vivo studies of platelets' survival and recovery. Indocyanine green (ICG) is a Food and Drug Administration-approved near-infrared (NIR) fluorescent dye for diagnostic use in vivo, suitable for non-radioactive direct cell labeling of platelets. Methods Platelets from PCs in storage solutions with different plasma concentrations were labeled with ICG up to concentrations of 200 μm. Whole blood (WB) was used as an ex vivo matrix to monitor the labeling stability of ICG-labeled platelets. The impact of labeling processes was assessed by the quantification of CD62P expression and PAC-1 binding as platelet function markers. Platelet aggregation was analyzed by light transmission aggregometry. ICG-labeling efficiency and stability of platelets were determined by flow cytometry. Results Platelets from PCs could be successfully labeled with 10 μm ICG after 1 and 4 days of storage. The best labeling efficiency of 99.8% ± 0.1% (immediately after labeling) and 81% ± 6.2% (after 24 h incubation with WB) was achieved by plasma replacement by 100% platelet additive solution for the labeling process. Since the washing process slightly impaired platelet function, ICG labeling itself did not affect platelets. Immediately after the ICG-labeling process, plasma was re-added, resulting in a recovered platelet function. Conclusion We developed a Good Manufacturing Practice compatible protocol for ICG fluorescent platelet labeling suitable for survival and recovery studies in vivo as a non-radioactive labeling alternative.
Collapse
Affiliation(s)
| | - Jan Wesche
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| | - Andreas Greinacher
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| | - Konstanze Aurich
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| |
Collapse
|
7
|
Kirschall J, Uzun G, Bakchoul T, Marini I. In vitro Hemostatic Functions of Cold-Stored Platelets. Transfus Med Hemother 2024; 51:94-100. [PMID: 38584694 PMCID: PMC10996062 DOI: 10.1159/000533735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 04/09/2024] Open
Abstract
Background Transfusion of platelets is a life-saving medical strategy used worldwide to treat patients with thrombocytopenia as well as platelet function disorders. Summary Until the end of 1960s, platelets were stored in the cold because of their superior hemostatic functionality. Cold storage of platelets was then abandoned due to better posttransfusion recovery and survival of room temperature (RT)-stored platelets, demonstrated by radioactive labeling studies. Based on these findings, RT became the standard condition to store platelets for clinical applications. Evidence shows that RT storage increases the risk of septic transfusion reactions associated with bacterial contamination. Therefore, the storage time is currently limited to 4-7 days, according to the national guidelines, causing a constant challenge to cover the clinical request. Despite the enormous efforts made to optimize storage conditions of platelets, the quality and efficacy of platelets still decrease during the short storage time at RT. In this context, during the last years, cold storage has seen a renaissance due to the better hemostatic functionality, reduced risk of bacterial contamination, and potentially longer storage time. Key Messages In this review, we will focus on the impact of cold storage on the in vitro platelet functions as promising alternative storage temperature for future medical applications.
Collapse
Affiliation(s)
- Johanna Kirschall
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, Tuebingen, Germany
| | - Günalp Uzun
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
| | - Irene Marini
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Jóhannsson F, Yurkovich JT, Guðmundsson S, Sigurjónsson ÓE, Rolfsson Ó. Temperature Dependence of Platelet Metabolism. Metabolites 2024; 14:91. [PMID: 38392983 PMCID: PMC10890334 DOI: 10.3390/metabo14020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Temperature plays a fundamental role in biology, influencing cellular function, chemical reaction rates, molecular structures, and interactions. While the temperature dependence of many biochemical reactions is well defined in vitro, the effect of temperature on metabolic function at the network level is poorly understood, and it remains an important challenge in optimizing the storage of cells and tissues at lower temperatures. Here, we used time-course metabolomic data and systems biology approaches to characterize the effects of storage temperature on human platelets (PLTs) in a platelet additive solution. We observed that changes to the metabolome with storage time do not simply scale with temperature but instead display complex temperature dependence, with only a small subset of metabolites following an Arrhenius-type relationship. Investigation of PLT energy metabolism through integration with computational modeling revealed that oxidative metabolism is more sensitive to temperature changes than glycolysis. The increased contribution of glycolysis to ATP turnover at lower temperatures indicates a stronger glycolytic phenotype with decreasing storage temperature. More broadly, these results demonstrate that the temperature dependence of the PLT metabolic network is not uniform, suggesting that efforts to improve the health of stored PLTs could be targeted at specific pathways.
Collapse
Affiliation(s)
- Freyr Jóhannsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, 102 Reykjavik, Iceland
- School of Health Sciences, Medical Department, University of Iceland, Sturlugata 8, 102 Reykjavik, Iceland
| | - James T Yurkovich
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Phenome Health, Seattle, WA 98109, USA
- Center for Phenomic Health, The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Steinn Guðmundsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, 102 Reykjavik, Iceland
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- The Blood Bank, Landspitali-University Hospital, Snorrabraut 60, 101 Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, 102 Reykjavik, Iceland
- School of Health Sciences, Medical Department, University of Iceland, Sturlugata 8, 102 Reykjavik, Iceland
| |
Collapse
|
9
|
Marini I, Pelzl L, Tamamushi Y, Maettler CT, Witzemann A, Althaus K, Nowak-Harnau S, Seifried E, Bakchoul T. Inhibition of GPIb-α-mediated apoptosis signaling enables cold storage of platelets. Haematologica 2023; 108:2959-2971. [PMID: 37345472 PMCID: PMC10620573 DOI: 10.3324/haematol.2022.282572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Cold storage of platelets has been suggested as an alternative approach to reduce the risk of bacterial contamination and to improve the cell quality as well as functionality compared to room temperature storage. However, cold-stored platelets (CSP) are rapidly cleared from the circulation. Among several possible mechanisms, apoptosis has been recently proposed to be responsible for the short half-life of refrigerated platelets. In the present study, we investigated the impact of apoptosis inhibition on the hemostatic functions and survival of CSP. We found that blocking the transduction of the apoptotic signal induced by glycoprotein Ib (GPIb)-α clustering or the activation of caspase 9 does not impair CSP functionality. In fact, the inhibition of GPIb-α clustering mediated-apoptotic signal by a RhoA inhibitor better conserved δ granule release, platelet aggregation, adhesion and the ability to form stable clots, compared to untreated CSP. In contrast, upregulation of the protein kinase A caused a drastic impairment of platelet functions and whole blood clot stability. More importantly, we observed a significant improvement of the half-life of CSP upon inhibition of the intracellular signal induced by GPIb-α clustering. In conclusion, our study provides novel insights on the in vitro hemostatic functions and half-life of CSP upon inhibition of the intracellular cold-induced apoptotic pathway. Our data suggest that the combination of cold storage and apoptosis inhibition might be a promising strategy to prolong the storage time without impairing hemostatic functions or survival of refrigerated platelets.
Collapse
Affiliation(s)
- Irene Marini
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen
- Center for Clinical Transfusion Medicine Tübingen
| | - Lisann Pelzl
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen
- Center for Clinical Transfusion Medicine Tübingen
| | - Yoko Tamamushi
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen
| | - Chiara-Tanita Maettler
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen
| | - Andreas Witzemann
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen
| | - Karina Althaus
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen
- Center for Clinical Transfusion Medicine Tübingen
| | | | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen
- Center for Clinical Transfusion Medicine Tübingen
| |
Collapse
|
10
|
Keneally RJ, Gonzalez-Almada A, Wargowsky R, Fernandez X, Kochar O, Cresswell G, Sarani B, Tanaka K, Mazzeffi MA. In Vitro Analysis of Platelet Adhesion, Aggregation, and Surface GP1bα Expression in Stored Refrigerated Whole Blood: A Pilot Study. Anesth Analg 2023; 136:920-926. [PMID: 37058728 DOI: 10.1213/ane.0000000000006277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Warm, fresh whole blood (WB) has been used by the US military to treat casualties in Iraq and Afghanistan. Based on data in that setting, cold-stored WB has been used to treat hemorrhagic shock and severe bleeding in civilian trauma patients in the United States. In an exploratory study, we performed serial measurements of WB's composition and platelet function during cold storage. Our hypothesis was that in vitro platelet adhesion and aggregation would decrease over time. METHODS WB samples were analyzed on storage days 5, 12, and 19. Hemoglobin, platelet count, blood gas parameters (pH, Po2, Pco2, and Spo2), and lactate were measured at each timepoint. Platelet adhesion and aggregation under high shear were assessed with a platelet function analyzer. Platelet aggregation under low shear was assessed using a lumi-aggregometer. Platelet activation was assessed by measuring dense granule release in response to high-dose thrombin. Platelet GP1bα levels were measured with flow cytometry, as a surrogate for adhesive capacity. Results at the 3 study timepoints were compared using repeat measures analysis of variance and post hoc Tukey tests. RESULTS Measurable platelet count decreased from a mean of (163 + 53) × 109 platelets per liter at timepoint 1 to (107 + 32) × 109 at timepoint 3 (P = .02). Mean closure time on the platelet function analyzer (PFA)-100 adenosine diphosphate (ADP)/collagen test increased from 208.7 + 91.5 seconds at timepoint 1 to 390.0 + 148.3 at timepoint 3 (P = .04). Mean peak granule release in response to thrombin decreased significantly from 0.7 + 0.3 nmol at timepoint 1 to 0.4 + 0.3 at timepoint 3 (P = .05). Mean GP1bα surface expression decreased from 232,552.8 + 32,887.0 relative fluorescence units at timepoint 1 to 95,133.3 + 20,759.2 at timepoint 3 (P < .001). CONCLUSIONS Our study demonstrated significant decreases in measurable platelet count, platelet adhesion, and aggregation under high shear, platelet activation, and surface GP1bα expression between cold-storage days 5 and 19. Further studies are needed to understand the significance of our findings and to what degree in vivo platelet function recovers after WB transfusion.
Collapse
Affiliation(s)
- Ryan J Keneally
- From the Department of Anesthesiology, The George Washington University, Washington, District of Columbia
| | - Alberto Gonzalez-Almada
- From the Department of Anesthesiology, The George Washington University, Washington, District of Columbia
| | - Richard Wargowsky
- From the Department of Anesthesiology, The George Washington University, Washington, District of Columbia
| | - Xiomara Fernandez
- Department of Pathology, The George Washington University, Washington, District of Columbia
| | - Olga Kochar
- Laboratory and Transfusion Services, George Washington University, Washington, District of Columbia
| | - Gregory Cresswell
- The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | - Babak Sarani
- Department of Surgery, The George Washington University, Washington, District of Columbia
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Oklahoma, Norman, Oklahoma
| | - Michael A Mazzeffi
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
11
|
Khosravi A, Deyhim MR, Yari F, Nikougoftar Zarif M. Resveratrol; a Double-Edged Sword Antioxidant Agent for Preserving Platelet Cell Functions During Storage; Molecular Insights. Rep Biochem Mol Biol 2023; 11:553-564. [PMID: 37131901 PMCID: PMC10149130 DOI: 10.52547/rbmb.11.4.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Background In the current study we have aimed to find the effects of Resveratrol treatment on platelet concentrates (PCs) at the dose dependent manner. We have also attempted to find the molecular mechanism of the effects. Methods The PCs, have received from Iranian blood transfusion organization (IBTO). Totally 10 PCs were studied. The PCs divided into 4 groups including untreated (control) and treated by different dose of Resveratrol; 10, 30 and 50 µM. Platelet aggregation and total reactive oxygen species (ROS) levels were evaluated at day 3 of PCs storage. In silico analysis was carried out to find out the potential involved mechanisms. Results The aggregation against collagen has fallen dramatically in all studied groups but at the same time, aggregation was significantly higher in the control versus treated groups (p<0.05). The inhibitory effect was dose dependent. The aggregation against Ristocetin did not significantly affect by Resveratrol treatment. The mean of total ROS significantly increased in all studied groups except those PCs treated with 10 µM of Resveratrol (P=0.9). The ROS level significantly increased with increasing Resveratrol concentration even more than control group (slope=11.6, P=0.0034). Resveratrol could potently interact with more than 15 different genes which, 10 of them enrolled in cellular regulation of the oxidative stress. Conclusions Our findings indicated that the Resveratrol affect the platelet aggregation at the dose dependent manner. Moreover, we have also found that the Resveratrol play as double-edged sword in the controlling oxidative state of the cells. Therefore, Using the optimal dose of Resveratrol is the great of importance.
Collapse
Affiliation(s)
- Abbas Khosravi
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Reza Deyhim
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
- Corresponding author: Mohammad Reza Deyhim; Tel: +98 21 82052180; E-mail:
| | - Fatemeh Yari
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
12
|
Abstract
There is a crucial need for platelet transfusion during an emergency-surgery and treatment of platelet disorders. The unavailability of donors has furthermore increased the demand for platelet storage. Platelets have limited shelf life due to bacterial contamination and storage lesions. Temperature, materials, oxygen availability, media, platelet processing and manufacturing methods influence the platelet quality and viability during storage. The conception of various platelet additive solutions along with the advent of plastic storage during the 1980s led to enormous developments in platelet storage strategies. Cold storage of platelets gained attention despite its inability to contribute to platelet survival post-transfusion as it offers faster haemostasis. Several developments in platelet storage strategies over the years have improved the quality and shelf-life of stored platelets. Despite the progress, the efficacy of platelets during storage beyond a week has not been achieved. Antioxidants as additives have been explored in platelet storage and have proven to enhance the efficacy of platelets during prolonged storage. However, the molecular interactions of antioxidants in platelets can provide a better understanding of their mechanism of action. Optimization of dosage concentrations of antioxidants is also a critical parameter to be considered as they tend to exhibit toxicity at certain levels. This review provides comprehensive insights into the critical factors affecting platelet storage and the evolution of platelet storage. It also emphasizes the role of antioxidants as additives in platelet storage solutions and their future prospects towards better platelet banking.
Collapse
Affiliation(s)
- Vani Rajashekaraiah
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India.
| | - Magdaline Christina Rajanand
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India
| |
Collapse
|
13
|
Nogawa M, Watanabe N, Koike T, Fukuda K, Ishiguro M, Fujino H, Hirayama J, Shiba M, Handa M, Mori T, Okamoto S, Miyata S, Satake M. Hemostatic function of cold-stored platelets in a thrombocytopenic rabbit bleeding model. Transfusion 2022; 62:2304-2313. [PMID: 36178666 DOI: 10.1111/trf.17128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Transfusion of cold-stored platelet concentrates (CS-PCs) appears effective in massively bleeding patients. However, few studies have evaluated their in vivo hemostatic function in severe thrombocytopenia. STUDY DESIGN AND METHODS The in vivo function of plasma-depleted human PCs was evaluated in rabbits with a blocked reticuloendothelial system and busulfan-induced thrombocytopenia. On day 1, a human apheresis PC was processed in a platelet additive solution (PAS-PC) and split evenly for cold or room temperature storage (RTS). On days 3, 6, or 9, RTS- or CS-PAS-PCs were transfused (4.0 × 109 platelets/kg) after plasma depletion into two to four rabbits that developed adequate thrombocytopenia (<25 × 109 /L). Ear bleeding time was measured by two incisions in small veins. The hemostatic rate was defined as the percentage of rabbits achieving bleeding cessation within 600 s at either incision. The experiment was repeated using five different PCs on each storage day. RESULTS The mean pre-transfusion rabbit platelet count was 8.6 ± 5.2 × 109 /L. The hemostatic rates with RTS- and CS-PAS-PCs were both 100% on day 3, 93 ± 15% and 73 ± 15% on day 6 (p = .07), and 65 ± 36% and 73 ± 37% on day 9 (p = .27), respectively, with no statistical differences. Total platelet counts were significantly lower after CS-PAS-PC than RTS-PAS-PC transfusion on all days (e.g., 58.7 ± 5.7 vs. 42.4 ± 14.7 × 109 /L, p = .0007, day 9), and did not reach 50 × 109 /L in several experiments. Platelet count increments correlated significantly with hemostatic efficacy for CS-PAS-PC transfusion only. DISCUSSION CS-PAS-PCs might achieve similar hemostasis as RTS-PAS-PCs in thrombocytopenic patients with mild bleeding. Hemostatic efficacy could be improved by transfusing more CS-PAS-PCs.
Collapse
Affiliation(s)
- Masayuki Nogawa
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Naohide Watanabe
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiyasu Koike
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Kanae Fukuda
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Mariko Ishiguro
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hitomi Fujino
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hirayama
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Masayuki Shiba
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Makoto Handa
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Takehiko Mori
- Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Miyata
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Masahiro Satake
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| |
Collapse
|
14
|
Braathen H, Hagen KG, Kristoffersen EK, Strandenes G, Apelseth TO. Implementation of a dual platelet inventory in a tertiary hospital during the COVID-19 pandemic enabling cold-stored apheresis platelets for treatment of actively bleeding patients. Transfusion 2022; 62 Suppl 1:S193-S202. [PMID: 35732490 PMCID: PMC9349781 DOI: 10.1111/trf.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND To increase preparedness and mitigate the risk of platelet shortage without increasing the number of collections, we introduced a dual platelet inventory with cold-stored platelets (CSP) with 14-days shelf life for actively bleeding patients during the COVID-19 pandemic. STUDY DESIGN AND METHODS We collected apheresis platelet concentrates with blood type O or A. All patients receiving CSP units were included in a quality registry. Efficacy was evaluated by total blood usage and laboratory analysis of platelet count, hemoglobin, and TEG 6s global hemostasis assay. Feasibility was evaluated by monitoring inventory and a survey among laboratory staff. RESULTS From 17 March, 2020, to 31 December, 2021, we produced 276 CSP units and transfused 186 units to 92 patients. Main indication for transfusion was surgical bleeding (88%). No transfusion reactions were reported. 24-h post-transfusion patient survival was 96%. Total outdate in the study period was 33%. The majority (75%) of survey respondents answered that they had received sufficient information and training before CSP was implemented. Lack of information about bleeding status while issuing platelets, high workload, and separate storage location was described as main reasons for outdates. DISCUSSION CSP with 14-days shelf life is a feasible alternative for the treatment of patients with bleeding. Implementation of a dual platelet inventory requires thorough planning, including information and training of clinical and laboratory staff, continuous follow-up of practice and patients, and an easy-to-follow algorithm for use of CSP units. A dual platelet inventory may mitigate the risk of platelet shortage during a pandemic situation.
Collapse
Affiliation(s)
- Hanne Braathen
- Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
| | - Kristin G. Hagen
- Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
| | - Geir Strandenes
- Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
| | - Torunn O. Apelseth
- Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
- Norwegian Armed Forces Joint Medical ServicesOsloNorway
| |
Collapse
|
15
|
Shea SM, Spinella PC, Thomas KA. Cold-stored platelet function is not significantly altered by agitation or manual mixing. Transfusion 2022; 62:1850-1859. [PMID: 35898113 DOI: 10.1111/trf.17005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cold storage of platelets (CS-PLT), results in better maintained hemostatic function compared to room-temperature stored platelets (RT-PLT), leading to increased interest and use of CS-PLT for actively bleeding patients. However, questions remain on best storage practices for CS-PLT, as agitation of CS-PLT is optional per the United States Food and Drug Administration. CS-PLT storage and handling protocols needed to be determined prior to upcoming clinical trials, and blood banking standard operating procedures need to be updated accordingly for the release of units due to potentially modified aggregate morphology without agitation. STUDY DESIGN AND METHODS We visually assessed aggregate formation, then measured surface receptor expression (GPVI, CD42b (GPIbα), CD49 (GPIa/ITGA2), CD41/61 (ITGA2B/ITGB3; GPIIB/GPIIIA; PACI), CD62P, CD63, HLAI), thrombin generation, aggregation (collagen, adenosine diphosphate [ADP], and epinephrine activation), and viscoelastic function (ExTEM, FibTEM) in CS-PLT (Trima collection, 100% plasma) stored for 21 days either with or without agitation (Phase 1, n = 10 donor-paired units) and then without agitation with or without daily manual mixing to minimize aggregate formation and reduce potential effects of sedimentation (Phase 2, n = 10 donor-paired units). RESULTS Agitation resulted in macroaggregate formation, whereas no agitation caused film-like sediment. We found no substantial differences in CS-PLT function between storage conditions, as surface receptor expression, thrombin generation, aggregation, and clot formation were relatively similar between intra-Phase storage conditions. DISCUSSION Storage duration and not condition impacted phenotype and function. CS-PLT can be stored with or without agitation, and with or without daily mixing and standard metrics of hemostatic function will not be significantly altered.
Collapse
Affiliation(s)
- Susan M Shea
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kimberly A Thomas
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA.,Vitalant Research Institute, Denver, CO, USA
| |
Collapse
|
16
|
Johnson L, Roan C, Costa M, Aung HH, Marks DC. Gamma and X-ray irradiation do not affect the in vitro quality of refrigerated apheresis platelets in platelet additive solution (PAS-E). Transfusion 2022; 62 Suppl 1:S43-S52. [PMID: 35748661 DOI: 10.1111/trf.16983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelet refrigeration (cold storage) provides the advantages of an extended shelf life and reduces the risk of bacterial growth, compared to platelets stored at room temperature (RT). However, processing modifications, such as irradiation, may further improve the safety and/or alter the quality of cold-stored platelets. Platelet components are irradiated to prevent transfusion-associated graft versus host disease (TA-GvHD) in high-risk patients; and while irradiation has little effect on the quality of RT-stored platelet components, there is no data assessing the effect irradiation has following cold storage. STUDY DESIGN AND METHODS Triple-dose apheresis platelets were collected in 40% plasma/60% PAS-E, using the TRIMA apheresis platform, and refrigerated (2-6°C) within 8 h of collection. On day 2, one of each component was gamma or X-ray irradiated or remained non-irradiated. Platelets were tested over 21 days. RESULTS The platelet concentration decreased by approximately 20% in all groups during 21 days of storage (p > .05). Irradiation (gamma or X-ray) did not affect platelet metabolism, and the pH was maintained above the minimum specification (>6.4) for 21 days. The surface phenotype and the composition of the supernatant was similar in non-irradiated and irradiated platelets, regardless of the source of radiation. Functional responses (aggregation and clot formation) were not affected by irradiation. DISCUSSION Gamma and X-ray irradiation do not affect the in vitro quality of platelet components stored in the cold for up to 21 days. This demonstrates the acceptability of irradiating cold-stored platelets, which has the potential to improve their safety for at-risk patient cohorts.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Christopher Roan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Marylia Costa
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Htet Htet Aung
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
17
|
Divalent magnesium restores cytoskeletal storage lesions in cold-stored platelet concentrates. Sci Rep 2022; 12:6229. [PMID: 35422472 PMCID: PMC9010418 DOI: 10.1038/s41598-022-10231-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 01/20/2023] Open
Abstract
Cold storage of platelet concentrates (PC) has become attractive due to the reduced risk of bacterial proliferation, but in vivo circulation time of cold-stored platelets is reduced. Ca2+ release from storage organelles and higher activity of Ca2+ pumps at temperatures < 15 °C triggers cytoskeleton changes. This is suppressed by Mg2+ addition, avoiding a shift in Ca2+ hemostasis and cytoskeletal alterations. We report on the impact of 2–10 mM Mg2+ on cytoskeleton alterations of platelets from PC stored at room temperature (RT) or 4 °C in additive solution (PAS), 30% plasma. Deformation of platelets was assessed by real-time deformability cytometry (RT-DC), a method for biomechanical cell characterization. Deformation was strongly affected by storage at 4 °C and preserved by Mg2+ addition ≥ 4 mM Mg2+ (mean ± SD of median deformation 4 °C vs. 4 °C + 10 mM Mg2+ 0.073 ± 0.021 vs. 0.118 ± 0.023, p < 0.01; n = 6, day 7). These results were confirmed by immunofluorescence microscopy, showing that Mg2+ ≥ 4 mM prevents 4 °C storage induced cytoskeletal structure lesion. Standard in vitro platelet function tests showed minor differences between RT and cold-stored platelets. Hypotonic shock response was not significantly different between RT stored (56.38 ± 29.36%) and cold-stored platelets with (55.22 ± 11.16%) or without magnesium (45.65 ± 11.59%; p = 0.042, all n = 6, day 1). CD62P expression and platelet aggregation response were similar between RT and 4 °C stored platelets, with minor changes in the presence of higher Mg2+ concentrations. In conclusion, increasing Mg2+ up to 10 mM in PAS counteracts 4 °C storage lesions in platelets, maintains platelet cytoskeletal integrity and biomechanical properties comparable to RT stored platelets.
Collapse
|
18
|
Baghdadi V, Ranjbaran R, Yari F, Rafiee MH. Trehalose An Additive Solution for Platelet Concentrate to Protect Platelets from Apoptosis and Clearance during Their Storage at 4°C. CELL JOURNAL 2022; 24:69-75. [PMID: 35279962 PMCID: PMC8918273 DOI: 10.22074/cellj.2022.7886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/11/2021] [Indexed: 11/04/2022]
Abstract
Objective Although cold storage of platelets (PLTs) could decrease the risk of bacterial growth, it could affect on the PLTs viability and hemostatic function. At cold temperatures, trehalose can be used to substitute water, inhibit the solid-liquid transition phase of the PLT membrane, and stop Glycoprotein Ibα (GPIbα) polymerization. In this study, we evaluated the potential of trehalose for reducing the negative effects of cold storage on the apoptosis and the clearance rates of PLTs after long-term storage at cold. Materials and Methods In this experimental study, PLT concentrates (PCs) were maintained for five days in the different circumstances. PLTs were subsequently counted by using an automated hematology analyzer. Also water-soluble tetrazolium salt (WST-1) assay was performed to estimate the viability of PLTs. The activity of lactate dehydrogenase enzyme (LDH) was determined by a biochemical analyzer. And human active caspase-3 levels were measured by using enzyme-linked immunosorbent assay (ELISA) method. Also, we applied flow cytometry technique. Results PLTs count and viability were higher, while LDH amount was lower in trehalose-treated PLTs when compared with two other groups (P=0.03). The highest increase in the amount of caspase-3 levels in the PLTs was observed at 4°C. However, trehalose-treated and 4°C PLTs had a lower amount of active caspase-3 in comparison with 4°C PLTs. The level of PS expression on PLTs was lower in the trehalose-treated PLTs in compared with the two other groups (P=0.03). PLTs ingestion by HepG2 cells was enhanced in the 4°C-stored PLTs. However, the ingestion rate was significantly reduced in the trehalose-treated PLTs on day 5 of storage (P=0.03). Conclusion Trehalose can moderate the effects of cold temperature on the apoptosis, viability, and the survival rate of PLTs. It also decreases the ingestion rate of refrigerated PLTs in vitro.
Collapse
Affiliation(s)
- Vahid Baghdadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran,P.O.Box: 14665-1157Blood Transfusion Research CenterHigh Institute for Research and Education in Transfusion
MedicineTehranIran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
19
|
The Missing Pieces to the Cold-Stored Platelet Puzzle. Int J Mol Sci 2022; 23:ijms23031100. [PMID: 35163024 PMCID: PMC8835703 DOI: 10.3390/ijms23031100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/28/2023] Open
Abstract
Cold-stored platelets are making a comeback. They were abandoned in the late 1960s in favor of room-temperature stored platelets due to the need for longer post-transfusion platelet recoverability and survivability in patients with chronic thrombocytopenia. However, the current needs for platelet transfusions are rapidly changing. Today, more platelets are given to patients who are actively bleeding, such as ones receiving cardiac surgeries. It has been established that cold-stored platelets are more hemostatically effective, have reduced bacterial growth, and have longer potential shelf lives. These compelling characteristics led to the recent interest in bringing back cold-stored platelets to the blood systems. However, before reinstating cold-stored platelets in the clinics again, a thorough investigation of in vitro storage characteristics and in vivo transfusion effects is required. This review aims to provide an update on the recent research efforts into the storage characteristics and functions of cold-stored platelets using modern investigative tools. We will also discuss efforts made to improve cold-stored platelets to be a better and safer product. Finally, we will finish off with discussing the relevance of in vitro data to in vivo transfusion results and provide insights and directions for future investigations of cold-stored platelets.
Collapse
|
20
|
Jimenez-Marco T, Castrillo A, Hierro-Riu F, Vicente V, Rivera J. Frozen and cold-stored platelets: reconsidered platelet products. Platelets 2021; 33:27-34. [PMID: 34423718 DOI: 10.1080/09537104.2021.1967917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet transfusion, both prophylactic and therapeutic, is a key element in modern medicine. Currently, the standard platelet product for clinical use is platelet concentrates at room temperature (20-24°C) under gentle agitation. As this temperature favors bacterial growth, storage is limited to 5-7 days, which result in high wastage rate, and complicates inventory and product availability at remote areas. Frozen and/or cold storage would ameliorate those disadvantages by reducing the risk of bacterial contamination and by extending the product shelf-life to weeks or even years. Consequently, the usefulness in transfusion medicine of platelet cryopreservation and refrigeration, two old and scarcely used platelet storage approaches, is reemerging. Indeed, there have been substantial recent research efforts to characterize both cold and cryopreserved platelets. Most recent studies indicate that cryopreserved and cold platelets display a pro-coagulant profile that may produce the rapid hemostatic response which is needed in bleeding patients. Thus, it seems appropriate that blood banks and blood transfusion centers explore the possibility of split platelet inventories consisting of platelets stored at room temperature and cryopreserved and cold-stored platelets.
Collapse
Affiliation(s)
- Teresa Jimenez-Marco
- Fundació Banc De Sang I Teixits De Les Illes Balears, Majorca, Spain.,Institut d'Investigació Sanitària Illes Balears (Idisba), Majorca, Spain
| | - Azucena Castrillo
- Axencia Galega De Sangue, Órganos E Tecidos. Santiago De Compostela, A Coruña, Spain
| | | | - Vicente Vicente
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| | - José Rivera
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
21
|
Nair PM, Meledeo MA, Wells AR, Wu X, Bynum JA, Leung KP, Liu B, Cheeniyil A, Ramasubramanian AK, Weisel JW, Cap AP. Cold-stored platelets have better preserved contractile function in comparison with room temperature-stored platelets over 21 days. Transfusion 2021; 61 Suppl 1:S68-S79. [PMID: 34269433 DOI: 10.1111/trf.16530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023]
Abstract
Although it is well established that transfusion of platelets in cases of severe bleeding reduces mortality, the availability of platelets is hampered by harsh restrictions on shelf life due to elevated risks of microbial contamination and functional losses with room temperature-stored platelets (RTP) kept at 22°C. In contrast, many recent studies have shown that 4°C cold-stored platelets (CSP) are able to overcome these shortcomings leading to the recent Food and Drug Administration licensure for 14-day stored CSP when conventional platelets are unavailable. This work expands the evidence supporting superiority of CSP function by assaying the less explored platelet-mediated clot retraction of RTP and CSP in either autologous plasma (AP) or platelet additive solution (PAS) for up to 21 days. The results demonstrate that CSP have better preservation of contractile function, exhibiting retraction for up to 21 days in both AP and PAS and forming highly ordered fibrin scaffolds similar to those of fresh platelets. In contrast, RTP stored in AP showed impaired contractile function by Day 5 with no retraction after 10 days, whereas PAS-stored RTP retained contractile function for up to 21 days. Collectively, these findings support extended storage of CSP and suggest that storage in PAS can mitigate functional losses in RTP.
Collapse
Affiliation(s)
- Prajeeda M Nair
- Blood and Coagulation Research Department, Combat Mortality Prevention Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Michael A Meledeo
- Blood and Coagulation Research Department, Combat Mortality Prevention Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Adrienne R Wells
- Severe Burns Research Department, Combat Wound Repair Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Xiaowu Wu
- Blood and Coagulation Research Department, Combat Mortality Prevention Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - James A Bynum
- Blood and Coagulation Research Department, Combat Mortality Prevention Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Kai P Leung
- Severe Burns Research Department, Combat Wound Repair Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Bin Liu
- Blood and Coagulation Research Department, Combat Mortality Prevention Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Aswathi Cheeniyil
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Anand K Ramasubramanian
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Chemical and Materials Engineering, San Jose State University, San Jose, California, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew P Cap
- Blood and Coagulation Research Department, Combat Mortality Prevention Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| |
Collapse
|
22
|
Johnson L, Vekariya S, Wood B, Tan S, Roan C, Marks DC. Refrigeration of apheresis platelets in platelet additive solution (PAS-E) supports in vitro platelet quality to maximize the shelf-life. Transfusion 2021; 61 Suppl 1:S58-S67. [PMID: 34269458 DOI: 10.1111/trf.16489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Refrigeration, or cold-storage, of platelets may be beneficial to extend the limited shelf-life of conventionally stored platelets and support transfusion protocols in rural and military areas. The aim of this study was to compare the morphologic, metabolic, and functional aspects of apheresis platelets stored at room-temperature (RT) or cold conditions, in either plasma or supplemented with platelet additive solution (PAS). STUDY DESIGN AND METHODS Double-dose apheresis platelets were collected in either 100% plasma or 40% plasma/60% PAS-E using the Trima apheresis platform. One component from each group was either stored at RT (20-24°C) or refrigerated (2-6°C). Platelets were tested over a 21-day period. RESULTS The platelet concentration decreased by approximately 30% in all groups during 21 days of storage (p > .05). Cold-storage reduced glycolytic metabolism, and the pH was maintained above the minimum specification (>6.4) for 21 days only when platelets were stored in PAS. The surface phenotype and the composition of the supernatant were differentially affected by temperature and storage solution. Functional responses (aggregation, agonist-induced receptor activation, clotting time) were improved during cold-storage, and the influence of residual plasma was assay dependent. CONCLUSION In vitro platelet quality is differentially affected by storage time, temperature, and solution. Cold-storage, particularly in PAS, better maintains key metabolic, phenotypic, and functional parameters during prolonged storage.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Shuchna Vekariya
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Ben Wood
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Shereen Tan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Christopher Roan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
23
|
Marini I, Zlamal J, Faul C, Holzer U, Hammer S, Pelzl L, Bethge W, Althaus K, Bakchoul T. Autoantibody-mediated desialylation impairs human thrombopoiesis and platelet lifespan. Haematologica 2021; 106:196-207. [PMID: 31857361 PMCID: PMC7776251 DOI: 10.3324/haematol.2019.236117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Immune thrombocytopenia is a common bleeding disease caused by autoantibody-mediated accelerated platelet clearance and impaired thrombopoiesis. Accumulating evidence suggests that desialylation affects platelet life span in immune thrombocytopenia. Herein, we report on novel effector functions of autoantibodies from immune thrombocytopenic patients which might interfere with the clinical picture of the disease. Data from our study show that a subgroup of autoantibodies is able to induce cleave of sialic acid residues from the surface of human platelets and megakaryocytes. Moreover, autoantibody-mediated desialylation interferes with the interaction between cells and extracellular matrix proteins leading to impaired platelet adhesion and megakaryocyte differentiation. Using a combination of ex vivo model of thrombopoiesis, a humanized animal model, and a clinical cohort study, we demonstrate that cleavage of sialic acid induces significant impairment in production, survival as well as function of human platelets. These data may indicate that prevention of desialylation should be investigated in the future in clinical studies as a potential therapeutic approach to treat bleeding in immune thrombocytopenia.
Collapse
Affiliation(s)
- Irene Marini
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Jan Zlamal
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Christoph Faul
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Ursula Holzer
- Dept. of Pediatric Hematology-Oncology, University Children's Hospital of Tübingen, Germany
| | - Stefanie Hammer
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Germany
| | - Lisann Pelzl
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Wolfgang Bethge
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Karina Althaus
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| |
Collapse
|
24
|
N-acetylcysteine reduce the stress induced by cold storage of platelets: A potential way to extend shelf life of platelets. Transfus Apher Sci 2020; 60:103039. [PMID: 33388248 DOI: 10.1016/j.transci.2020.103039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
The room temperature storage used for platelets worldwide leads to platelet storage lesion (PSL) and risk of bacterial growth, limiting platelet shelf life and safety in transfusion. Thus, there is a need for an alternative storage method that can serve as effective temperature storage for platelet concentrates (PCs). In the previous investigation, we have shown that N-acetylcysteine (NAC) is a potential candidate for an additive solution to retain platelet characteristics during cold storage for up to 5 days. However, the study partially describes the efficacy and has drawbacks to address. Here, we used the apheresis platelet product with 50 mM NAC and stored up to 10 days under refrigerated condition (4 ± 1 °C). Stored platelet concentrates were analyzed for critical parameters such as platelet activation, annexin V binding, sialic acid, reactive oxygen species (ROS), neuraminidase activity, and in vivo efficacy using Prkdcscid mice. Investigation observations revealed that PCs with NAC showed reduced platelet activation, annexin V binding, ROS production, and sialic acid levels. in vivo recovery of PCs showed similar recovery rates stored PCs irrespective of treatment or storage condition. However, on the tenth day after 24 h, recovery in room temperature stored concentrates was about 32 %, whereas in NAC treated refrigerated concentrates, it stands at 47 %. These observations indicate that NAC addition protects refrigerated concentrates during long-term storage retaining the platelet integrity. The study also suggests that extending PC storage beyond 10 days is practically accomplishable with efficacy similar to room temperature (RT) stored PCs.
Collapse
|
25
|
Agey A, Reddoch-Cardenas K, McIntosh C, Sharma U, Cantu C, Cap A, Bynum J. Effects of Intercept pathogen reduction treatment on extended cold storage of apheresis platelets. Transfusion 2020; 61:167-177. [PMID: 33295030 DOI: 10.1111/trf.16096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Platelets pose the greatest transfusion-transmitted infectious risk among blood products. Refrigeration of platelets can mitigate bacterial contamination and extend platelet shelf life. Implementation of pathogen reduction technologies (PRTs) at blood banks has become increasingly popular to protect against emerging and reemerging infectious diseases. In this study, we sought to evaluate the effects of Intercept PRT on platelets collected on different platforms and cold-stored for up to 21 days in plasma and platelet additive solution (PAS). METHODS Double-dose apheresis platelets were collected with use of a Trima or Amicus system into either 100% plasma or 65% InterSol PAS/35% plasma and split equally between two bags. One bag served as control, while the other received Intercept PRT treatment. Bags were stored unagitated in the cold and evaluated on Days 1, 7, 14, and 21 to assess platelet metabolism, activation, aggregation, and clot formation and retraction. RESULTS By Day 14 of storage, lactate levels reached approximately 13 mmol/L for all samples irrespective of Intercept treatment. Mean clot firmness dropped from the 62.2- to 67.5-mm range (Day 1) to the 28.4- to 51.3-mm range (Day 21), with no differences observed between groups. Clot weights of Intercept-treated Trima/plasma samples were significantly higher than control by Day 14 of storage (P = .004), indicating a reduced clot retraction function. Intercept treatment caused a higher incidence of plasma membrane breakdown in plasma-stored platelets (P = .0013; Trima/plasma Day 14 Control vs Intercept). CONCLUSIONS Intercept treatment of platelets and subsequent cold storage, in plasma or PAS, results in comparable platelet metabolism platelets for up to 14 days of storage but altered clotting dynamics. Pathogen-reduced platelets with an extended shelf life would be beneficial for the deployed setting and would greatly impact transfusion practice among civilian transfusion centers.
Collapse
Affiliation(s)
- Alisa Agey
- George Washington University, Washington, District of Columbia, USA
| | - Kristin Reddoch-Cardenas
- Coagulation and Blood Research Program, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Colby McIntosh
- Coagulation and Blood Research Program, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Umang Sharma
- Coagulation and Blood Research Program, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Carolina Cantu
- Coagulation and Blood Research Program, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Andrew Cap
- Coagulation and Blood Research Program, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - James Bynum
- Coagulation and Blood Research Program, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| |
Collapse
|
26
|
Quality validation of platelets obtained from the Haemonetics and Trima Accel automated blood-collection systems. Transfus Clin Biol 2020; 28:44-50. [PMID: 33227455 DOI: 10.1016/j.tracli.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Platelet transfusion is required to treat haemo-oncology or trauma patients. Platelet apheresis (PA) performed with apheresis equipment has increased rapidly in recent years. Leucocyte-reduced platelet apheresis (LRPA) can reduce the risk of platelet refractoriness and febrile nonhemolytic transfusion reactions (FNHTRs) for transfusion. Accordingly, this study aimed to investigate and compare the platelet metabolic and functional responses between PA performed with Haemonetics and LRPA performed with Trima Accel cell separator. METHODS The qualities of platelets collected through PA and LRPA were evaluated in terms of visual appearance, morphology, platelet-aggregation changes, metabolic activities, and bacterium-screening test during 5-day storage. Statistical analyses included two-sample t-test and generalised estimating equation(GEE) method. RESULTS During 5-day storage in LRPA, residual leucocytes were all <1.0×106, and the parameters of platelet function were as follows: platelet aggregated to agonists such as adenosine 5'-diphosphate (ADP) and collagen, and the extent of shape change and pO2 showed no statistically significant difference between PA and LRPA. The hypotonic shock reaction (HSR) on days 0, 1, and 3 were significantly higher in LRPA than in PA (71.78±6.92 vs. 64.10±7.42; P=0.002; 71.53±8.98 vs. 62.96±9.84; P=0.007; 68.05±7.28 vs. 57.76±6.80; P<0.0001, respectively). Values of mean platelet volume (MPV) were statistically larger in PA than in LRPA on days 0, 1, and 3. On day 5, the swirling score was higher in LRPA than in PA. The mean lactate levels had no statistically significant difference between PA and LRPA. Moreover, no growth was observed through bacterium-screening test conducted on 40 samples. CONCLUSION Comparison of LRPA and PA products collected from the Trima Accel and Haemonetics automated blood-collection systems, respectively, revealed that both products possessed good platelet qualities even though additional processes are needed to reduce leucocytes. Furthermore, investigating the outcomes of other apheresis instruments with focus on the safety of donors, products, and recipients is necessary.
Collapse
|
27
|
Abstract
Abstract
Platelet transfusion is a topic of common interest for many specialists involved in patient care, from laboratory staff to clinical physicians. Various aspects make this type of transfusion different from those of other blood components. In this review, the challenges in platelet transfusion practice that are relevant for laboratory colleagues will be discussed, highlighting how the biochemical and structural characteristics of these blood elements directly affect their function and consequently the clinical outcome. More than 1,300 platelet concentrates are transfused in Germany every day, and several types are offered by their respective manufacturers. We describe the technological advances in platelet concentrate production, with a focus on how the storage conditions of platelets can be improved. Laboratory quality assessment procedures for a safe transfusion are discussed in detail. For this purpose, we will refer to the Hemotherapy Directives (Richtlinie Hämotherapie) of the German Medical Association.
Collapse
Affiliation(s)
- Gianmatteo Vit
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University , German Red Cross Blood Service Baden-Württemberg - Hessen , Mannheim , Germany
- The Novo Nordisk Foundation Center for Protein Research, Protein Signaling Program , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University , German Red Cross Blood Service Baden-Württemberg - Hessen , Mannheim , Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University , German Red Cross Blood Service Baden-Württemberg - Hessen , Mannheim , Germany
| |
Collapse
|
28
|
Koessler J, Klingler P, Niklaus M, Weber K, Koessler A, Boeck M, Kobsar A. The Impact of Cold Storage on Adenosine Diphosphate-Mediated Platelet Responsiveness. TH OPEN 2020; 4:e163-e172. [PMID: 32803122 PMCID: PMC7426185 DOI: 10.1055/s-0040-1714254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022] Open
Abstract
Introduction
Cold storage of platelets is considered to contribute to lower risk of bacterial growth and to more efficient hemostatic capacity. For the optimization of storage strategies, it is required to further elucidate the influence of refrigeration on platelet integrity. This study focused on adenosine diphosphate (ADP)-related platelet responsiveness.
Materials and Methods
Platelets were prepared from apheresis-derived platelet concentrates or from peripheral whole blood, stored either at room temperature or at 4°C. ADP-induced aggregation was tested with light transmission. Activation markers, purinergic receptor expression, and P2Y12 receptor function were determined by flow cytometry. P2Y1 and P2X1 function was assessed by fluorescence assays, cyclic nucleotide concentrations by immunoassays, and vasodilator-stimulated phosphoprotein (VASP)-phosphorylation levels by Western blot analysis.
Results
In contrast to room temperature, ADP-induced aggregation was maintained under cold storage for 6 days, associated with elevated activation markers like fibrinogen binding or CD62P expression. Purinergic receptor expression was not essentially different, whereas P2Y1 function deteriorated rapidly at cold storage, but not P2Y12 activity. Inhibitory pathways of cold-stored platelets were characterized by reduced responses to nitric oxide and prostaglandin E1. Refrigeration of citrated whole blood also led to the attenuation of induced inhibition of platelet aggregation, detectable within 24 hours.
Conclusion
ADP responsiveness is preserved under cold storage for 6 days due to stable P2Y12 activity and concomitant disintegration of inhibitory pathways enabling a higher reactivity of stored platelets. The ideal storage time at cold temperature for the highest hemostatic effect of platelets should be evaluated in further studies.
Collapse
Affiliation(s)
- Juergen Koessler
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Wuerzburg, Germany
| | - Philipp Klingler
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Wuerzburg, Germany
| | - Marius Niklaus
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Wuerzburg, Germany
| | - Katja Weber
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Wuerzburg, Germany
| | - Angela Koessler
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Wuerzburg, Germany
| | - Markus Boeck
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Wuerzburg, Germany
| | - Anna Kobsar
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Wuerzburg, Germany
| |
Collapse
|
29
|
Aurich K, Fregin B, Palankar R, Wesche J, Hartwich O, Biedenweg D, Nguyen TH, Greinacher A, Otto O. Label-free on chip quality assessment of cellular blood products using real-time deformability cytometry. LAB ON A CHIP 2020; 20:2306-2316. [PMID: 32458864 DOI: 10.1039/d0lc00258e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Without cellular blood products such as platelet concentrates (PC), red blood cell concentrates (RCC), and hematopoietic stem cells (HPSC) modern treatments in medicine would not be possible. An unresolved challenge is the assessment of their quality with minimal cell manipulation. Minor changes in production, storage conditions, or blood bag composition may impact cell function, which can have important consequences on product integrity. This is especially relevant for personalized medicine, such as autologous T-cell therapy. Today a robust methodology that globally determines cell status directly before transfusion or transplantation is lacking. We demonstrate that measuring viscoelastic characteristics of peripheral blood cells using real-time deformability cytometry (RT-DC) provides comprehensive information on product quality, which is not accessible using conventional quality control tests. In addition, RT-DC requires few cells, a minimal sample volume and has a rapid turnaround time. We compared RT-DC to standard in vitro quality assays assessing: i) PC after storage at 4 °C and room temperature; ii) magnetic nanoparticle labeled platelets; iii) RCC stored in blood bags with different plasticizers; iv) RCC after gamma irradiation; and v) HPSC after cryopreservation with 5% or 10% dimethyl sulfoxide, respectively. Additionally, we evaluated the engraftment time of patients' platelets and leukocytes after transplantation of HPSC products. Our results demonstrate that label-free mechano-phenotyping can be used as a potential biomarker for quality assessment of cell-based pharmaceutical products.
Collapse
Affiliation(s)
- Konstanze Aurich
- Transfusionsmedizin, Universitätsmedizin Greifswald, 17475 Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
D’Alessandro A, Thomas KA, Stefanoni D, Gamboni F, Shea SM, Reisz JA, Spinella PC. Metabolic phenotypes of standard and cold-stored platelets. Transfusion 2020; 60 Suppl 3:S96-S106. [PMID: 31880330 PMCID: PMC7971209 DOI: 10.1111/trf.15651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Conventional platelet (PLT) storage at room temperature under continuous agitation results in a limited shelf life (5 days) and an increased risk of bacterial contamination. However, both of these aspects can be ameliorated by cold storage. Preliminary work has suggested that PLTs can be cold stored for up to 3 weeks, while preserving their metabolic activity longer than in PLTs stored at room temperature. As such, in the present study, we hypothesized that the metabolic phenotypes of PLTs stored at 4°C for 3 weeks could be comparable to that of room temperature-stored PLTs at 22°C for 5 days. STUDY DESIGN AND METHODS Metabolomics analyses were performed on nine apheresis PLT concentrates stored either at room temperature (22°C) for 5 days or refrigerated conditions (4°C) for up to 3 weeks. RESULTS Refrigeration did not impact the rate of decline in glutamine or the intracellular levels of Krebs cycle metabolites upstream to fumarate and malate. It did, however, decrease oxidant stress (to glutathione and purines) and slowed down the activation of the pentose phosphate pathway, glycolysis, and fatty acid metabolism (acyl-carnitines). CONCLUSION The overall metabolic phenotypes of 4°C PLTs at Storage Day 10 are comparable to PLTs stored at 22°C at the end of their 5-day shelf life, while additional changes in glycolysis, purine, and fatty acid metabolism are noted by Day 21.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly A. Thomas
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Susan M. Shea
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Philip C. Spinella
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Waubert de Puiseau M, Sciesielski LK, Meyer O, Liu ZJ, Badur CA, Schönfeld H, Tauber R, Pruß A, Sola-Visner MC, Dame C. Pooling, room temperature, and extended storage time increase the release of adult-specific biologic response modifiers in platelet concentrates: a hidden transfusion risk for neonates? Transfusion 2020; 60:1828-1836. [PMID: 32339309 DOI: 10.1111/trf.15827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Adult donor platelets (PLTs) are frequently transfused to prevent or stop bleeding in neonates with thrombocytopenia. There is evidence for PLT transfusion-related morbidity and mortality, leading to the hypothesis on immunomodulatory effects of transfusing adult PLTs into neonates. Candidate factors are biologic response modifiers (BRMs) that are expressed at higher rates in adult than in neonatal PLTs. This study investigated whether storage conditions or preparation methods impact on the release of those differentially expressed BRMs. STUDY DESIGN AND METHODS Pooled PLT concentrates (PCs) and apheresis PCs (APCs) were stored under agitation for up to 7 days at room temperature (RT) or at 2 to 8°C. The BRMs CCL5/RANTES, TGFβ1, TSP1, and DKK1 were measured in PCs' supernatant, lysate, and corresponding plasma. PLT function was assessed by light transmission aggregometry. RESULTS Concerning the preparation method, higher concentrations of DKK1 were found in pooled PCs compared to APCs. In supernatants, the concentrations of CCL5, TGFβ1, TSP1, and DKK1 significantly increased, both over standard (≤4 days) and over extended storage times (7 days). Each of the four BRMs showed an up to twofold increase in concentration after storage at RT compared to cold storage (CS). There was no difference in the aggregation capacity. CONCLUSION This analysis shows that the release of adult-specific BRMs during storage is lowest in short- and CS APCs. Our study points to strategies for reducing the exposure of sick neonates to BRMs that can be specifically associated to PLT transfusion-related morbidity.
Collapse
Affiliation(s)
| | - Lina K Sciesielski
- Klinik für Neonatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Meyer
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston/MA, USA
| | | | - Helge Schönfeld
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité - Universitätsmedizin Berlin, and Labor Berlin Charité Vivantes GmbH, Berlin
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité - Universitätsmedizin Berlin, and Labor Berlin Charité Vivantes GmbH, Berlin
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martha C Sola-Visner
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston/MA, USA
| | - Christof Dame
- Klinik für Neonatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Stolla M, Bailey SL, Fang L, Fitzpatrick L, Gettinger I, Pellham E, Christoffel T. Effects of storage time prolongation on in vivo and in vitro characteristics of 4°C-stored platelets. Transfusion 2020; 60:613-621. [PMID: 32017135 DOI: 10.1111/trf.15669] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cold (4°C)-stored platelets are currently under investigation for transfusion in bleeding patients. It is currently unknown how long cold-stored platelets can be stored for clinical applications. STUDY DESIGN AND METHODS Twenty three subjects were recruited. Twenty-one subjects were available for in vivo assessment and received indium-111 radiolabeled, cold-stored platelets. We investigated 5- (n = 5), 10- (n = 6), 15- (n = 5), and 20-day-stored (n = 5) platelets and obtained samples for in vitro testing at baseline and after the designated storage time. Twenty three units were available for in vitro testing. Five- and 7-day (n = 5 each), room temperature (RT)-stored platelets served as the current clinical standard control. RESULTS In vivo, we found a continuous decline in platelet recovery from 5 to 20 days. Platelet survival reached a low nadir after 10 days of storage. Ex vivo, we observed the maximum platelet αIIbβ3 integrin response to collagen at 5 days of cold storage, and we saw a continuous decline thereafter. However, platelet integrin activation and mitochondrial membrane integrity were better preserved after 20 days at 4°C, compared to 5 days at RT. Platelet metabolic parameters suggest comparable results between 20-day cold-stored platelets and 5- or 7-day RT-stored platelets. CONCLUSION In summary, we performed the first studies with extended, cold-stored, apheresis platelets in plasma for up to 20 days with a fresh comparator. Storing cold-stored platelets up to 20 days yields better results in vitro, but further studies in actively bleeding patients are needed to determine the best compromise between hemostatic efficacy and storage prolongation.
Collapse
Affiliation(s)
- Moritz Stolla
- Platelet Transfusion Research Laboratory, Bloodworks Northwest Research Institute, Seattle, Washington.,Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| | - S Lawrence Bailey
- Platelet Transfusion Research Laboratory, Bloodworks Northwest Research Institute, Seattle, Washington
| | - Lydia Fang
- Platelet Transfusion Research Laboratory, Bloodworks Northwest Research Institute, Seattle, Washington
| | - Lynda Fitzpatrick
- Platelet Transfusion Research Laboratory, Bloodworks Northwest Research Institute, Seattle, Washington
| | - Irena Gettinger
- Platelet Transfusion Research Laboratory, Bloodworks Northwest Research Institute, Seattle, Washington
| | - Esther Pellham
- Platelet Transfusion Research Laboratory, Bloodworks Northwest Research Institute, Seattle, Washington
| | - Todd Christoffel
- Platelet Transfusion Research Laboratory, Bloodworks Northwest Research Institute, Seattle, Washington
| |
Collapse
|
33
|
Baghdadi V, Yari F, Nikougoftar M, Rafiee MH. Platelets Apoptosis and Clearance in The Presence of Sodium Octanoate during Storage of Platelet Concentrate at 4˚C. CELL JOURNAL 2019; 22:212-217. [PMID: 31721536 PMCID: PMC6874783 DOI: 10.22074/cellj.2020.6697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022]
Abstract
Objective Platelet (PLT) storage at 4˚C has several benefits, however, it is accompanied by increased clearance of
PLTs after transfusion. In this study, we evaluated the potential of sodium octanoate (SO) for reducing apoptosis and
clearance rate of PLTs after long-term storage in cold.
Materials and Methods In this experimental study, PLT concentrates (PCs) were stored for 5 days under the following
three conditions: 20-24˚C, 4˚C, and 4˚C in the presence of SO. To measure the viability of PLTs, the water-soluble
tetrazolium salt (WST-1) assay was performed. Phosphatidylserine (PS) exposure was determined on PLTs using
flow cytometry technique. The amount of human active caspase-3 was determined in PLTs using an enzyme-linked
immunosorbent assay. Additionally, the amount of PLT ingestion or clearance was determined by using HepG2 cell line.
Results The viability was higher in the SO-treated PLTs compared to the other groups. The level of PS exposure
on PLTs was lower in the SO-treated PLTs compared to the other groups. The amount of active caspase-3 increased
in all groups during 5-day storage. The highest increase in the amount of caspase-3 levels was observed at cold
temperature. However, PLTs kept at 4˚C in the presence of SO had a lower amount of active caspase-3 compared to
PLTs kept at 4˚C. The amount of PLTs removal by HepG2 cells was increased for 4˚C-kept PLTs but it was lower for
PLTs kept at 4˚C in the presence of SO but, the differences were not significant (P>0.05).
Conclusion SO could partially moderate the effects of cold temperature on apoptosis and viability of platelets. It also
decreases the ingestion rate of long-time refrigerated PLTs in vitro. Further studies using higher numbers of samples
are required to demonstrate the effect of SO on reducing the clearance rate of PLTs.
Collapse
Affiliation(s)
- Vahid Baghdadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. Elevtronic Address:
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
34
|
Horioka K, Tanaka H, Isozaki S, Okuda K, Asari M, Shiono H, Ogawa K, Shimizu K. Hypothermia-induced activation of the splenic platelet pool as a risk factor for thrombotic disease in a mouse model. J Thromb Haemost 2019; 17:1762-1771. [PMID: 31237986 PMCID: PMC6851562 DOI: 10.1111/jth.14555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypothermia, either therapeutically induced or accidental (ie, an involuntary decrease in core body temperature to <35°C), results in hemostatic disorders. However, it remains unclear whether hypothermia enhances or inhibits coagulation, especially in severe hypothermia. The present study evaluated the thrombocytic and hemostatic changes in hypothermic mice. METHODS C57Bl/6 mice were placed at an ambient temperature of -20°C under general anesthesia. When the rectal temperature decreased to 15°C, 10 mice were immediately euthanized, while another 10 mice were rewarmed, kept in normal conditions for 24 hours, and then euthanized. These treatments were also performed in 20 splenectomized mice. RESULTS The hypothermic mice had adhesion of CD62P-positive platelets with high expression of von Willebrand factor (vWF) in their spleens, while the status of the peripheral platelets was unchanged. Furthermore, the plasma levels of platelet factor 4 (PF4) and pro-platelet basic protein (PPBP), which are biomarkers for platelet degranulation, were significantly higher in hypothermic mice than in control mice, indicating that hypothermia activated the platelets in the splenic pool. Thus, we analyzed these biomarkers in asplenic mice. There was no increase in either PF4 or PPBP in splenectomized hypothermic mice. Additionally, the plasma D-dimer elevation and microthrombosis were caused in rewarmed mice, but not in asplenic rewarmed mice. CONCLUSIONS Our results indicate that hypothermia leads to platelet activation in the spleen via the upregulation of vWF, and this activation causes hypercoagulability after rewarming.
Collapse
Affiliation(s)
- Kie Horioka
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroki Tanaka
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Shotaro Isozaki
- Division of Gastroenterology and Hematology/OncologyAsahikawa Medical UniversityAsahikawaJapan
| | - Katsuhiro Okuda
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Masaru Asari
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroshi Shiono
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Katsuhiro Ogawa
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Keiko Shimizu
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
35
|
Implementation of a protocol for prehospital transfusion of low-titer, leukocyte-depleted whole blood for civilian bleeding patients. Transfus Apher Sci 2019; 58:212-215. [DOI: 10.1016/j.transci.2019.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|