1
|
Tan YY, Liu J, Su QP. Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights. SENSORS (BASEL, SWITZERLAND) 2025; 25:491. [PMID: 39860861 PMCID: PMC11768609 DOI: 10.3390/s25020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses. Live-cell imaging has become an invaluable tool for dissecting these complexes. Despite its benefits, live imaging of platelets presents significant technical challenges. This review addresses these challenges, identifying key areas in need of further development and proposing possible solutions. We also focus on the dynamic processes of platelet adhesion, activation, and aggregation in haemostasis and thrombosis, applying imaging capacities from the microscale to the nanoscale. By exploring various live imaging techniques, we demonstrate how these approaches offer crucial insights into platelet biology and deepen our understanding of these three core events. In conclusion, this review provides an overview of the imaging methods currently available for studying platelet dynamics, guiding researchers in selecting suitable techniques for specific studies. By advancing our knowledge of platelet behaviour, these imaging methods contribute to research on haemostasis, thrombosis, and platelet-related diseases, ultimately aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Yuping Yolanda Tan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
2
|
Bourne JH, Perrella G, El-Awaisi J, Terry LV, Tinkova V, Hogg RL, Gant P, Grygielska B, Kalia N, Kavanagh D, Brill A, Dimitrov JD, Watson SP, Rayes J. Hydroxychloroquine inhibits hemolysis-induced arterial thrombosis ex vivo and improves lung perfusion in hemin-treated mice. J Thromb Haemost 2024; 22:2018-2026. [PMID: 38670315 DOI: 10.1016/j.jtha.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Free labile hemin acts as a damage-associated molecular pattern during acute and chronic hemolysis and muscle injury, supporting platelet activation and thrombosis. OBJECTIVES To investigate the anti-thrombotic potential of hydroxychloroquine on hemolysis-induced platelet activation and arterial thrombosis. METHODS The effect of hydroxychloroquine on hemin-induced platelet activation and hemolysis-induced platelet recruitment and aggregation was measured in washed platelets and hemolyzed blood, respectively. Its effect on ferric-chloride (FeCl3)-induced arterial thrombosis and lung perfusion following hemin injection was assessed in wild-type mice. RESULTS Erythrocyte lysis and endothelial cell activation cooperatively supported platelet aggregation and thrombosis at arterial shear stress. This thrombotic effect was reversed by hydroxychloroquine. In a purified system, hydroxychloroquine inhibited platelet build-up on immobilized von Willebrand factor in hemolyzed blood without altering initial platelet recruitment. Hydroxychloroquine inhibited hemin-induced platelet activation and phosphatidylserine exposure independently of reactive oxygen species generation. In the presence of hemin, hydroxychloroquine did not alter glycoprotein VI shedding but reduced C-type-lectin-like-2 expression on platelets. In vivo, hydroxychloroquine reversed pulmonary perfusion decline induced by exogenous administration of hemin. In arterial thrombosis models, hydroxychloroquine inhibited ferric-chloride-induced thrombosis in the carotid artery and reduced von Willebrand factor accumulation in the thrombi. CONCLUSION Hydroxychloroquine inhibited hemolysis-induced arterial thrombosis ex vivo and improved pulmonary perfusion in hemin-treated mice, supporting a potential benefit of its use as an adjuvant therapy in hemolytic diseases to limit arterial thrombosis and to improve organ perfusion.
Collapse
Affiliation(s)
- Joshua H Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Juma El-Awaisi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lauren V Terry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Veronika Tinkova
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca L Hogg
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale, Sorbonne Université, Université Sorbonne Paris-Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
3
|
Jin N, Rong J, Chen X, Huang L, Ma H. Exploring T-cell exhaustion features in Acute myocardial infarction for a Novel Diagnostic model and new therapeutic targets by bio-informatics and machine learning. BMC Cardiovasc Disord 2024; 24:272. [PMID: 38783198 PMCID: PMC11118734 DOI: 10.1186/s12872-024-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND T-cell exhaustion (TEX), a condition characterized by impaired T-cell function, has been implicated in numerous pathological conditions, but its role in acute myocardial Infarction (AMI) remains largely unexplored. This research aims to identify and characterize all TEX-related genes for AMI diagnosis. METHODS By integrating gene expression profiles, differential expression analysis, gene set enrichment analysis, protein-protein interaction networks, and machine learning algorithms, we were able to decipher the molecular mechanisms underlying TEX and its significant association with AMI. In addition, we investigated the diagnostic validity of the leading TEX-related genes and their interactions with immune cell profiles. Different types of candidate small molecule compounds were ultimately matched with TEX-featured genes in the "DrugBank" database to serve as potential therapeutic medications for future TEX-AMI basic research. RESULTS We screened 1725 differentially expressed genes (DEGs) from 80 AMI samples and 71 control samples, identifying 39 differential TEX-related transcripts in total. Functional enrichment analysis identified potential biological functions and signaling pathways associated with the aforementioned genes. We constructed a TEX signature containing five hub genes with favorable prognostic performance using machine learning algorithms. In addition, the prognostic performance of the nomogram of these five hub genes was adequate (AUC between 0.815 and 0.995). Several dysregulated immune cells were also observed. Finally, six small molecule compounds which could be the future therapeutic for TEX in AMI were discovered. CONCLUSION Five TEX diagnostic feature genes, CD48, CD247, FCER1G, TNFAIP3, and FCGRA, were screened in AMI. Combining these genes may aid in the early diagnosis and risk prediction of AMI, as well as the evaluation of immune cell infiltration and the discovery of new therapeutics.
Collapse
Affiliation(s)
- Nake Jin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Jiacheng Rong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Xudong Chen
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Lei Huang
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
4
|
Melo SF, Nondonfaz A, Aqil A, Pierrard A, Hulin A, Delierneux C, Ditkowski B, Gustin M, Legrand M, Tullemans BME, Brouns SLN, Nchimi A, Carrus R, Dejosé A, Heemskerk JWM, Kuijpers MJE, Ritter J, Steinseifer U, Clauser JC, Jérôme C, Lancellotti P, Oury C. Design, manufacturing and testing of a green non-isocyanate polyurethane prosthetic heart valve. Biomater Sci 2024; 12:2149-2164. [PMID: 38487997 DOI: 10.1039/d3bm01911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sole effective treatment for most patients with heart valve disease is valve replacement by implantation of mechanical or biological prostheses. However, mechanical valves represent high risk of thromboembolism, and biological prostheses are prone to early degeneration. In this work, we aim to determine the potential of novel environmentally-friendly non-isocyanate polyurethanes (NIPUs) for manufacturing synthetic prosthetic heart valves. Polyhydroxyurethane (PHU) NIPUs are synthesized via an isocyanate-free route, tested in vitro, and used to produce aortic valves. PHU elastomers reinforced with a polyester mesh show mechanical properties similar to native valve leaflets. These NIPUs do not cause hemolysis. Interestingly, both platelet adhesion and contact activation-induced coagulation are strongly reduced on NIPU surfaces, indicating low thrombogenicity. Fibroblasts and endothelial cells maintain normal growth and shape after indirect contact with NIPUs. Fluid-structure interaction (FSI) allows modeling of the ideal valve design, with minimal shear stress on the leaflets. Injection-molded valves are tested in a pulse duplicator and show ISO-compliant hydrodynamic performance, comparable to clinically-used bioprostheses. Poly(tetrahydrofuran) (PTHF)-NIPU patches do not show any evidence of calcification over a period of 8 weeks. NIPUs are promising sustainable biomaterials for the manufacturing of improved prosthetic valves with low thrombogenicity.
Collapse
Affiliation(s)
- Sofia F Melo
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Alicia Nondonfaz
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Abdelhafid Aqil
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Alexia Hulin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Céline Delierneux
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Bartosz Ditkowski
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Maxime Gustin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Maxime Legrand
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Bibian M E Tullemans
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Sanne L N Brouns
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Alain Nchimi
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Raoul Carrus
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Astrid Dejosé
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Johan W M Heemskerk
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Jan Ritter
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Johanna C Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Cécile Oury
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| |
Collapse
|
5
|
Fernández DI, Troitiño S, Sobota V, Tullemans BME, Zou J, van den Hurk H, García Á, Honarnejad S, Kuijpers MJE, Heemskerk JWM. Ultra-high throughput-based screening for the discovery of antiplatelet drugs affecting receptor dependent calcium signaling dynamics. Sci Rep 2024; 14:6229. [PMID: 38486006 PMCID: PMC10940705 DOI: 10.1038/s41598-024-56799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.
Collapse
Affiliation(s)
- Delia I Fernández
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sara Troitiño
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Vladimír Sobota
- IHU-LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33604, Bordeaux, France
- Institut de Mathématiques de Bordeaux, UMR5251, University of Bordeaux, 33 405, Talence, France
| | - Bibian M E Tullemans
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | - Jinmi Zou
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | | | - Ángel García
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Marijke J E Kuijpers
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX, Maastricht, The Netherlands.
| | - Johan W M Heemskerk
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Kamola P, Przygodzki T. Qualitative classification of thrombus images as a way to improve quantitative analysis of thrombus formation in flow chamber assays. PLoS One 2024; 19:e0299202. [PMID: 38466712 PMCID: PMC10927075 DOI: 10.1371/journal.pone.0299202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Thrombus formation in vitro under flow conditions is one of the most widely used methods to study haemostasis and to evaluate the activity of potential antithrombotic compounds. Assessment of the results of these experiments is often based on a quantification of microscopic images of thrombi. In a majority of reported analysis all thrombi visualised in an image are quantified as one homogenous class. In some protocols, qualitative assessment of thrombi morphology based on a visual comparison of evaluated images with representative images of predefined classes of thrombi are performed by experienced analysts. In presented paper we show how the quantitative analysis can be improved by classification of thrombi on the basis of defined morphological features prior to quantification and we suggest that machine learning-based approach can improve this way of analysis. METHODS We tested the applicability of machine learning-based segmentation and classification of thrombi images to improve the outcome of quantification of the results of flow chamber assays. For this, we used the public domain machine learning software Ilastik for bioimage analysis developed at the European Molecular Biology Laboratory. A model was trained to distinguish two classes of thrombi based on certain morphological features which apparently correspond to the stage of thrombus development. Thrombi formed in the presence of a model antiplatelet compound-abciximab or in control conditions were quantified with the use of this model and the results were compared to quantification where all thrombi were quantified as a homogenous class. RESULTS Machine learning-based analysis was capable of effective distinguishing of two classes of morphologically distinct platelet aggregates. The use of the model which segmented and quantified only the objects recognized as compacted structures provided results which better mirrored the actual effect of an antiplatelet treatment than quantification based on all structures. CONCLUSIONS Classification of thrombi enabled by machine learning increases the relevance of quantitative information and allows better evaluation of the results of in vitro thrombosis assays.
Collapse
Affiliation(s)
- Piotr Kamola
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Provenzale I, Solari FA, Schönichen C, Brouns SLN, Fernández DI, Kuijpers MJE, van der Meijden PEJ, Gibbins JM, Sickmann A, Jones C, Heemskerk JWM. Endothelium-mediated regulation of platelet activation: Involvement of multiple protein kinases. FASEB J 2024; 38:e23468. [PMID: 38334433 DOI: 10.1096/fj.202300360rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.
Collapse
Affiliation(s)
- Isabella Provenzale
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Haemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Jones
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute Maastricht, Maastricht, The Netherlands
| |
Collapse
|
8
|
Jooss NJ, Diender MG, Fernández DI, Huang J, Heubel-Moenen FCJ, van der Veer A, Kuijpers MJE, Poulter NS, Henskens YMC, Te Loo M, Heemskerk JWM. Restraining of glycoprotein VI- and integrin α2β1-dependent thrombus formation by platelet PECAM1. Cell Mol Life Sci 2024; 81:44. [PMID: 38236412 PMCID: PMC10796532 DOI: 10.1007/s00018-023-05058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The platelet receptors, glycoprotein VI (GPVI) and integrin α2β1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2β1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2β1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2β1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2β1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2β1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2β1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2β1 engagement.
Collapse
Affiliation(s)
- Natalie J Jooss
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Molecular Haematology Unit, University of Oxford, Headington, OX3 9DS, UK
| | - Marije G Diender
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
| | - Delia I Fernández
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jingnan Huang
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Floor C J Heubel-Moenen
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arian van der Veer
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
- Department of Pediatric Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, UK
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maroeska Te Loo
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Models of arterial thrombus formation represent a vital experimental tool to investigate platelet function and test novel antithrombotic drugs. This review highlights some of the recent advances in modelling thrombus formation in vitro and suggests potential future directions. RECENT FINDINGS Microfluidic devices and the availability of commercial chips in addition to enhanced accessibility of 3D printing has facilitated a rapid surge in the development of novel in-vitro thrombosis models. These include progression towards more sophisticated, 'vessel on a chip' models which incorporate vascular endothelial cells and smooth muscle cells. Other approaches include the addition of branches to the traditional single channel to yield an occlusive model; and developments in the adhesive coating of microfluidic chambers to better mimic the thrombogenic surface exposed following plaque rupture. Future developments in the drive to create more biologically relevant chambers could see a move towards the use of human placental vessels, perfused ex-vivo. However, further work is required to determine the feasibility and validity of this approach. SUMMARY Recent advances in thrombus formation models have significantly improved the pathophysiological relevance of in-vitro flow chambers to better reflect the in-vivo environment and provide a more translational platform to test novel antithrombotics.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | | | | |
Collapse
|
10
|
Verdier H, Thomas P, Batista J, Kempster C, McKinney H, Gleadall N, Danesh J, Mumford A, Heemskerk JWM, Ouwehand WH, Downes K, Astle WJ, Turro E. A signature of platelet reactivity in CBC scattergrams reveals genetic predictors of thrombotic disease risk. Blood 2023; 142:1895-1908. [PMID: 37647652 PMCID: PMC10733829 DOI: 10.1182/blood.2023021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic studies of platelet reactivity (PR) phenotypes may identify novel antiplatelet drug targets. However, such studies have been limited by small sample sizes (n < 5000) because of the complexity of measuring PR. We trained a model to predict PR from complete blood count (CBC) scattergrams. A genome-wide association study of this phenotype in 29 806 blood donors identified 21 distinct associations implicating 20 genes, of which 6 have been identified previously. The effect size estimates were significantly correlated with estimates from a study of flow cytometry-measured PR and a study of a phenotype of in vitro thrombus formation. A genetic score of PR built from the 21 variants was associated with the incidence rates of myocardial infarction and pulmonary embolism. Mendelian randomization analyses showed that PR was causally associated with the risks of coronary artery disease, stroke, and venous thromboembolism. Our approach provides a blueprint for using phenotype imputation to study the determinants of hard-to-measure but biologically important hematological traits.
Collapse
Affiliation(s)
- Hippolyte Verdier
- Institut Pasteur, CNRS UMR 3751, Decision and Bayesian Computation, Université Paris Cité, Paris, France
| | - Patrick Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- South West National Health Service Genomic Medicine Service Alliance, Bristol, United Kingdom
| | | | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
11
|
Sun S, Campello E, Zou J, Konings J, Huskens D, Wan J, Fernández DI, Reutelingsperger CPM, ten Cate H, Toffanin S, Bulato C, de Groot PG, de Laat B, Simioni P, Heemskerk JWM, Roest M. Crucial roles of red blood cells and platelets in whole blood thrombin generation. Blood Adv 2023; 7:6717-6731. [PMID: 37648671 PMCID: PMC10651426 DOI: 10.1182/bloodadvances.2023010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Red blood cells (RBCs) and platelets contribute to the coagulation capacity in bleeding and thrombotic disorders. The thrombin generation (TG) process is considered to reflect the interactions between plasma coagulation and the various blood cells. Using a new high-throughput method capturing the complete TG curve, we were able to compare TG in whole blood and autologous platelet-rich and platelet-poor plasma to redefine the blood cell contributions to the clotting process. We report a faster and initially higher generation of thrombin and shorter coagulation time in whole blood than in platelet-rich plasma upon low concentrations of coagulant triggers, including tissue factor, Russell viper venom factor X, factor Xa, factor XIa, and thrombin. The TG was accelerated with increased hematocrit and delayed after prior treatment of RBC with phosphatidylserine-blocking annexin A5. RBC treatment with ionomycin increased phosphatidylserine exposure, confirmed by flow cytometry, and increased the TG process. In reconstituted blood samples, the prior selective blockage of phosphatidylserine on RBC with annexin A5 enhanced glycoprotein VI-induced platelet procoagulant activity. For patients with anemia or erythrocytosis, cluster analysis revealed high or low whole-blood TG profiles in specific cases of anemia. The TG profiles lowered upon annexin A5 addition in the presence of RBCs and thus were determined by the extent of phosphatidylserine exposure of blood cells. Profiles for patients with polycythemia vera undergoing treatment were similar to that of control subjects. We concluded that RBC and platelets, in a phosphatidylserine-dependent way, contribute to the TG process. Determination of the whole-blood hypo- or hyper-coagulant activity may help to characterize a bleeding or thrombosis risk.
Collapse
Affiliation(s)
- Siyu Sun
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Elena Campello
- Department of Medicine, University of Padua, Padova, Italy
| | - Jinmi Zou
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Joke Konings
- Synapse Research Institute, Maastricht, The Netherlands
| | - Dana Huskens
- Synapse Research Institute, Maastricht, The Netherlands
| | - Jun Wan
- Synapse Research Institute, Maastricht, The Netherlands
| | - Delia I. Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Chris P. M. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | | | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, University of Padua, Padova, Italy
| | - Johan W. M. Heemskerk
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
12
|
Fernandez DI, Provenzale I, Canault M, Fels S, Lenz A, Andresen F, Krümpel A, Dupuis A, Heemskerk JWM, Boeckelmann D, Zieger B. High-throughput microfluidic blood testing to phenotype genetically linked platelet disorders: an aid to diagnosis. Blood Adv 2023; 7:6163-6177. [PMID: 37389831 PMCID: PMC10582840 DOI: 10.1182/bloodadvances.2023009860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Linking the genetic background of patients with bleeding diathesis and altered platelet function remains challenging. We aimed to assess how a multiparameter microspot-based measurement of thrombus formation under flow can help identify patients with a platelet bleeding disorder. For this purpose, we studied 16 patients presenting with bleeding and/or albinism and suspected platelet dysfunction and 15 relatives. Genotyping of patients revealed a novel biallelic pathogenic variant in RASGRP2 (splice site c.240-1G>A), abrogating CalDAG-GEFI expression, compound heterozygosity (c.537del, c.571A>T) in P2RY12, affecting P2Y12 signaling, and heterozygous variants of unknown significance in the P2RY12 and HPS3 genes. Other patients were confirmed to have Hermansky-Pudlak syndrome type 1 or 3. In 5 patients, no genetic variant was found. Platelet functions were assessed via routine laboratory measurements. Blood samples from all subjects and day controls were screened for blood cell counts and microfluidic outcomes on 6 surfaces (48 parameters) in comparison with those of a reference cohort of healthy subjects. Differential analysis of the microfluidic data showed that the key parameters of thrombus formation were compromised in the 16 index patients. Principal component analysis revealed separate clusters of patients vs heterozygous family members and control subjects. Clusters were further segregated based on inclusion of hematologic values and laboratory measurements. Subject ranking indicated an overall impairment in thrombus formation in patients carrying a (likely) pathogenic variant of the genes but not in asymptomatic relatives. Taken together, our results indicate the advantages of testing for multiparametric thrombus formation in this patient population.
Collapse
Affiliation(s)
- Delia I. Fernandez
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabella Provenzale
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Matthias Canault
- Institut National de la Santé et de la Recherche Médicale, UMR_INRA 1260, Faculté de Medecine, Aix Marseille Université, Marseille, France
| | - Salome Fels
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Antonia Lenz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Felicia Andresen
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Anne Krümpel
- Practice for Pediatric and Youth Medicine, Wettringen, Germany
| | - Arnaud Dupuis
- Université de Strasbourg, Etablissement Français du Sang Grand Est, UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Maastricht, The Netherlands
| | - Doris Boeckelmann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Schönichen C, Montague SJ, Brouns SL, Burston JJ, Cosemans JM, Jurk K, Kehrel BE, Koenen RR, Ní Áinle F, O’Donnell VB, Soehnlein O, Watson SP, Kuijpers MJ, Heemskerk JW, Nagy M. Antagonistic Roles of Human Platelet Integrin αIIbβ3 and Chemokines in Regulating Neutrophil Activation and Fate on Arterial Thrombi Under Flow. Arterioscler Thromb Vasc Biol 2023; 43:1700-1712. [PMID: 37409530 PMCID: PMC10443630 DOI: 10.1161/atvbaha.122.318767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbβ3. RESULTS We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.
Collapse
Affiliation(s)
- Claudia Schönichen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany (C.S., K.J.)
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom (S.J.M., S.P.W.)
| | - Sanne L.N. Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
| | - James J. Burston
- Systems Immunity Research Institute, School of Medicine, Cardiff University, United Kingdom (J.J.B., V.B.O.)
| | - Judith M.E.M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany (C.S., K.J.)
- Department of Anaesthesiology and Intensive Care, University Hospital Muenster, Germany (K.J., B.E.K.)
| | - Beate E. Kehrel
- Department of Anaesthesiology and Intensive Care, University Hospital Muenster, Germany (K.J., B.E.K.)
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
| | - Fionnuala Ní Áinle
- School of Medicine, University College Dublin, Ireland (F.N.Á.)
- Department of Haematology, Mater Misericordiae University Hospital and Rotunda Hospital, Dublin, Ireland (F.N.Á.)
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, United Kingdom (J.J.B., V.B.O.)
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Germany (O.S.)
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms Universität, Münster, Germany (O.S.)
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (O.S.)
| | - Steve P. Watson
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom (S.J.M., S.P.W.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, the Midlands, United Kingdom (S.P.W.)
| | - Marijke J.E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre, the Netherlands (M.J.E.K.)
| | - Johan W.M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
- Synapse Research Institute, Maastricht, the Netherlands (J.W.M.H.)
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.S., S.L.N.B., J.M.E.M.C., R.R.K., S.P.W., M.J.E.K., J.W.M.H., M.N.)
| |
Collapse
|
14
|
Fernández DI, Diender M, Hermida-Nogueira L, Huang J, Veiras S, Henskens YMC, Te Loo MWM, Heemskerk JWM, Kuijpers MJE, García Á. Role of SHP2 (PTPN11) in glycoprotein VI-dependent thrombus formation: Improved platelet responsiveness by the allosteric drug SHP099 in Noonan syndrome patients. Thromb Res 2023; 228:105-116. [PMID: 37302266 DOI: 10.1016/j.thromres.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION The protein tyrosine phosphatase SHP2 (PTPN11) is a negative regulator of glycoprotein VI (GPVI)-induced platelet signal under certain conditions. Clinical trials with derivatives of the allosteric drug SHP099, inhibiting SHP2, are ongoing as potential therapy for solid cancers. Gain-of-function mutations of the PTPN11 gene are observed in part of the patients with the Noonan syndrome, associated with a mild bleeding disorder. Assessment of the effects of SHP2 inhibition in platelets from controls and Noonan syndrome patients. MATERIALS AND METHODS Washed human platelets were incubated with SHP099 and stimulated with collagen-related peptide (CRP) for stirred aggregation and flow cytometric measurements. Whole-blood microfluidics assays using a dosed collagen and tissue factor coating were performed to assess shear-dependent thrombus and fibrin formation. Effects on clot formation were evaluated by thromboelastometry. RESULTS Pharmacological inhibition of SHP2 did not alter GPVI-dependent platelet aggregation under stirring, but it enhanced integrin αIIbβ3 activation in response to CRP. Using whole-blood microfluidics, SHP099 increased the thrombus buildup on collagen surfaces. In the presence of tissue factor and coagulation, SHP099 increased thrombus size and reduced time to fibrin formation. Blood from PTPN11-mutated Noonan syndrome patients, with low platelet responsiveness, after ex vivo treatment with SHP099 showed a normalized platelet function. In thromboelastometry, SHP2 inhibition tended to increase tissue factor-induced blood clotting profiles with tranexamic acid, preventing fibrinolysis. CONCLUSION Pharmacological inhibition of SHP2 by the allosteric drug SHP099 enhances GPVI-induced platelet activation under shear conditions with a potential to improve platelet functions of Noonan syndrome patients.
Collapse
Affiliation(s)
- Delia I Fernández
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands.
| | - Marije Diender
- Department of Pediatric Hematology, Amalia children's hospital, Radboud UMC, Nijmegen, the Netherlands
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Jingnan Huang
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; ISAS Leibniz-Institut fur Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Sonia Veiras
- Department of Anesthesiology and Intensive Care Medicine, Clinical University Hospital of Santiago, Santiago de Compostela, Spain
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Maroeska W M Te Loo
- Department of Pediatric Hematology, Amalia children's hospital, Radboud UMC, Nijmegen, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, the Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre(+), Maastricht, the Netherlands.
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Cheung HYF, Zou J, Tantiwong C, Fernandez DI, Huang J, Ahrends R, Roest M, Cavill R, Gibbins J, Heemskerk JWM. High-throughput assessment identifying major platelet Ca 2+ entry pathways via tyrosine kinase-linked and G protein-coupled receptors. Cell Calcium 2023; 112:102738. [PMID: 37060673 DOI: 10.1016/j.ceca.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
In platelets, elevated cytosolic Ca2+ is a crucial second messenger, involved in most functional responses, including shape change, secretion, aggregation and procoagulant activity. The platelet Ca2+ response consists of Ca2+ mobilization from endoplasmic reticulum stores, complemented with store-operated or receptor-operated Ca2+ entry pathways. Several channels can contribute to the Ca2+ entry, but their relative contribution is unclear upon stimulation of ITAM-linked receptors such as glycoprotein VI (GPVI) and G-protein coupled receptors such as the protease-activated receptors (PAR) for thrombin. We employed a 96-well plate high-throughput assay with Fura-2-loaded human platelets to perform parallel [Ca2+]i measurements in the presence of EGTA or CaCl2. Per agonist condition, this resulted in sets of EGTA, CaCl2 and Ca2+ entry ratio curves, defined by six parameters, reflecting different Ca2+ ion fluxes. We report that threshold stimulation of GPVI or PAR, with a variable contribution of secondary mediators, induces a maximal Ca2+ entry ratio of 3-7. Strikingly, in combination with Ca2+-ATPase inhibition by thapsigargin, the maximal Ca2+ entry ratio increased to 400 (GPVI) or 40 (PAR), pointing to a strong receptor-dependent enhancement of store-operated Ca2+ entry. By pharmacological blockage of specific Ca2+ channels in platelets, we found that, regardless of GPVI or PAR stimulation, the Ca2+ entry ratio was strongest affected by inhibition of ORAI1 (2-APB, Synta66) > Na+/Ca2+ exchange (NCE) > P2×1 (only initial). In contrast, inhibition of TRPC6, Piezo1/2 or STIM1 was without effect. Together, these data reveal ORAI1 and NCE as dominating Ca2+ carriers regulating GPVI- and PAR-induced Ca2+ entry in human platelets.
Collapse
Affiliation(s)
- Hilaire Yam Fung Cheung
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jinmi Zou
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Chukiat Tantiwong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Delia I Fernandez
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Jingnan Huang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Dept. of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Mark Roest
- Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jon Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands.
| |
Collapse
|
16
|
Jooss NJ, Henskens YMC, Watson SP, Farndale RW, Gawaz MP, Jandrot-Perrus M, Poulter NS, Heemskerk JWM. Pharmacological Inhibition of Glycoprotein VI- and Integrin α2β1-Induced Thrombus Formation Modulated by the Collagen Type. Thromb Haemost 2023; 123:597-612. [PMID: 36807826 DOI: 10.1055/s-0043-1761463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND In secondary cardiovascular disease prevention, treatments blocking platelet-derived secondary mediators pose a risk of bleeding. Pharmacological interference of the interaction of platelets with exposed vascular collagens is an attractive alternative, with clinical trials ongoing. Antagonists of the collagen receptors, glycoprotein VI (GPVI), and integrin α2β1, include recombinant GPVI-Fc dimer construct Revacept, 9O12 mAb based on the GPVI-blocking reagent Glenzocimab, Syk tyrosine-kinase inhibitor PRT-060318, and anti-α2β1 mAb 6F1. No direct comparison has been made of the antithrombic potential of these drugs. METHODS Using a multiparameter whole-blood microfluidic assay, we compared the effects of Revacept, 9O12-Fab, PRT-060318, or 6F1 mAb intervention with vascular collagens and collagen-related substrates with varying dependencies on GPVI and α2β1. To inform on Revacept binding to collagen, we used fluorescent-labelled anti-GPVI nanobody-28. RESULTS AND CONCLUSION In this first comparison of four inhibitors of platelet-collagen interactions with antithrombotic potential, we find that at arterial shear rate: (1) the thrombus-inhibiting effect of Revacept was restricted to highly GPVI-activating surfaces; (2) 9O12-Fab consistently but partly inhibited thrombus size on all surfaces; (3) effects of GPVI-directed interventions were surpassed by Syk inhibition; and (4) α2β1-directed intervention with 6F1 mAb was strongest for collagens where Revacept and 9O12-Fab were limitedly effective. Our data hence reveal a distinct pharmacological profile for GPVI-binding competition (Revacept), GPVI receptor blockage (9O12-Fab), GPVI signaling (PRT-060318), and α2β1 blockage (6F1 mAb) in flow-dependent thrombus formation, depending on the platelet-activating potential of the collagen substrate. This work thus points to additive antithrombotic action mechanisms of the investigated drugs.
Collapse
Affiliation(s)
- Natalie J Jooss
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,CambCol Laboratories, Ely, United Kingdom
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martine Jandrot-Perrus
- UMR_S1148, Laboratory for Vascular Translational Science, INSERM, University Paris Cité, Paris, France
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.,Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
17
|
Damaskinaki FN, Jooss NJ, Martin EM, Clark JC, Thomas MR, Poulter NS, Emsley J, Kellam B, Watson SP, Slater A. Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization. J Thromb Haemost 2023; 21:317-328. [PMID: 36700508 DOI: 10.1016/j.jtha.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 11/06/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The platelet-signaling receptor glycoprotein VI (GPVI) is a promising antithrombotic target. We have previously raised a series of high-affinity nanobodies (Nbs) against GPVI and identified Nb2, Nb21, and Nb35 as potent GPVI inhibitors. The Nb2 binding site has been mapped to the D1 domain, which is directly adjacent to the CRP binding site. Ligand-binding complementary determining region 3 has only 15% conservation between all 3 Nbs. OBJECTIVES To map the binding sites of Nb21 and Nb35 on GPVI. METHODS We determined the X-ray crystal structure of the D1 and D2 extracellular domains of the GPVI-Nb35 complex. We then looked at the effects of various GPVI mutations on the ability of Nbs to inhibit collagen binding and GPVI signaling using surface binding assays and transfected cell lines. RESULTS The crystal structure of GPVI bound to Nb35 was solved. GPVI was present as a monomer, and the D1+D2 conformation was comparable to that in the dimeric structure. Arg46, Tyr47, and Ala57 are common residues on GPVI targeted by both Nb2 and Nb35. Mutating Arg46 to an Ala abrogated the ability of Nb2, Nb21, and Nb35 to inhibit collagen-induced GPVI signaling and blocked the binding of all 3 Nbs. In addition, Arg60 was found to reduce Nb21 inhibition but not the inhibition Nb2 or Nb35. CONCLUSIONS These findings reveal key residues involved in the high-affinity binding of GPVI inhibitors and negate the idea that GPVI dimerization induces a conformational change required for ligand binding.
Collapse
Affiliation(s)
- Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK; Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Natalie J Jooss
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Cardiology, University Hospitals Birmingham, Birmingham, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Jonas Emsley
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK; Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK; Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
18
|
Bourne JH, Smith CW, Jooss NJ, Di Y, Brown HC, Montague SJ, Thomas MR, Poulter NS, Rayes J, Watson SP. CLEC-2 Supports Platelet Aggregation in Mouse but not Human Blood at Arterial Shear. Thromb Haemost 2022; 122:1988-2000. [PMID: 35817083 PMCID: PMC9718592 DOI: 10.1055/a-1896-6992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is highly expressed on platelets and a subpopulation of myeloid cells, and is critical in lymphatic development. CLEC-2 has been shown to support thrombus formation at sites of inflammation, but to have a minor/negligible role in hemostasis. This identifies CLEC-2 as a promising therapeutic target in thromboinflammatory disorders, without hemostatic detriment. We utilized a GPIbα-Cre recombinase mouse for more restricted deletion of platelet-CLEC-2 than the previously used PF4-Cre mouse. clec1bfl/flGPIbα-Cre+ mice are born at a Mendelian ratio, with a mild reduction in platelet count, and present with reduced thrombus size post-FeCl3-induced thrombosis, compared to littermates. Antibody-mediated depletion of platelet count in C57BL/6 mice, to match clec1bfl/flGPIbα-Cre+ mice, revealed that the reduced thrombus size post-FeCl3-injury was due to the loss of CLEC-2, and not mild thrombocytopenia. Similarly, clec1bfl/flGPIbα-Cre+ mouse blood replenished with CLEC-2-deficient platelets ex vivo to match littermates had reduced aggregate formation when perfused over collagen at arterial flow rates. In contrast, platelet-rich thrombi formed following perfusion of human blood under flow conditions over collagen types I or III, atherosclerotic plaque, or inflammatory endothelial cells were unaltered in the presence of CLEC-2-blocking antibody, AYP1, or recombinant CLEC-2-Fc. The reduction in platelet aggregation observed in clec1bfl/flGPIbα-Cre+ mice during arterial thrombosis is mediated by the loss of CLEC-2 on mouse platelets. In contrast, CLEC-2 does not support thrombus generation on collagen, atherosclerotic plaque, or inflamed endothelial cells in human at arterial shear.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie J. Jooss
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- UHB and SWBH NHS Trusts, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
19
|
Thibord F, Klarin D, Brody JA, Chen MH, Levin MG, Chasman DI, Goode EL, Hveem K, Teder-Laving M, Martinez-Perez A, Aïssi D, Daian-Bacq D, Ito K, Natarajan P, Lutsey PL, Nadkarni GN, de Vries PS, Cuellar-Partida G, Wolford BN, Pattee JW, Kooperberg C, Braekkan SK, Li-Gao R, Saut N, Sept C, Germain M, Judy RL, Wiggins KL, Ko D, O’Donnell CJ, Taylor KD, Giulianini F, De Andrade M, Nøst TH, Boland A, Empana JP, Koyama S, Gilliland T, Do R, Huffman JE, Wang X, Zhou W, Soria JM, Souto JC, Pankratz N, Haessler J, Hindberg K, Rosendaal FR, Turman C, Olaso R, Kember RL, Bartz TM, Lynch JA, Heckbert SR, Armasu SM, Brumpton B, Smadja DM, Jouven X, Komuro I, Clapham KR, Loos RJ, Willer CJ, Sabater-Lleal M, Pankow JS, Reiner AP, Morelli VM, Ridker PM, van Hylckama Vlieg A, Deleuze JF, Kraft P, Rader DJ, Lee KM, Psaty BM, Skogholt AH, Emmerich J, Suchon P, Rich SS, Vy HMT, Tang W, Jackson RD, Hansen JB, Morange PE, Kabrhel C, Trégouët DA, Damrauer SM, Johnson AD, Smith NL. Cross-Ancestry Investigation of Venous Thromboembolism Genomic Predictors. Circulation 2022; 146:1225-1242. [PMID: 36154123 PMCID: PMC10152894 DOI: 10.1161/circulationaha.122.059675] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. METHODS We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. RESULTS In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. CONCLUSIONS Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments.
Collapse
Affiliation(s)
- Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Derek Klarin
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, 94550, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kristian Hveem
- HUNT Research Center, Department of Public Health and Nursing, Norwegian University of Science and Technology, Forskningsvegen 2, Levanger, 7600, Norway
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Maris Teder-Laving
- Institute of Genomics, University of Tartu, Riia 23b, Tartu, Tartu, 51010, Estonia
| | - Angel Martinez-Perez
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
| | - Dylan Aïssi
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
| | - Delphine Daian-Bacq
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St, Houston, TX, 77030, USA
| | | | - Brooke N. Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jack W. Pattee
- Division of Biostatistics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Center for Innovative Design & Analysis and Department of Biostatistics & Informatics, Colorado School of Public Health, 13001 East 17th Place, Aurora, CO, 80045, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Sigrid K. Braekkan
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Ruifang Li-Gao
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Noemie Saut
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
| | - Corriene Sept
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Marine Germain
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Renae L. Judy
- Surgery, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA, 19104, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Darae Ko
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- Section of Cardiovascular Medicine, Boston University School of Medicine, 85 East Newton Street, Boston, MA, 02118, USA
| | - Christopher J. O’Donnell
- Cardiology Section, Department of Medicine, VA Boston Healthcare System, Boston, MA, 02132, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, 1124 W Carson St., Torrance, CA, 90502, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
| | - Mariza De Andrade
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Therese H. Nøst
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Jean-Philippe Empana
- Integrative Epidemiology of cardiovascular diseases, Université Paris Cité, Paris Cardiovascular Research Center (PARCC), 56 rue Leblanc, Paris, 75015, France
- Department of Cardiology, APHP, Hopital Européen Georges Pompidou, 20 rue Leblanc, Paris, 75015, France
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
| | - Thomas Gilliland
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Jennifer E. Huffman
- MAVERIC, VA Boston Heathcare System, 2 Avenue de Lafayette, Boston, MA, 02111, USA
| | - Xin Wang
- 23andMe, Inc., 223 N Mathilda Ave, Sunnyvale, CA, 94086, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jose Manuel Soria
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
| | - Juan Carlos Souto
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, St Quinti 89, Barcelona, 8041, Spain
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Jeffery Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Kristian Hindberg
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
| | - Frits R. Rosendaal
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Rachel L. Kember
- Psychiatry, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA, 19104, USA
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Julie A. Lynch
- VA Informatics & Computing Infrastructure, VA Salt Lake City Healthcare System, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
- Epidemiology, University of Utah, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Sebastian M. Armasu
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ben Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - David M. Smadja
- Hematology Department and Biosurgical Research Lab (Carpentier Foundation), European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, 20 rue Leblanc, Paris, 75015, France
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 4 avenue de l’Observatoire, Paris, 75270, France
| | - Xavier Jouven
- Integrative Epidemiology of cardiovascular diseases, Université Paris Descartes, Sorbonne Paris Cité, 56 rue Leblanc, Paris, 75015, France
- Paris Cardiovascular Research Center, Inserm U970, Université Paris Descartes, Sorbonne Paris Cité, 20 rue Leblanc, Paris, 75015, France
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Tokyo, 113-8655, Japan
| | - Katharine R. Clapham
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Cristen J. Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Sabater-Lleal
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, 17176, Sweden
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Vania M. Morelli
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Astrid van Hylckama Vlieg
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
- Centre D’Etude du Polymorphisme Humain, Fondation Jean Dausset, 27 rue Juliette Dodu, Paris, 75010, France
| | - Peter Kraft
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Daniel J. Rader
- Departments of Medicine and Genetics and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | - Kyung Min Lee
- VA Informatics & Computing Infrastructure, VA Salt Lake City Healthcare System, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Department of Health Systems and Population Heath, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Anne Heidi Skogholt
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Joseph Emmerich
- Department of vascular medicine, Paris Saint-Joseph Hospital Group, University of Paris, 185 rue Raymond Losserand, Paris, 75674, France
- UMR1153, INSERM CRESS, 185 rue Raymond Losserand, Paris, 75674, France
| | - Pierre Suchon
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
- C2VN, INSERM, INRAE, Aix-Marseille University, 27, bd Jean Moulin, Marseille, 13385, France
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, 3242 West Complex, Charlottesville, VA, 22908-0717, USA
| | - Ha My T. Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Rebecca D. Jackson
- College of Medicine, Ohio State University, 376 W. 10th Ave, Columbus, OH, 43210, USA
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Pierre-Emmanuel Morange
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
- C2VN, INSERM, INRAE, Aix-Marseille University, 27, bd Jean Moulin, Marseille, 13385, France
| | - Christopher Kabrhel
- Emergency Medicine, Massachusetts General Hospital, Zero Emerson Place, Suite 3B, Boston, MA, 02114, USA
- Emergency Medicine, Harvard Medical School, Zero Emerson Place, Suite 3B, Boston, MA, 02114, USA
| | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Ave, Philadelphia, PA, 19104, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew D. Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, 98108, USA
| |
Collapse
|
20
|
van den Kerkhof DL, Nagy M, Wichapong K, Brouns SL, Suylen DP, Hackeng TM, Dijkgraaf I. Unraveling the role of the homoarginine residue in antiplatelet drug eptifibatide in binding to the αIIbβ3 integrin receptor. Thromb Res 2022; 217:96-103. [DOI: 10.1016/j.thromres.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
|
21
|
Roles of Focal Adhesion Kinase PTK2 and Integrin αIIbβ3 Signaling in Collagen- and GPVI-Dependent Thrombus Formation under Shear. Int J Mol Sci 2022; 23:ijms23158688. [PMID: 35955827 PMCID: PMC9369275 DOI: 10.3390/ijms23158688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoprotein (GP)VI and integrin αIIbβ3 are key signaling receptors in collagen-dependent platelet aggregation and in arterial thrombus formation under shear. The multiple downstream signaling pathways are still poorly understood. Here, we focused on disclosing the integrin-dependent roles of focal adhesion kinase (protein tyrosine kinase 2, PTK2), the shear-dependent collagen receptor GPR56 (ADGRG1 gene), and calcium and integrin-binding protein 1 (CIB1). We designed and synthetized peptides that interfered with integrin αIIb binding (pCIB and pCIBm) or mimicked the activation of GPR56 (pGRP). The results show that the combination of pGRP with PTK2 inhibition or of pGRP with pCIB > pCIBm in additive ways suppressed collagen- and GPVI-dependent platelet activation, thrombus buildup, and contraction. Microscopic thrombus formation was assessed by eight parameters (with script descriptions enclosed). The suppressive rather than activating effects of pGRP were confined to blood flow at a high shear rate. Blockage of PTK2 or interference of CIB1 no more than slightly affected thrombus formation at a low shear rate. Peptides did not influence GPVI-induced aggregation and Ca2+ signaling in the absence of shear. Together, these data reveal a shear-dependent signaling axis of PTK2, integrin αIIbβ3, and CIB1 in collagen- and GPVI-dependent thrombus formation, which is modulated by GPR56 and exclusively at high shear. This work thereby supports the role of PTK2 in integrin αIIbβ3 activation and signaling.
Collapse
|
22
|
GPVI expression is linked to platelet size, age, and reactivity. Blood Adv 2022; 6:4162-4173. [PMID: 35561312 PMCID: PMC9327529 DOI: 10.1182/bloodadvances.2021006904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 01/19/2023] Open
Abstract
Juvenile platelets show increased GPVI expression. These platelets are highly responsive and more abundant among large platelets.
Platelets within one individual display heterogeneity in reactivity, size, age, and expression of surface receptors. To investigate the combined intraindividual contribution of platelet size, platelet age, and receptor expression levels on the reactivity of platelets, we studied fractions of large and small platelets from healthy donors separated by using differential centrifugation. Size-separated platelet fractions were perfused over a collagen-coated surface to assess thrombus formation. Multicolor flow cytometry was used to characterize resting and stimulated platelet subpopulations, and platelet age was determined based on RNA and HLA-I labeling. Signal transduction was analyzed by measuring consecutive phosphorylation of serine/threonine-protein kinase Akt. Compared with small platelets, large platelets adhered faster to collagen under flow and formed larger thrombi. Among the large platelets, a highly reactive juvenile platelet subpopulation was identified with high glycoprotein VI (GPVI) expression. Elevated GPVI expression correlated with high HLA-I expression, RNA content, and increased platelet reactivity. There was a stronger difference in Akt phosphorylation and activation upon collagen stimulation between juvenile and older platelets than between large and small platelets. GPVI expression and platelet reactivity decreased throughout platelet storage at 22°C and was better maintained throughout cold storage at 4°C. We further detected higher GPVI expression in platelets of patients with immune thrombocytopenia. Our findings show that high GPVI expression is a feature of highly reactive juvenile platelets, which are predominantly found among the large platelet population, explaining the better performance of large platelets during thrombus formation. These data are important for studies of thrombus formation, platelet storage, and immune thrombocytopenia.
Collapse
|
23
|
Abstract
This review discusses our understanding of platelet diversity with implications for the roles of platelets in hemostasis and thrombosis and identifies advanced technologies set to provide new insights. We use the term diversity to capture intrasubject platelet variability that can be intrinsic or governed by the environment and lead to a heterogeneous response pattern of aggregation, clot promotion, and external communication. Using choice examples, we discuss how the use of advanced technologies can provide new insights into the underlying causes of platelet molecular, structural, and functional diversity. As sources of diversity, we discuss the proliferating megakaryocytes with different allele-specific expression patterns, the asymmetrical formation of proplatelets, changes in platelets induced by aging and priming, interplatelet heterogeneity in thrombus organization and stability, and platelet-dependent communications. We provide indications how current knowledge gaps can be addressed using promising technologies, such as next-generation sequencing, proteomic approaches, advanced imaging techniques, multicolor flow and mass cytometry, multifunctional microfluidics assays, and organ-on-a-chip platforms. We then argue how this technology base can aid in characterizing platelet populations and in identifying platelet biomarkers relevant for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (J.W.M.H.)
| | - Jonathan West
- Faculty of Medicine and Centre for Hybrid Biodevices, University of Southampton, United Kingdom (J.W.)
| |
Collapse
|
24
|
Brinkman HJM, Swieringa F, Zuurveld M, Veninga A, Brouns SLN, Heemskerk JWM, Meijers JCM. Reversing direct factor Xa or thrombin inhibitors: Factor V addition to prothrombin complex concentrate is beneficial in vitro. Res Pract Thromb Haemost 2022; 6:e12699. [PMID: 35494506 PMCID: PMC9036856 DOI: 10.1002/rth2.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Prothrombin complex concentrate (PCC) is a human plasma‐derived mixture of partially purified vitamin K‐dependent coagulation factors (VKCF). Current therapeutic indication is treatment and perioperative prophylaxis of bleeding in acquired VKCF deficiency. Off‐label uses include treatment of direct factor Xa‐ or thrombin inhibitor‐associated bleeds, treatment of trauma‐induced coagulopathy, and hemorrhagic complications in patients with liver disease. Objective Considering PCC as a general prohemostatic drug, we argued that its clinical efficacy can benefit from supplementation with coagulation factors that are absent in the current PCC formulation. In this study, we focused on factor V. Methods We mimicked a coagulopathy in vitro by spiking whole blood or derived plasma with the direct oral anticoagulants (DOAC) rivaroxaban or dabigatran. We studied DOAC reversal by PCC and factor V concentrate (FVC) using a thrombin generation assay, thromboelastography, fibrin generation clot lysis test, and microfluidic thrombus formation under flow. Results In DOAC‐treated plasma, PCC increased the amount of thrombin generated. The addition of FVC alone or in combination with PCC caused a partial correction of the thrombin generation lag time and clotting time. In DOAC‐treated whole blood, the combination of PCC and FVC synergistically improved clotting time under static conditions, whereas complete correction of fibrin formation was observed under flow. Clot strength and clot resistance toward tissue plasminogen activator‐induced lysis were both increased with PCC and further enhanced by additional FVC. Conclusion Our in vitro study demonstrates a beneficial effect of the combined use of PCC and FVC in DOAC reversal.
Collapse
Affiliation(s)
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Maastricht The Netherlands
- Synapse Research Institute Maastricht The Netherlands
| | - Marleen Zuurveld
- Department of Molecular Hematology Sanquin Research Amsterdam The Netherlands
| | - Alicia Veninga
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Maastricht The Netherlands
| | - Sanne L. N. Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Maastricht The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Maastricht The Netherlands
- Synapse Research Institute Maastricht The Netherlands
| | - Joost C. M. Meijers
- Department of Molecular Hematology Sanquin Research Amsterdam The Netherlands
- Department of Experimental Vascular Medicine Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
25
|
Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear. Int J Mol Sci 2022; 23:ijms23042046. [PMID: 35216161 PMCID: PMC8876638 DOI: 10.3390/ijms23042046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26–34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.
Collapse
|
26
|
Brouns SLN, Tullemans BME, Bulato C, Perrella G, Campello E, Spiezia L, van Geffen J, Kuijpers MJE, van Oerle R, Spronk HH, van der Meijden PEJ, Simioni P, Heemskerk JWM. Protein C or Protein S deficiency associates with paradoxically impaired platelet-dependent thrombus and fibrin formation under flow. Res Pract Thromb Haemost 2022; 6:e12678. [PMID: 35284776 PMCID: PMC8900581 DOI: 10.1002/rth2.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Low plasma levels of protein C or protein S are associated with venous thromboembolism rather than myocardial infarction. The high coagulant activity in patients with thrombophilia with a (familial) defect in protein C or S is explained by defective protein C activation, involving thrombomodulin and protein S. This causes increased plasmatic thrombin generation. Objective Assess the role of platelets in the thrombus- and fibrin-forming potential in patients with familial protein C or protein S deficiency under high-shear flow conditions. Patients/Methods Whole blood from 23 patients and 15 control subjects was perfused over six glycoprotein VI-dependent microspot surfaces. By real-time multicolor microscopic imaging, kinetics of platelet thrombus and fibrin formation were characterized in 49 parameters. Results and Conclusion Whole-blood flow perfusion over collagen, collagen-like peptide, and fibrin surfaces with low or high GPVI dependency indicated an unexpected impairment of platelet activation, thrombus phenotype, and fibrin formation but unchanged platelet adhesion, observed in patients with protein C deficiency and to a lesser extent protein S deficiency, when compared to controls. The defect extended from diminished phosphatidylserine exposure and thrombus contraction to delayed and suppressed fibrin formation. The mechanism was thrombomodulin independent, and may involve negative platelet priming by plasma components.
Collapse
Affiliation(s)
- Sanne L. N. Brouns
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Bibian M. E. Tullemans
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Cristiana Bulato
- Department of MedicineUniversity of Padua Medical SchoolPadovaItaly
| | - Gina Perrella
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | - Elena Campello
- Department of MedicineUniversity of Padua Medical SchoolPadovaItaly
| | - Luca Spiezia
- Department of MedicineUniversity of Padua Medical SchoolPadovaItaly
| | - Johanna P. van Geffen
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Marijke J. E. Kuijpers
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
| | - René van Oerle
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Henri M. H. Spronk
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Paola E. J. van der Meijden
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Paolo Simioni
- Department of MedicineUniversity of Padua Medical SchoolPadovaItaly
| | - Johan W. M. Heemskerk
- Departments of Biochemistry and Internal MedicineCARIMMaastricht University Medical CentreMaastrichtThe Netherlands
- Synapse Research InstituteMaastrichtThe Netherlands
| |
Collapse
|
27
|
Heubel-Moenen FCJI, Brouns SLN, Herfs L, Boerenkamp LS, Jooss NJ, Wetzels RJH, Verhezen PWM, Machiels P, Megy K, Downes K, Heemskerk JWM, Beckers EAM, Henskens YMC. Multiparameter platelet function analysis of bleeding patients with a prolonged platelet function analyser closure time. Br J Haematol 2022; 196:1388-1400. [PMID: 35001370 PMCID: PMC9303561 DOI: 10.1111/bjh.18003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
Patients referred for evaluation of bleeding symptoms occasionally have a prolonged platelet function analyser (PFA) closure time, without evidence for von Willebrand disease or impaired platelet aggregation. The aim of this study was to establish a shear‐dependent platelet function defect in these patients. Patients were included based on high bleeding score and prior PFA prolongation. Common tests of von Willebrand factor (VWF) and platelet function and exome sequencing were performed. Microfluidic analysis of shear‐dependent collagen‐induced whole‐blood thrombus formation was performed. In 14 PFA‐only patients, compared to healthy volunteers, microfluidic tests showed significantly lower platelet adhesion and thrombus formation parameters. This was accompanied by lower integrin activation, phosphatidylserine exposure and P‐selectin expression. Principal components analysis indicated VWF as primary explaining variable of PFA prolongation, whereas conventional platelet aggregation primarily explained the reduced thrombus parameters under shear. In five patients with severe microfluidic abnormalities, conventional platelet aggregation was in the lowest range of normal. No causal variants in Mendelian genes known to cause bleeding or platelet disorders were identified. Multiparameter assessment of whole‐blood thrombus formation under shear indicates single or combined effects of low–normal VWF and low–normal platelet aggregation in these patients, suggesting a shear‐dependent platelet function defect, not detected by static conventional haemostatic tests.
Collapse
Affiliation(s)
- Floor C J I Heubel-Moenen
- Department of Hematology, Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Linda Herfs
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Flowchamber, Maastricht, The Netherlands
| | - Lara S Boerenkamp
- Department of Hematology, Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Natalie J Jooss
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Rick J H Wetzels
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Paul W M Verhezen
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Karyn Megy
- Department of Hematology, University of Cambridge and National Institute for Health Research (NIHR) BioResource, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Kate Downes
- Department of Hematology, University of Cambridge and National Institute for Health Research (NIHR) BioResource, Cambridge University Hospitals, Cambridge, United Kingdom.,East Genomic Laboratory Hub, Cambridge University Hospitals Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Flowchamber, Maastricht, The Netherlands
| | - Erik A M Beckers
- Department of Hematology, Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Ju LA, Kossmann S, Zhao YC, Moldovan L, Zhang Y, De Zoysa Ramasundara S, Zhou F, Lu H, Alwis I, Schoenwaelder SM, Yuan Y, Jackson SP. Microfluidic post method for 3-dimensional modeling of platelet–leukocyte interactions. Analyst 2022; 147:1222-1235. [DOI: 10.1039/d2an00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
These studies demonstrate the versatility and relevance of a novel ‘platelet post’ model to examine the adhesive interactions between platelets and neutrophils under 3D disturbed flow conditions relevant to thromboinflammation.
Collapse
Affiliation(s)
- Lining Arnold Ju
- Heart Research Institute, Newtown, NSW, 2042, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sabine Kossmann
- Heart Research Institute, Newtown, NSW, 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Laura Moldovan
- Heart Research Institute, Newtown, NSW, 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yingqi Zhang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Savindi De Zoysa Ramasundara
- Heart Research Institute, Newtown, NSW, 2042, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Fangyuan Zhou
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Imala Alwis
- Heart Research Institute, Newtown, NSW, 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Simone M. Schoenwaelder
- Heart Research Institute, Newtown, NSW, 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yuping Yuan
- Heart Research Institute, Newtown, NSW, 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Shaun P. Jackson
- Heart Research Institute, Newtown, NSW, 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, Scripps Research, La Jolla, California 92037, USA
| |
Collapse
|
29
|
Perrella G, Montague SJ, Brown HC, Garcia Quintanilla L, Slater A, Stegner D, Thomas M, Heemskerk JWM, Watson SP. Role of Tyrosine Kinase Syk in Thrombus Stabilisation at High Shear. Int J Mol Sci 2022; 23:ijms23010493. [PMID: 35008919 PMCID: PMC8745592 DOI: 10.3390/ijms23010493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s-1). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A2 (TxA2), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.
Collapse
Affiliation(s)
- Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Department of Biochemistry, CARIM, Maastricht University, 6200 AC Maastricht, The Netherlands;
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Mark Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Johan W. M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6200 AC Maastricht, The Netherlands;
- Department Synapse Research Institute, 6214 AC Maastricht, The Netherlands
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Nottingham, Nottingham NG7 2RD, UK
- Correspondence: ; Tel.: +44-0121-4146514
| |
Collapse
|
30
|
Navarro S, Stegner D, Nieswandt B, Heemskerk JWM, Kuijpers MJE. Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. Int J Mol Sci 2021; 23:ijms23010358. [PMID: 35008781 PMCID: PMC8745329 DOI: 10.3390/ijms23010358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022] Open
Abstract
In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6214 KD Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, Professor Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| |
Collapse
|
31
|
Niu F, Liu Z, Liu P, Pan H, Bi J, Li P, Luo G, Chen Y, Zhang X, Dai X. Identification of novel genetic biomarkers and treatment targets for arteriosclerosis-related abdominal aortic aneurysm using bioinformatic tools. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9761-9774. [PMID: 34814367 DOI: 10.3934/mbe.2021478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A large number of epidemiological studies have confirmed that arteriosclerosis (AS) is a risk factor for abdominal aortic aneurysm (AAA). However, the relationship between AS and AAA remains controversial. The objective of this work is to better understand the association between the two diseases by identifying the co-differentially expressed genes under both pathological conditions, so as to identify potential genetic biomarkers and treatment targets for atherosclerosis-related aneurysms. Differentially-expressed genes (DEGs) shared by both AS and AAA patients were identified by bioinformatics analyses of Gene Expression Omnibus (GEO) datasets GSE100927 and GSE7084. These DEGs were then subjected to bioinformatic analyses of protein-protein interaction (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the identified hub genes were further validated by qRT-PCR in AS (n = 4), AAA (n = 4), and healthy (n = 4) individuals. Differential expression analysis revealed a total of 169 and 37 genes that had increased and decreased expression levels, respectively, in both AS and AAA patients compared with healthy controls. The construction of a PPI network and key modules resulted in the identification of five hub genes (SPI1, TYROBP, TLR2, FCER1G, and MMP9) as candidate diagnostic biomarkers and treatment targets for patients with AS-related AAA. AS and AAA are indeed correlated; SPI1, TYROBP, TLR2, FCER1G and MMP9 genes are potential new genetic biomarkers for AS-related AAA.
Collapse
Affiliation(s)
- Fang Niu
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zongwei Liu
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongrui Pan
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jiaxue Bi
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Guangze Luo
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yonghui Chen
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiaoxing Zhang
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiangchen Dai
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Multiparameter Evaluation of the Platelet-Inhibitory Effects of Tyrosine Kinase Inhibitors Used for Cancer Treatment. Int J Mol Sci 2021; 22:ijms222011199. [PMID: 34681859 PMCID: PMC8540269 DOI: 10.3390/ijms222011199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Current antiplatelet drugs for the treatment of arterial thrombosis often coincide with increased bleeding risk. Several tyrosine kinase inhibitors (TKIs) for cancer treatment inhibit platelet function, with minor reported bleeding symptoms. The aim of this study was to compare the antiplatelet properties of eight TKIs to explore their possible repurposing as antiplatelet drugs. Samples of whole blood, platelet-rich plasma (PRP), or isolated platelets from healthy donors were treated with TKI or the vehicle. Measurements of platelet aggregation, activation, intracellular calcium mobilization, and whole-blood thrombus formation under flow were performed. Dasatinib and sunitinib dose-dependently reduced collagen-induced aggregation in PRP and washed platelets; pazopanib, cabozantinib, and vatalanib inhibited this response in washed platelets only; and fostamatinib, axitinib, and lapatinib showed no/limited effects. Fostamatinib reduced thrombus formation by approximately 50% on collagen and other substrates. Pazopanib, sunitinib, dasatinib, axitinib, and vatalanib mildly reduced thrombus formation on collagen by 10–50%. Intracellular calcium responses in isolated platelets were inhibited by dasatinib (>90%), fostamatinib (57%), sunitinib (77%), and pazopanib (82%). Upon glycoprotein-VI receptor stimulation, fostamatinib, cabozantinib, and vatalanib decreased highly activated platelet populations by approximately 15%, while increasing resting populations by 39%. In conclusion, the TKIs with the highest affinities for platelet-expressed molecular targets most strongly inhibited platelet functions. Dasatinib, fostamatinib, sunitinib, and pazopanib interfered in early collagen receptor-induced molecular-signaling compared with cabozantinib and vatalanib. Fostamatinib, sunitinib, pazopanib, and vatalanib may be promising for future evaluation as antiplatelet drugs.
Collapse
|
33
|
Perrella G, Nagy M, Watson SP, Heemskerk JWM. Platelet GPVI (Glycoprotein VI) and Thrombotic Complications in the Venous System. Arterioscler Thromb Vasc Biol 2021; 41:2681-2692. [PMID: 34496636 PMCID: PMC9653110 DOI: 10.1161/atvbaha.121.316108] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The immunoglobulin receptor GPVI (glycoprotein VI) is selectively expressed on megakaryocytes and platelets and is currently recognized as a receptor for not only collagen but also a variety of plasma and vascular proteins, including fibrin, fibrinogen, laminin, fibronectin, and galectin-3. Deficiency of GPVI is protective in mouse models of experimental thrombosis, pulmonary thromboembolism as well as in thromboinflammation, suggesting a role of GPVI in arterial and venous thrombus formation. In humans, platelet GPVI deficiency is associated with a mild bleeding phenotype, whereas a common variant rs1613662 in the GP6 gene is considered a risk factor for venous thromboembolism. However, preclinical studies on the inhibition of GPVI-ligand interactions are focused on arterial thrombotic complications. In this review we discuss the emerging evidence for GPVI in venous thrombus formation and leukocyte-dependent thromboinflammation, extending to venous thromboembolism, pulmonary thromboembolism, and cancer metastasis. We also recapitulate indications for circulating soluble GPVI as a biomarker of thrombosis-related complications. Collectively, we conclude that the current evidence suggests that platelet GPVI is also a suitable cotarget in the prevention of venous thrombosis due to its role in thrombus consolidation and platelet-leukocyte complex formation.
Collapse
Affiliation(s)
- Gina Perrella
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.).,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., S.P.W.)
| | - Magdolna Nagy
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., S.P.W.).,COMPARE, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (S.P.W.)
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.).,Now with Synapse Research Institute, Maastricht, the Netherlands (J.W.M.H.)
| |
Collapse
|
34
|
Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun 2021; 12:3754. [PMID: 34145241 PMCID: PMC8213756 DOI: 10.1038/s41467-021-23909-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.
Collapse
|
35
|
Structural characterization of a novel GPVI-nanobody complex reveals a biologically active domain-swapped GPVI dimer. Blood 2021; 137:3443-3453. [PMID: 33512486 DOI: 10.1182/blood.2020009440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Glycoprotein VI (GPVI) is the major signaling receptor for collagen on platelets. We have raised 54 nanobodies (Nb), grouped into 33 structural classes based on their complementary determining region 3 loops, against recombinant GPVI-Fc (dimeric GPVI) and have characterized their ability to bind recombinant GPVI, resting and activated platelets, and to inhibit platelet activation by collagen. Nbs from 6 different binding classes showed the strongest binding to recombinant GPVI-Fc, suggesting that there was not a single dominant class. The most potent 3, Nb2, 21, and 35, inhibited collagen-induced platelet aggregation with nanomolar half maximal inhibitory concentration (IC50) values and inhibited platelet aggregation under flow. The binding KD of the most potent Nb, Nb2, against recombinant monomeric and dimeric GPVI was 0.6 and 0.7 nM, respectively. The crystal structure of monomeric GPVI in complex with Nb2 revealed a binding epitope adjacent to the collagen-related peptide (CRP) binding groove within the D1 domain. In addition, a novel conformation of GPVI involving a domain swap between the D2 domains was observed. The domain swap is facilitated by the outward extension of the C-C' loop, which forms the domain swap hinge. The functional significance of this conformation was tested by truncating the hinge region so that the domain swap cannot occur. Nb2 was still able to displace collagen and CRP binding to the mutant, but signaling was abolished in a cell-based NFAT reporter assay. This demonstrates that the C-C' loop region is important for GPVI signaling but not ligand binding and suggests the domain-swapped structure may represent an active GPVI conformation.
Collapse
|
36
|
Flow studies on human GPVI-deficient blood under coagulating and noncoagulating conditions. Blood Adv 2021; 4:2953-2961. [PMID: 32603422 DOI: 10.1182/bloodadvances.2020001761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of glycoprotein VI (GPVI) in platelets was investigated in 3 families bearing an insertion within the GP6 gene that introduces a premature stop codon prior to the transmembrane domain, leading to expression of a truncated protein in the cytoplasm devoid of the transmembrane region. Western blotting and flow cytometry of GP6hom (homozygous) platelets confirmed loss of the full protein. The level of the Fc receptor γ-chain, which associates with GPVI in the membrane, was partially reduced, but expression of other receptors and signaling proteins was not altered. Spreading of platelets on collagen and von Willebrand factor (which supports partial spreading) was abolished in GP6hom platelets, and spreading on uncoated glass was reduced. Anticoagulated whole blood flowed over immobilized collagen or a mixture of von Willebrand factor, laminin, and rhodocytin (noncollagen surface) generated stable platelet aggregates that express phosphatidylserine (PS). Both responses were blocked on the 2 surfaces in GP6hom individuals, but adhesion was not altered. Thrombin generation was partially reduced in GP6hom blood. The frequency of the GP6het (heterozygous) variant in a representative sample of the Chilean population (1212 donors) is 2.9%, indicating that there are ∼4000 GP6hom individuals in Chile. These results demonstrate that GPVI supports aggregation and PS exposure under flow on collagen and noncollagen surfaces, but not adhesion. The retention of adhesion may contribute to the mild bleeding diathesis of GP6hom patients and account for why so few of the estimated 4000 GP6hom individuals in Chile have been identified.
Collapse
|
37
|
Herfs L, Swieringa F, Jooss N, Kozlowski M, Heubel-Moenen FCJ, van Oerle R, Machiels P, Henskens Y, Heemskerk JWM. Multiparameter microfluidics assay of thrombus formation reveals increased sensitivity to contraction and antiplatelet agents at physiological temperature. Thromb Res 2021; 203:46-56. [PMID: 33934017 DOI: 10.1016/j.thromres.2021.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Current developments to assess qualitative and quantitative platelet traits in flowed whole-blood are based on microfluidic devices that mostly operate at room temperature. However, operation at physiological temperature (37 °C) may increase the assay's sensitivity, and facilitates the comparison to other platelet function tests of the diagnostic laboratory. MATERIALS AND METHODS We adapted the conventional microspot-based microfluidic device with a simple thermo-coupled pre-heating module. Automated analysis of microscopic images assisted in obtaining five time-dependent parameters of thrombus formation over collagen microspots (shear rate 1000 s-1). These modifications allowed rapid testing of control and patient blood samples at physiological temperature. RESULTS AND CONCLUSION The higher temperature enhanced platelet adhesion and aggregation as well as late thrombus characteristics such as size and contraction, when compared to room temperature. Moreover, assessment at 37 °C indicated a time-dependent impairment of the thrombus parameters in blood from patients taking common antiplatelet medication, i.e. aspirin and/or clopidogrel. This pointed to increased contribution of the autocrine platelet agonists thromboxane A2 and ADP in the buildup of contracted thrombi under flow. Overall, this study underlined the advantage of multiparameter assessment of microfluidic thrombus formation in detecting an acquired platelet dysfunction, when operating at physiological temperature. This work may bring microfluidics tests closer to the diagnostic laboratory.
Collapse
Affiliation(s)
- Linda Herfs
- FlowChamber B.V., Oxfordlaan 70, Maastricht, the Netherlands
| | - Frauke Swieringa
- Dept. of Biochemistry, CARIM, P.O. Box 616, 6200 MD, Maastricht University, Maastricht, the Netherlands
| | - Natalie Jooss
- Dept. of Biochemistry, CARIM, P.O. Box 616, 6200 MD, Maastricht University, Maastricht, the Netherlands; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Mike Kozlowski
- YourRhythmics B.V., Oxfordlaan 70, Maastricht, the Netherlands
| | - Floor C J Heubel-Moenen
- Dept. of Hematology/Internal Medicine, Maastricht University Medical Centre(+), P. Debyelaan 25, Maastricht, the Netherlands
| | - René van Oerle
- Dept. of Biochemistry, CARIM, P.O. Box 616, 6200 MD, Maastricht University, Maastricht, the Netherlands; Central Diagnostic Laboratory, Maastricht University Medical Centre(+), P. Debyelaan 25, Maastricht, the Netherlands
| | - Patric Machiels
- FlowChamber B.V., Oxfordlaan 70, Maastricht, the Netherlands
| | - Yvonne Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre(+), P. Debyelaan 25, Maastricht, the Netherlands
| | - Johan W M Heemskerk
- FlowChamber B.V., Oxfordlaan 70, Maastricht, the Netherlands; Dept. of Biochemistry, CARIM, P.O. Box 616, 6200 MD, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
38
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
39
|
Jurk K, Shiravand Y. Platelet Phenotyping and Function Testing in Thrombocytopenia. J Clin Med 2021; 10:jcm10051114. [PMID: 33800006 PMCID: PMC7962106 DOI: 10.3390/jcm10051114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
Patients who suffer from inherited or acquired thrombocytopenia can be also affected by platelet function defects, which potentially increase the risk of severe and life-threatening bleeding complications. A plethora of tests and assays for platelet phenotyping and function analysis are available, which are, in part, feasible in clinical practice due to adequate point-of-care qualities. However, most of them are time-consuming, require experienced and skilled personnel for platelet handling and processing, and are therefore well-established only in specialized laboratories. This review summarizes major indications, methods/assays for platelet phenotyping, and in vitro function testing in blood samples with reduced platelet count in relation to their clinical practicability. In addition, the diagnostic significance, difficulties, and challenges of selected tests to evaluate the hemostatic capacity and specific defects of platelets with reduced number are addressed.
Collapse
Affiliation(s)
- Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-178278
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
40
|
van den Kerkhof DL, Nagy M, Wichapong K, Brouns SL, Heemskerk JWM, Hackeng TM, Dijkgraaf I. Inhibition of platelet adhesion, thrombus formation, and fibrin formation by a potent αIIbβ3 integrin inhibitor from ticks. Res Pract Thromb Haemost 2021; 5:231-242. [PMID: 33537548 PMCID: PMC7845065 DOI: 10.1002/rth2.12466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ticks puncture the skin of their hosts and secrete saliva, containing antiplatelet proteins, into the blood. Here, we studied disagregin, a potent platelet-inhibiting protein derived from the salivary glands of Ornithodoros moubata, an African soft tick. Whereas conventional αIIbβ3 antagonists contain an Arg-Gly-Asp (RGD) sequence for platelet integrin binding, disagregin contains an Arg-Glu-Asp (RED) sequence, hypothesizing a different mode of inhibitory action. OBJECTIVES We aimed to compare the inhibitory effects of disagregin and its RGD variant (RGD-disagregin) on platelet activation and to unravel the molecular basis of disagregin-αIIbβ3 integrin interactions. METHODS Disagregin and RGD-disagregin were synthesized by tert-butyloxycarbonyl -based solid-phase peptide synthesis. Effects of both disagregins on platelet aggregation were assessed by light transmission aggregometry in human platelet-rich plasma. Whole-blood thrombus formation was investigated by perfusing blood over collagen I with and without tissue factor at a high wall-shear rate (1000 s-1) in the presence of disagregin, RGD-disagregin, or eptifibatide. RESULTS Disagregin showed inhibition of collagen- and ADP-induced platelet aggregation with half maximal inhibitory concentration values of 64 and 99 nM, respectively. This resembled the complete antiaggregatory effect of eptifibatide. Multiparameter assessment of thrombus formation showed highly suppressed platelet adhesion and aggregate formation with both disagregins, in contrast to eptifibatide treatment, which incompletely blocked aggregation under flow. Fibrin formation under flow was delayed by both disagregin and RGD-disagregin (P < .01) and eptifibatide (P < .05). CONCLUSIONS Both αIIbβ3-blocking disagregins have a strong potential to suppress collagen-tissue factor-mediated platelet adhesion, thrombus formation, and fibrin formation. Both disagregins can be seen as potential new αIIbβ3 inhibitors.
Collapse
Affiliation(s)
- Danique L. van den Kerkhof
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Magdolna Nagy
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Kanin Wichapong
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Sanne L.N. Brouns
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W. M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Tilman M. Hackeng
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Ingrid Dijkgraaf
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
41
|
van Geffen JP, Swieringa F, van Kuijk K, Tullemans BME, Solari FA, Peng B, Clemetson KJ, Farndale RW, Dubois LJ, Sickmann A, Zahedi RP, Ahrends R, Biessen EAL, Sluimer JC, Heemskerk JWM, Kuijpers MJE. Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Sci Rep 2020; 10:21407. [PMID: 33293576 PMCID: PMC7722935 DOI: 10.1038/s41598-020-78522-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Hyperlipidemia is a well-established risk factor for cardiovascular diseases. Millions of people worldwide display mildly elevated levels of plasma lipids and cholesterol linked to diet and life-style. While the prothrombotic risk of severe hyperlipidemia has been established, the effects of moderate hyperlipidemia are less clear. Here, we studied platelet activation and arterial thrombus formation in Apoe-/- and Ldlr-/- mice fed a normal chow diet, resulting in mildly increased plasma cholesterol. In blood from both knockout mice, collagen-dependent thrombus and fibrin formation under flow were enhanced. These effects did not increase in severe hyperlipidemic blood from aged mice and upon feeding a high-fat diet (Apoe-/- mice). Bone marrow from wild-type or Ldlr-/- mice was transplanted into irradiated Ldlr-/- recipients. Markedly, thrombus formation was enhanced in blood from chimeric mice, suggesting that the hyperlipidemic environment altered the wild-type platelets, rather than the genetic modification. The platelet proteome revealed high similarity between the three genotypes, without clear indication for a common protein-based gain-of-function. The platelet lipidome revealed an altered lipid profile in mildly hyperlipidemic mice. In conclusion, in Apoe-/- and Ldlr-/- mice, modest elevation in plasma and platelet cholesterol increased platelet responsiveness in thrombus formation and ensuing fibrin formation, resulting in a prothrombotic phenotype.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.,Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kim van Kuijk
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Bibian M E Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Bing Peng
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - René P Zahedi
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Segal Cancer Proteomics Centre, Jewish General Hospital, McGill University, Montreal, Canada
| | - Robert Ahrends
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Erik A L Biessen
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C Sluimer
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
42
|
Perrella G, Huang J, Provenzale I, Swieringa F, Heubel-Moenen FCJI, Farndale RW, Roest M, van der Meijden PEJ, Thomas M, Ariëns RAS, Jandrot-Perrus M, Watson SP, Heemskerk JWM. Nonredundant Roles of Platelet Glycoprotein VI and Integrin αIIbβ3 in Fibrin-Mediated Microthrombus Formation. Arterioscler Thromb Vasc Biol 2020; 41:e97-e111. [PMID: 33267658 DOI: 10.1161/atvbaha.120.314641] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fibrin is considered to strengthen thrombus formation via integrin αIIbβ3, but recent findings indicate that fibrin can also act as ligand for platelet glycoprotein VI. Approach and Results: To investigate the thrombus-forming potential of fibrin and the roles of platelet receptors herein, we generated a range of immobilized fibrin surfaces, some of which were cross-linked with factor XIIIa and contained VWF-BP (von Willebrand factor-binding peptide). Multicolor microfluidics assays with whole-blood flowed at high shear rate (1000 s-1) indicated that the fibrin surfaces, regardless of the presence of factor XIIIa or VWF-BP, supported platelet adhesion and activation (P-selectin expression), but only microthrombi were formed consisting of bilayers of platelets. Fibrinogen surfaces produced similar microthrombi. Markedly, tiggering of coagulation with tissue factor or blocking of thrombin no more than moderately affected the fibrin-induced microthrombus formation. Absence of αIIbβ3 in Glanzmann thrombasthenia annulled platelet adhesion. Blocking of glycoprotein VI with Fab 9O12 substantially, but incompletely reduced platelet secretion, Ca2+ signaling and aggregation, while inhibition of Syk further reduced these responses. In platelet suspension, glycoprotein VI blockage or Syk inhibition prevented fibrin-induced platelet aggregation. Microthrombi on fibrin surfaces triggered only minimal thrombin generation, in spite of thrombin binding to the fibrin fibers. CONCLUSIONS Together, these results indicate that fibrin fibers, regardless of their way of formation, act as a consolidating surface in microthrombus formation via nonredundant roles of platelet glycoprotein VI and integrin αIIbβ3 through signaling via Syk and low-level Ca2+ rises.
Collapse
Affiliation(s)
- Gina Perrella
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., M.T., S.P.W.)
| | - Jingnan Huang
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
- ISAS Institute, Dortmund, DE (J.H.)
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
| | - Frauke Swieringa
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
| | | | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, United Kingdom (R.W.F.)
| | - Mark Roest
- Synapse Research Institute, Maastricht, the Netherlands (M.R.)
| | - Paola E J van der Meijden
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
| | - Mark Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., M.T., S.P.W.)
| | - Robert A S Ariëns
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (R.A.S.A.)
| | - Martine Jandrot-Perrus
- UMR S1148, Laboratory for Vascular Translational Science, INSERM, University Paris Diderot, France (M.J.-P.)
| | - Steve P Watson
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., M.T., S.P.W.)
- COMPARE, The Universities of Birmingham and Nottingham, the Midlands, United Kingdom (S.P.W.)
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, the Netherlands (G.P., J.H., I.P., F.S., P.E.J.v.d.M., R.A.S.A., S.P.W., J.W.M.H.)
| |
Collapse
|
43
|
Brouns SLN, van Geffen JP, Campello E, Swieringa F, Spiezia L, van Oerle R, Provenzale I, Verdoold R, Farndale RW, Clemetson KJ, Spronk HMH, van der Meijden PEJ, Cavill R, Kuijpers MJE, Castoldi E, Simioni P, Heemskerk JWM. Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation. Sci Rep 2020; 10:11910. [PMID: 32680988 PMCID: PMC7368055 DOI: 10.1038/s41598-020-68438-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
In haemostasis and thrombosis, platelet, coagulation and anticoagulation pathways act together to produce fibrin-containing thrombi. We developed a microspot-based technique, in which we assessed platelet adhesion, platelet activation, thrombus structure and fibrin clot formation in real time using flowing whole blood. Microspots were made from distinct platelet-adhesive surfaces in the absence or presence of tissue factor, thrombomodulin or activated protein C. Kinetics of platelet activation, thrombus structure and fibrin formation were assessed by fluorescence microscopy. This work revealed: (1) a priming role of platelet adhesion in thrombus contraction and subsequent fibrin formation; (2) a surface-independent role of tissue factor, independent of the shear rate; (3) a mechanism of tissue factor-enhanced activation of the intrinsic coagulation pathway; (4) a local, suppressive role of the anticoagulant thrombomodulin/protein C pathway under flow. Multiparameter analysis using blood samples from patients with (anti)coagulation disorders indicated characteristic defects in thrombus formation, in cases of factor V, XI or XII deficiency; and in contrast, thrombogenic effects in patients with factor V-Leiden. Taken together, this integrative phenotyping approach of platelet–fibrin thrombus formation has revealed interaction mechanisms of platelet-primed key haemostatic pathways with alterations in patients with (anti)coagulation defects. It can help as an important functional add-on whole-blood phenotyping.
Collapse
Affiliation(s)
- Sanne L N Brouns
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Johanna P van Geffen
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Elena Campello
- Department of Medicine, University of Padua Medical School, Padua, Italy
| | - Frauke Swieringa
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.,Department of Protein Dynamics, Leibniz Institute for Analytical Sciences, ISAS, Dortmund, Germany
| | - Luca Spiezia
- Department of Medicine, University of Padua Medical School, Padua, Italy
| | - René van Oerle
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Isabella Provenzale
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Remco Verdoold
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | - Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Berne, Berne, Switzerland
| | - Henri M H Spronk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Paola E J van der Meijden
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Elisabetta Castoldi
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, University of Padua Medical School, Padua, Italy.
| | - Johan W M Heemskerk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
44
|
Impaired iloprost-induced platelet inhibition and phosphoproteome changes in patients with confirmed pseudohypoparathyroidism type Ia, linked to genetic mutations in GNAS. Sci Rep 2020; 10:11389. [PMID: 32647264 PMCID: PMC7347634 DOI: 10.1038/s41598-020-68379-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Patients diagnosed with pseudohypoparathyroidism type Ia (PHP Ia) suffer from hormonal resistance and abnormal postural features, in a condition classified as Albright hereditary osteodystrophy (AHO) syndrome. This syndrome is linked to a maternally inherited mutation in the GNAS complex locus, encoding for the GTPase subunit Gsα. Here, we investigated how platelet phenotype and omics analysis can assist in the often difficult diagnosis. By coupling to the IP receptor, Gsα induces platelet inhibition via adenylyl cyclase and cAMP-dependent protein kinase A (PKA). In platelets from seven patients with suspected AHO, one of the largest cohorts examined, we studied the PKA-induced phenotypic changes. Five patients with a confirmed GNAS mutation, displayed impairments in Gsα-dependent VASP phosphorylation, aggregation, and microfluidic thrombus formation. Analysis of the platelet phosphoproteome revealed 2,516 phosphorylation sites, of which 453 were regulated by Gsα-PKA. Common changes in the patients were: (1) a joint panel of upregulated and downregulated phosphopeptides; (2) overall PKA dependency of the upregulated phosphopeptides; (3) links to key platelet function pathways. In one patient with GNAS mutation, diagnosed as non-AHO, the changes in platelet phosphoproteome were reversed. This combined approach thus revealed multiple phenotypic and molecular biomarkers to assist in the diagnosis of suspected PHP Ia.
Collapse
|
45
|
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105:2004-2019. [PMID: 32527953 PMCID: PMC7395261 DOI: 10.3324/haematol.2019.233197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last 100 years the role of platelets in hemostatic events and their production by megakaryocytes have gradually been defined. Progressively, thrombocytopenia was recognized as a cause of bleeding, first through an acquired immune disorder; then, since 1948, when Bernard-Soulier syndrome was first described, inherited thrombocytopenia became a fascinating example of Mendelian disease. The platelet count is often severely decreased and platelet size variable; associated platelet function defects frequently aggravate bleeding. Macrothrombocytopenia with variable proportions of enlarged platelets is common. The number of circulating platelets will depend on platelet production, consumption and lifespan. The bulk of macrothrombocytopenias arise from defects in megakaryopoiesis with causal variants in transcription factor genes giving rise to altered stem cell differentiation and changes in early megakaryocyte development and maturation. Genes encoding surface receptors, cytoskeletal and signaling proteins also feature prominently and Sanger sequencing associated with careful phenotyping has allowed their early classification. It quickly became apparent that many inherited thrombocytopenias are syndromic while others are linked to an increased risk of hematologic malignancies. In the last decade, the application of next-generation sequencing, including whole exome sequencing, and the use of gene platforms for rapid testing have greatly accelerated the discovery of causal genes and extended the list of variants in more common disorders. Genes linked to an increased platelet turnover and apoptosis have also been identified. The current challenges are now to use next-generation sequencing in first-step screening and to define bleeding risk and treatment better.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France
| | | |
Collapse
|
46
|
Primary Hemostasis in Chronic Liver Disease and Cirrhosis: What Did We Learn over the Past Decade? Int J Mol Sci 2020; 21:ijms21093294. [PMID: 32384725 PMCID: PMC7247544 DOI: 10.3390/ijms21093294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
Changes in primary hemostasis have been described in patients with chronic liver disease (CLD) and cirrhosis and are still subject to ongoing debate. Thrombocytopenia is common and multifactorial. Numerous studies also reported platelet dysfunction. In spite of these changes, primary hemostasis seems to be balanced. Patients with CLD and cirrhosis can suffer from both hemorrhagic and thrombotic complications. Variceal bleeding is the major hemorrhagic complication and is mainly determined by high portal pressure. Non portal hypertension-related bleeding due to hemostatic failure is uncommon. Thrombocytopenia can complicate management of invasive procedures in CLD patients. Recently, oral thrombopoietin agonists have been approved to raise platelets before invasive procedures. In this review we aim to bundle literature, published over the past decade, discussing primary hemostasis in CLD and cirrhosis including (1) platelet count and the role of thrombopoietin (TPO) agonists, (2) platelet function tests and markers of platelet activation, (3) von Willebrand factor and (4) global hemostasis tests.
Collapse
|
47
|
Brouns SL, Provenzale I, van Geffen JP, van der Meijden PE, Heemskerk JW. Localized endothelial-based control of platelet aggregation and coagulation under flow: A proof-of-principle vessel-on-a-chip study. J Thromb Haemost 2020; 18:931-941. [PMID: 31863548 PMCID: PMC7187151 DOI: 10.1111/jth.14719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the intact vessel wall, endothelial cells form a barrier between the blood and the remaining vascular structures, serving to maintain blood fluidity and preventing platelet activation and fibrin clot formation. The spatiotemporal space of this inhibition is largely unknown. OBJECTIVE To assess the local inhibitory roles of a discontinuous endothelium, we developed a vessel-on-a-chip model, consisting of a microfluidic chamber coated with the thrombogenic collagen and tissue factor (TF), and covered with patches of human endothelial cells. By flow perfusion of human blood and plasma, the heterogeneous formation of platelet aggregates and fibrin clots was monitored by multicolor fluorescence microscopy. RESULTS On collagen/TF coatings, a coverage of 40% to 60% of human umbilical vein endothelial cells resulted in a strong overall delay in platelet deposition and fibrin fiber formation under flow. Fibrin formation colocalized with the deposited platelets, and was restricted to regions in between endothelial cells, thus pointing to immediate local suppression of the clotting process. Fibrin kinetics were enhanced by treatment of the cells with heparinase III, partially disrupting the glycocalyx, and to a lesser degree by antagonism of the endothelial thrombomodulin. Co-coating of purified thrombomodulin and collagen had a similar coagulation-suppressing effect as endothelial thrombomodulin. CONCLUSIONS In this vessel-on-a-chip system with patches of endothelial cells on thrombogenic surfaces, the coagulant activity under flow is regulated by: (a) the residual exposure of trigger (collagen/TF), (b) the endothelial glycocalyx, and (c) to a lesser degree the endothelial thrombomodulin.
Collapse
Affiliation(s)
- Sanne L.N. Brouns
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Isabella Provenzale
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johanna P. van Geffen
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
48
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
49
|
Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 2020; 11:78. [PMID: 32082328 PMCID: PMC7005007 DOI: 10.3389/fimmu.2020.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 μm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.
Collapse
Affiliation(s)
- Samantha J. Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Woei M. Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
50
|
Sternkopf M, Nagy M, Baaten CCFMJ, Kuijpers MJE, Tullemans BME, Wirth J, Theelen W, Mastenbroek TG, Lehrke M, Winnerling B, Baerts L, Marx N, De Meester I, Döring Y, Cosemans JMEM, Daiber A, Steven S, Jankowski J, Heemskerk JWM, Noels H. Native, Intact Glucagon-Like Peptide 1 Is a Natural Suppressor of Thrombus Growth Under Physiological Flow Conditions. Arterioscler Thromb Vasc Biol 2020; 40:e65-e77. [PMID: 31893947 DOI: 10.1161/atvbaha.119.313645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In patients with diabetes mellitus, increased platelet reactivity predicts cardiac events. Limited evidence suggests that DPP-4 (dipeptidyl peptidase 4) influences platelets via GLP-1 (glucagon-like peptide 1)-dependent effects. Because DPP-4 inhibitors are frequently used in diabetes mellitus to improve the GLP-1-regulated glucose metabolism, we characterized the role of DPP-4 inhibition and of native intact versus DPP-4-cleaved GLP-1 on flow-dependent thrombus formation in mouse and human blood. Approach and Results: An ex vivo whole blood microfluidics model was applied to approach in vivo thrombosis and study collagen-dependent platelet adhesion, activation, and thrombus formation under shear-flow conditions by multiparameter analyses. In mice, in vivo inhibition or genetic deficiency of DPP-4 (Dpp4-/-), but not of GLP-1-receptors (Glp1r-/-), suppressed flow-dependent platelet aggregation. In human blood, GLP-1(7-36), but not DPP-4-cleaved GLP-1(9-36), reduced thrombus volume by 32% and impaired whole blood thrombus formation at both low/venous and high/arterial wall-shear rates. These effects were enforced upon ADP costimulation and occurred independently of plasma factors and leukocytes. Human platelets did not contain detectable levels of GLP-1-receptor transcripts. Also, GLP-1(7-36) did not inhibit collagen-induced aggregation under conditions of stirring or stasis of platelets, pointing to a marked flow-dependent role. CONCLUSIONS Native, intact GLP-1 is a natural suppressor of thrombus growth under physiological flow conditions, with DPP-4 inhibition and increased intact GLP-1 suppressing platelet aggregation under flow without a main relevance of GLP-1-receptor on platelets.
Collapse
Affiliation(s)
- Marieke Sternkopf
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Magdolna Nagy
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Constance C F M J Baaten
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Marijke J E Kuijpers
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Bibian M E Tullemans
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Julia Wirth
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Wendy Theelen
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Tom G Mastenbroek
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Michael Lehrke
- Medical Clinic I (M.L., N.M.), University Clinic Aachen, Germany
| | - Benjamin Winnerling
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Belgium (L.B., I.D.M.)
| | - Nikolaus Marx
- Medical Clinic I (M.L., N.M.), University Clinic Aachen, Germany
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Belgium (L.B., I.D.M.)
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (Y.D.).,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (Y.D.).,Division of Angiology, Swiss Cardiovascular Centre, Inselspital, Bern University Hospital, University of Bern, Switzerland (Y.D.)
| | - Judith M E M Cosemans
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Andreas Daiber
- Center for Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (A.D., S.S.)
| | - Sebastian Steven
- Center for Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (A.D., S.S.)
| | - Joachim Jankowski
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany.,Experimental Vascular Pathology (J.J.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Heidi Noels
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| |
Collapse
|