1
|
Ayoub M, Susin SA, Bauvois B. Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link? Cancers (Basel) 2024; 17:72. [PMID: 39796700 PMCID: PMC11719013 DOI: 10.3390/cancers17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed. Inhibition of the angiogenesis involved in the progression of CLL might be a relevant therapeutic strategy. The literature data indicate that vascular endothelial growth factor, angiopoietin-2, and matrix metalloproteinase-9 are pro-angiogenic factors in CLL. A number of other CLL factors might have pro-angiogenic activity: fibroblast growth factor-2, certain chemokines (such as CXCL-12 and CXCL-2), tumor necrosis factor-α, insulin-like growth factor-1, neutrophil gelatinase-associated lipocalin, and progranulin. All these molecules contribute to the survival, proliferation, and migration of CLL cells. Here, we review the literature on these factors' respective expression profiles and roles in CLL. We also summarize the main results of preclinical and clinical trials of novel agents targeting most of these molecules in a CLL setting. Through the eradication of leukemic cells and the inhibition of angiogenesis, these therapeutic approaches might alter the course of CLL.
Collapse
Affiliation(s)
| | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (M.A.); (S.A.S.)
| |
Collapse
|
2
|
Fallah A, Imani Fooladi AA, Havaei SA, Mahboobi M, Sedighian H. Recent advances in aptamer discovery, modification and improving performance. Biochem Biophys Rep 2024; 40:101852. [PMID: 39525567 PMCID: PMC11546948 DOI: 10.1016/j.bbrep.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aptamers are nucleic acid (Ribonucleic acid (RNA) and single strand deoxyribonucleic acid (ssDNA)) with a length of approximately 25-80 bases that can bind to particular target molecules, similar to monoclonal antibodies. Due to their many benefits, which include a long shelf life, minimal batch-to-batch variations, extremely low immunogenicity, the possibility of chemical modifications for improved stability, an extended serum half-life, and targeted delivery, they are receiving a lot of attention in a variety of clinical applications. The development of high-affinity modification approaches has attracted significant attention in aptamer applications. Stable three-dimensional aptamers that have undergone chemical modification can engage firmly with target proteins through improved non-covalent binding, potentially leading to hundreds of affinity improvements. This review demonstrates how cutting-edge methodologies for aptamer discovery are being developed to consistently and effectively construct high-performing aptamers that need less money and resources yet have a high chance of success. Also, High-affinity aptamer modification techniques were discussed.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Mahboobi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Martino EA, Bruzzese A, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Pozzi S, Neri A, Morabito F, Vigna E, Gentile M. Investigational CXCR4 inhibitors in early phase development for the treatment of hematological malignancies. Expert Opin Investig Drugs 2024; 33:915-924. [PMID: 39096094 DOI: 10.1080/13543784.2024.2388567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION CXCR4/CXCL12 axis regulates cell proliferation, survival, and differentiation, as well as the homing and mobilization of hematopoietic stem cells (HSCs) from bone marrow niches to the peripheral blood. Furthermore, CXCR4 and CXCL12 are key mediators of cross-talk between hematological malignancies and their microenvironments. CXCR4 overexpression drives disease progression, boosts tumor cell survival, and promotes chemoresistance, leading to poor prognosis. AREAS COVERED In light of these discoveries, scientific investigations, and clinical trials have underscored the therapeutic promise found in small-molecule antagonists like plerixafor, peptides/peptidomimetics, such as BKT140, monoclonal antibodies like PF-06747143 and ulocuplumab, as well as microRNAs. Their efficacy is evident in reducing tumor burden, inducing apoptosis and sensitizing malignant cells to conventional chemotherapies. This overview delves into the pathogenic role of the CXC4/CXCL12 axis in hematological neoplasms and examines the clinical application of key CXCR4 antagonists. EXPERT OPINION The information collectively emphasizes the potential of CXCR4 antagonists as a therapeutic strategy for hematologic malignancies, showcasing advancements in preclinical and clinical studies. As these therapeutic strategies progress through clinical trials, their potential to reshape the prognosis of hematologic malignancies will become increasingly apparent.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Stefano Pozzi
- Ematologia Azienda USL-IRCSS Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, EmiliaRomagna, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
6
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
7
|
Xue H, Chen Q, Lan X, Xu H, Yang H, Lin C, Xue Q, Xie B. Preventing CXCL12 elevation helps to reduce acute exacerbation of COPD in individuals co-existing type-2 diabetes: A bioinformatics and clinical pharmacology study. Int Immunopharmacol 2024; 132:111894. [PMID: 38569426 DOI: 10.1016/j.intimp.2024.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
AIMS To investigate the immunology shared mechanisms underlying chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) and examine the impact of anti-diabetic drugs on acute exacerbation of COPD (AECOPD). METHODS We analyzed GSE76925, GSE76894, GSE37768, and GSE25724 to identify differentially expressed genes. Hub-genes were identified through protein-protein interaction network analysis and evaluated by the receiver operating characteristic curve. CXCL12 emerged as a robust biomarker, and its correlation with lung function and CD8+ T cells were further quantified and validated. The activated signaling pathways were inferred through Gene set enrichment analysis (GSEA). The retrospective clinical analysis was executed to identify the influence of dipeptidyl peptidase-4 inhibitors (DPP-4i) on CXCL12 and evaluate the drug's efficacy in AECOPD. RESULTS The significant up-regulation of CXCL12 expression in patients with two diseases were revealed. CXCL12 exhibited a negative correlation with pulmonary function (r = -0.551, p < 0.05). Consistent with analysis in GSE76925 and GSE76894, the positive correlation between the proportion of CD8+ T cells was demonstrated(r=0.469, p<0.05). GSEA identified "cytokines interaction" as an activated signaling pathway, and the clinical study revealed the correlation between CXCL12 and IL-6 (r=0.668, p<0.05). In patients with COPD and T2DM, DDP-4i treatment exhibited significantly higher serum CXCL12, compared to GLP-1RA. Analysis of 187 COPD patients with T2DM indicated that the DPP-4i group had a higher frequency of AECOPD compared to the GLP-1RA group (OR 1.287, 95%CI [1.018-2.136]). CONCLUSIONS CXCL12 may represent a therapeutic target for COPD and T2DM. GLP-1RA treatment may be associated with lower CXCL12 levels and a lower risk of AECOPD compared to DPP-4i treatment. CLINICAL TRIAL REGISTRATION China Clinical Trial Registration Center(ChiCTR2200055611).
Collapse
Affiliation(s)
- Hong Xue
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Qianshun Chen
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Xiuyan Lan
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Hang Xu
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Haitao Yang
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Changjian Lin
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Qing Xue
- The Third Clinical Medical College, Fujian Medical University, Ningde Municipal Hospital, Ningde 352100, Fujian, China; Ningde Municipal Hospital of Ningde Normal University, Ningde 352100, Fujian, China.
| | - Baosong Xie
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China.
| |
Collapse
|
8
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
9
|
Song N, Cui K, Zeng L, Li M, Fan Y, Shi P, Wang Z, Su W, Wang H. Advance in the role of chemokines/chemokine receptors in carcinogenesis: Focus on pancreatic cancer. Eur J Pharmacol 2024; 967:176357. [PMID: 38309677 DOI: 10.1016/j.ejphar.2024.176357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Mengxiao Li
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
10
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
11
|
Bao S, Darvishi M, H Amin A, Al-Haideri MT, Patra I, Kashikova K, Ahmad I, Alsaikhan F, Al-Qaim ZH, Al-Gazally ME, Kiasari BA, Tavakoli-Far B, Sidikov AA, Mustafa YF, Akhavan-Sigari R. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J Cancer Res Clin Oncol 2023; 149:7945-7968. [PMID: 36905421 DOI: 10.1007/s00432-022-04444-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 03/12/2023]
Abstract
CXC chemokine receptor type 4 (CXCR4) is a member of the G protein-coupled receptors (GPCRs) superfamily and is specific for CXC chemokine ligand 12 (CXCL12, also known as SDF-1), which makes CXCL12/CXCR4 axis. CXCR4 interacts with its ligand, triggering downstream signaling pathways that influence cell proliferation chemotaxis, migration, and gene expression. The interaction also regulates physiological processes, including hematopoiesis, organogenesis, and tissue repair. Multiple evidence revealed that CXCL12/CXCR4 axis is implicated in several pathways involved in carcinogenesis and plays a key role in tumor growth, survival, angiogenesis, metastasis, and therapeutic resistance. Several CXCR4-targeting compounds have been discovered and used for preclinical and clinical cancer therapy, most of which have shown promising anti-tumor activity. In this review, we summarized the physiological signaling of the CXCL12/CXCR4 axis and described the role of this axis in tumor progression, and focused on the potential therapeutic options and strategies to block CXCR4.
Collapse
Affiliation(s)
- Shunshun Bao
- The First Clinical Medical College, Xuzhou Medical University, 221000, Xuzhou, China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Maysoon T Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Indrajit Patra
- An Independent Researcher, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Akmal A Sidikov
- Rector, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
12
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Choi SI, Lee YS, Lee YM, Kim HJ, Kim WJ, Jung S, Im JE, Lee MR, Kim JK, Jeon AR, Woo SM, Oh GT, Heo K, Kim YH, Kim IH. Complexation of drug and hapten-conjugated aptamer with universal hapten antibody for pancreatic cancer treatment. J Control Release 2023; 360:940-952. [PMID: 37001565 DOI: 10.1016/j.jconrel.2023.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Owing to a lack of reliable markers and therapeutic targets, pancreatic ductal adenocarcinoma (PDAC) remains the most lethal malignant tumor despite numerous therapeutic advances. In this study, we utilized cell-SELEX to isolate a DNA aptamer recognizing the natural conformation of the target on the cell surface. PAp7T8, an aptamer optimized by size and chemical modification, exhibited specific targeting to pancreatic cancer cells and orthotopic xenograft pancreatic tumors. To confer therapeutic functions to the aptamer, we adopted a drug-conjugated oligobody (DOligobody) strategy. Monomethyl auristatin E was used as a cytotoxic drug, digoxigenin acted as a hapten, and the humanized anti-digoxigenin antibody served as a universal carrier of the aptamer. The resulting PAp7T8-DOligobody showed extended in vivo half-life and markedly inhibited tumor growth in an orthotopic pancreatic cancer xenograft model without causing significant toxicity. Therefore, PAp7T8-DOligobody represents a promising novel therapeutic delivery platform for PDAC.
Collapse
Affiliation(s)
- Sun Il Choi
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu-Sun Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yul Min Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; JP Bio A Co., Seongnam 13606, Republic of Korea
| | - Hyun Jung Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ji Eun Im
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Mi Rim Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Joon Ki Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - A-Ra Jeon
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sang Myung Woo
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea; Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyun Heo
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea.
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea.
| | - In-Hoo Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
14
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023; 20:739-776. [PMID: 37198402 PMCID: PMC10189238 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
15
|
Carrión-Marchante R, Pinto-Díez C, Klett-Mingo JI, Palacios E, Barragán-Usero M, Pérez-Morgado MI, Pascual-Mellado M, Alcalá S, Ruiz-Cañas L, Sainz B, González VM, Martín ME. An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2023; 15:1273. [PMID: 37111758 PMCID: PMC10146192 DOI: 10.3390/pharmaceutics15041273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rebeca Carrión-Marchante
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - José Ignacio Klett-Mingo
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Esther Palacios
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M. Isabel Pérez-Morgado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Manuel Pascual-Mellado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sonia Alcalá
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer—CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Víctor M. González
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M. Elena Martín
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
16
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
17
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023; 11:1609-1627. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aptamers, a class of oligonucleotides that can bind with molecular targets with high affinity and specificity, have been widely applied in research fields including biosensing, imaging, diagnosing, and therapy of diseases. However, compared with the rapid development in the research fields, the clinical application of aptamers is progressing at a much slower speed, especially in the therapy of cancer. Obstructions including nuclease degradation, renal clearance, a complex selection process, and potential side effects have inhibited the clinical transformation of aptamer-conjugated drugs. To overcome these problems, taking certain measures to improve the biocompatibility and stability of aptamer-conjugated drugs in vivo is necessary. In this review, the obstructions mentioned above are thoroughly discussed and the methods to overcome these problems are introduced in detail. Furthermore, landmark research works and the most recent studies on aptamer-conjugated drugs for cancer therapy are also listed as examples, and the future directions of research for aptamer clinical transformation are discussed.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Nanjing 210009, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. .,Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
19
|
Liao Y, Xiong S, Ur Rehman Z, He X, Peng H, Liu J, Sun S. The Research Advances of Aptamers in Hematologic Malignancies. Cancers (Basel) 2023; 15:300. [PMID: 36612296 PMCID: PMC9818631 DOI: 10.3390/cancers15010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuming Sun
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
20
|
Roberto M, Arrivi G, Di Civita MA, Barchiesi G, Pilozzi E, Marchetti P, Santini D, Mazzuca F, Tomao S. The role of CXCL12 axis in pancreatic cancer: New biomarkers and potential targets. Front Oncol 2023; 13:1154581. [PMID: 37035150 PMCID: PMC10076769 DOI: 10.3389/fonc.2023.1154581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Chemokines are small, secreted peptides involved in the mediation of the immune cell recruitment. Chemokines have been implicated in several diseases including autoimmune diseases, viral infections and also played a critical role in the genesis and development of several malignant tumors. CXCL12 is a homeostatic CXC chemokine involved in the process of proliferation, and tumor spread. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, that is still lacking effective therapies and with a dramatically poor prognosis. Method We conducted a scientific literature search on Pubmed and Google Scholar including retrospective, prospective studies and reviews focused on the current research elucidating the emerging role of CXCL12 and its receptors CXCR4 - CXCR7 in the pathogenesis of pancreatic cancer. Results Considering the mechanism of immunomodulation of the CXCL12-CXCR4-CXCR7 axis, as well as the potential interaction with the microenvironment in the PDAC, several combined therapeutic approaches have been studied and developed, to overcome the "cold" immunological setting of PDAC, like combining CXCL12 axis inhibitors with anti PD-1/PDL1 drugs. Conclusion Understanding the role of this chemokine's axis in disease initiation and progression may provide the basis for developing new potential biomarkers as well as therapeutic targets for related pancreatic cancers.
Collapse
Affiliation(s)
- Michela Roberto
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giulia Arrivi
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Mattia Alberto Di Civita
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mattia Alberto Di Civita,
| | - Giacomo Barchiesi
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Anatomia Patologica Unit, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Scientific Direction, Istituto Dermopatico dell’Immacolata (IDI-IRCCS), Rome, Italy
| | - Daniele Santini
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Scarfò L. Novel therapies and combinations in CLL refractory to BTK inhibitors and venetoclax. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:316-322. [PMID: 36485153 PMCID: PMC9820511 DOI: 10.1182/hematology.2022000344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with chronic lymphocytic leukemia (CLL) refractory to covalent BTK and BCL2 inhibitors have a new unmet clinical need. Standard treatment options are able to obtain only limited and short-lasting disease control associated with reduced overall survival, and thus these patients have become ideal candidates for enrollment in clinical trials. Favorable results have been obtained with the use of noncovalent BTK inhibitors (roughly 70% overall response rate regardless of the actual resistance or intolerance to previous covalent BTK inhibitors) and anti-CD19 chimeric antigen receptor (CAR) T-cell therapy (with complete responses in up to 45% of cases and an undetectable measurable residual disease rate of 65% in the bone marrow). These 2 approaches should be considered valid options in this setting, although not yet approved. For young fit patients achieving remissions with salvage treatments, the option of allogeneic stem cell transplantation should be discussed as the outcome appears to be unaffected by number and type of previous targeted agents. Novel treatment strategies interfering with different mechanisms of CLL cell survival and proliferation are warranted, including small molecules with novel targets (eg, CDK9, MCL1, ERK inhibitors), CAR T cells targeting different antigens, CAR natural killer cells, or bispecific antibodies.
Collapse
Affiliation(s)
- Lydia Scarfò
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
22
|
Eulberg D, Frömming A, Lapid K, Mangasarian A, Barak A. The prospect of tumor microenvironment-modulating therapeutical strategies. Front Oncol 2022; 12:1070243. [PMID: 36568151 PMCID: PMC9772844 DOI: 10.3389/fonc.2022.1070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence.
Collapse
|
23
|
Zhang Y, Zhang H, Chan DWH, Ma Y, Lu A, Yu S, Zhang B, Zhang G. Strategies for developing long-lasting therapeutic nucleic acid aptamer targeting circulating protein: The present and the future. Front Cell Dev Biol 2022; 10:1048148. [PMID: 36393853 PMCID: PMC9664076 DOI: 10.3389/fcell.2022.1048148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 08/09/2023] Open
Abstract
Aptamers are short, single-stranded DNA or RNA oligonucleotide sequences that can bind specific targets. The molecular weight of aptamers (<20 kDa) is lower than the renal filtration threshold (30∼50 kDa), resulting in very short half-lives in vivo, which limit their druggability. The development of long-lasting modification approaches for aptamers can help address the druggability bottleneck of aptamers. This review summarized two distinct kinds of long-lasting modification approaches for aptamers, including macromolecular modification and low-molecular-weight modification. Though it is a current approach to extend the half-life of aptamers, the macromolecular modification approach could limit the space for the dosage increases, thus causing potential compliance concerns due to large molecular weight. As for the other modification approach, the low-molecular-weight modification approach, which uses low molecular weight coupling agents (LMWCAs) to modify aptamers, could greatly increase the proportion of aptamer moiety. However, some LMWCAs could bind to other proteins, causing a decrease in the drug amounts in blood circulation. Given these issues, the outlook for the next generation of long-lasting modification approaches was proposed at the end, including improving the administration method to increase dosage for aptamer drugs modified by macromolecule and developing Artificial intelligence (AI)-based strategies for optimization of LMWCAs.
Collapse
Affiliation(s)
- Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel Wing Ho Chan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
24
|
Hernández-Jiménez M, Martín-Vílchez S, Ochoa D, Mejía-Abril G, Román M, Camargo-Mamani P, Luquero-Bueno S, Jilma B, Moro MA, Fernández G, Piñeiro D, Ribó M, González VM, Lizasoain I, Abad-Santos F. First-in-human phase I clinical trial of a TLR4-binding DNA aptamer, ApTOLL: Safety and pharmacokinetics in healthy volunteers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:124-135. [PMID: 35402075 PMCID: PMC8938885 DOI: 10.1016/j.omtn.2022.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
ApTOLL is an aptamer that antagonizes Toll-like receptor 4 and improves functional outcomes in models of ischemic stroke and myocardial infarction. The aim of this study was to characterize the safety and pharmacokinetics of ApTOLL in healthy volunteers. A first-in-human dose-ascending, randomized, placebo-controlled phase I clinical trial to assess safety and pharmacokinetics of ApTOLL (30-min infusion intravenously) was performed in 46 healthy adult male volunteers. The study was divided into two parts: part A included seven single ascending dose levels, and part B had one multiple dose cohort. Safety and pharmacokinetic parameters were evaluated. No serious adverse events or biochemistry alterations were detected at any dose nor at any administration pattern studied. Maximum concentration was detected at the end of the infusion and mean half-life was 9.3 h. Interestingly, exposure increased in the first four levels receiving doses from 0.7 mg to 14 mg (AUC of 2,441.26 h∗ng/mL to 23,371.11 h∗ng/mL) but remained stable thereafter (mean of 23,184.61 h∗ng/mL after 70 mg). Consequently, the multiple dose study did not show any accumulation of ApTOLL. These results show an excellent safety and adequate pharmacokinetic profile that, together with the efficacy demonstrated in nonclinical studies, provide the basis to start clinical trials in patients.
Collapse
Affiliation(s)
| | - Samuel Martín-Vílchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Paola Camargo-Mamani
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Sergio Luquero-Bueno
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - María A. Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P.), 28029 Madrid, Spain
- Unidad de Investigación Neurovascular, Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Gerónimo Fernández
- Aptus Biotech S.L., Avda. Cardenal Herrera Oria 298, 28034 Madrid, Spain
| | - David Piñeiro
- AptaTargets S.L., Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Marc Ribó
- AptaTargets S.L., Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Víctor M. González
- Aptus Biotech S.L., Avda. Cardenal Herrera Oria 298, 28034 Madrid, Spain
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J Control Release 2022; 346:405-420. [PMID: 35489545 DOI: 10.1016/j.jconrel.2022.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
Abstract
Cell-specific aptamers are a promising emerging player in the field of disease therapy. This paper reviews the multidimensional research progress made in terms of their classification, modification, and application. Based on the target location of cell-specific aptamers, it is defined and classified cell-specific aptamers into three groups including aptamers for cell surface markers, aptamers for intracellular components, and aptamers for extracellular components. Moreover, the modification methods of aptamers to achieve improved stability and affinity are concluded. In addition, recent advances in the application of cell-specific aptamers are discussed, mainly focusing on the increasing research attraction of cell state improving helpers and cell recruitment mediators in the improvement of cellular microenvironments to achieve successful disease therapy. This review also highlights 11 types of clinical aptamer drugs. Finally, the challenges and future directions of potential clinical applications are presented. In summary, we believe that cell-specific aptamers are promising drugs in disease therapy.
Collapse
Affiliation(s)
- Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
27
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:2736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA; (H.Z.); (R.S.)
| |
Collapse
|
28
|
An Y, Li X, Yao F, Duan J, Yang XD. Novel Complex of PD-L1 Aptamer and Albumin Enhances Antitumor Efficacy In Vivo. Molecules 2022; 27:1482. [PMID: 35268583 PMCID: PMC8911819 DOI: 10.3390/molecules27051482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
The PD-1/PD-L1 pathway blockade can generate a good clinical response by reducing immunosuppression and provoking durable antitumor immunity. In addition to antibodies, aptamers can also block the interaction between PD-1 and PD-L1. For the in vivo application, however, free aptamers are usually too small in size and quickly removed from blood via glomerular filtration. To avoid renal clearance of aptamer, we conjugated the PD-L1 aptamer to albumin to form a larger complex (BSA-Apt) and evaluated whether BSA-Apt would enhance the in vivo antitumor efficacy. The PD-L1 aptamer was thiol-modified and conjugated to the amino group of BSA via a SMCC linker. The average size of BSA-Apt was 11.65 nm, which was above the threshold for renal clearance. Functionally, BSA-Apt retained the capability of the PD-L1 aptamer to bind with PDL1-expressing tumor cells. Moreover, both the free aptamer and BSA-Apt augmented the PBMC-induced antitumor cytotoxicity in vitro. Furthermore, BSA-Apt generated a significantly stronger antitumor efficacy than the free PD-L1 aptamer in vivo without raising systemic toxicity. The results indicate that conjugating the PD-L1 aptamer to albumin may serve as a promising strategy to improve the in vivo functionality of the aptamer and that BSA-Apt may have application potential in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (Y.A.); (X.L.); (F.Y.); (J.D.)
| |
Collapse
|
29
|
Mehrpouri M. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: A possible therapeutic target in hematologic malignancies. Eur J Pharmacol 2022; 920:174831. [PMID: 35183534 DOI: 10.1016/j.ejphar.2022.174831] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
30
|
Wu X, Zhang H, Sui Z, Gao Y, Gong L, Chen C, Ma Z, Tang P, Yu Z. CXCR4 promotes the growth and metastasis of esophageal squamous cell carcinoma as a critical downstream mediator of HIF-1α. Cancer Sci 2022; 113:926-939. [PMID: 34990040 PMCID: PMC8898735 DOI: 10.1111/cas.15265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022] Open
Abstract
C–X–C motif chemokine receptor 4 (CXCR4) belongs to the CXC chemokine receptor family, which mediates the metastasis of tumor cells and promotes the malignant development of cancers. However, its biological role and regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we found that CXCR4 expression was associated with lymph node metastasis and a poor prognosis. In vitro and in vivo studies demonstrated that CXCR4 overexpression promoted ESCC cell proliferation, migration, invasion, and survival, whereas silencing CXCR4 induced the opposite effects. Mechanically, HIF‐1α transcriptionally regulates CXCR4 expression by binding to a hypoxia response element in its promoter. HIF‐1α‐induced ESCC cell migration and invasion were reversed by CXCR4 knockdown or treatment with MSX‐122, a CXCR4 antagonist. Collectively, these data revealed that the HIF‐1α/CXCR4 axis plays key roles in ESCC growth and metastasis and indicated CXCR4 as a potential target for ESCC treatment.
Collapse
Affiliation(s)
- Xianxian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhilin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongyin Gao
- Department of Cardio-pulmonary Functions, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chuangui Chen
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhao Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| |
Collapse
|
31
|
Kim S, Yeo MK, Kim JS, Kim JY, Kim KH. Elevated CXCL12 in the plasma membrane of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: a potential prognostic marker. J Cancer 2022; 13:162-173. [PMID: 34976180 PMCID: PMC8692683 DOI: 10.7150/jca.64082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) has been shown to improve sphincter preservation and local pelvic control, but the efficacy of nCRT plateaus due to metastasis. CXC chemokine ligand 12 (CXCL12) has a critical impact on cancer development and metastasis. Methods: By investigating public databases containing LARC patient data, CXCL12, CXCR4 and FAPα expression was analyzed via the Tumor Immune Estimation Resource (TIMER) and GSEA. Immunohistochemistry was applied to a total of 121 surgically resected specimens consisting of 61 LARCs after nCRT and 60 LARCs with no nCRT and 16 cases with endoscopic resection of high-grade colorectal adenoma. Results: By investigating public databases containing LARC patient data, CXCL12 expression is correlated with poor prognosis, immune cell infiltration, epithelial- mesenchymal transition, and angiogenesis in LARC. Furthermore, radiation selectively induced CXCL12, CXCR4 and FAPα expression in tumor tissues. Immunohistochemistry results showed that the levels of CXCL12, CXCR4, and FAPα in LARC cells after nCRT were higher than in LARC cells untreated with nCRT (p < 0.001 for each). Elevated levels of CXCL12 in the plasma membrane of LARC cells after nCRT demonstrated an association with the period of freedom from recurrence (FFR) in univariate and multivariate survival analyses (p = 0.005 and p = 0.031, respectively). Conclusions: The expression of CXCL12 may influence the survival and invasive properties of LARC cells during nCRT and promote cancer recurrence. We suggest that CXCL12 expression in the plasma membrane of radioresistant LARC cells may be a predictive factor of recurrence and a viable therapeutic strategy to control radioresistant LARC recurrence.
Collapse
Affiliation(s)
- Sup Kim
- Department of Radiation Oncology, Chungnam National University School of Medicine, 288 Munhwa Street, Daejeon 35015, Korea.,Department of Radiation Oncology, Chungnam National University Hospital, 282 Munwha-ro, Daejeon 35015, Korea
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, 266 Munhwa Street, Daejeon 35015, Korea.,Department of Pathology, Chungnam National University Hospital, 282 Munwha-ro, Daejeon 35015, Korea
| | - Jun-Sang Kim
- Department of Radiation Oncology, Chungnam National University School of Medicine, 288 Munhwa Street, Daejeon 35015, Korea.,Department of Radiation Oncology, Chungnam National University Hospital, 282 Munwha-ro, Daejeon 35015, Korea
| | - Ji-Yeon Kim
- Department of Surgery, Division of Colorectal Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyung-Hee Kim
- Department of Pathology, Chungnam National University School of Medicine, 266 Munhwa Street, Daejeon 35015, Korea.,Department of Pathology, Chungnam National University Sejong Hospital, 20 Bodeum 7-ro, Sejong-si 30099, Korea
| |
Collapse
|
32
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
33
|
Xiao X, Li H, Zhao L, Zhang Y, Liu Z. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed Pharmacother 2021; 143:112232. [PMID: 34649356 DOI: 10.1016/j.biopha.2021.112232] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are single stranded oligonucleotides with specific recognition and binding ability to target molecules, which can be obtained by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Aptamers have the advantages of low molecular weight, low immunogenicity, easy modification and high stability. They play promising role in promoting food safety, monitoring the environment and basic research, especially in clinical diagnosis and therapeutic drugs. To date, great achievements regarding the selection, modifications and application of aptamers have been made. However, since it is still a challenge to obtain aptamers with high affinity in a more effective way, few aptamer-based products have already successfully entered into clinical use. This review aims to provide a thorough overview of the latest advances in this rapidly developing field, focusing on aptamer screening methods for different targets, the structure of the interaction between aptamers and target substances, and the challenges and potential of current therapeutic aptamers.
Collapse
Affiliation(s)
- Xueran Xiao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hui Li
- Department of Urology, Peking University International Hospital, Beijing 102206, China
| | - Lijian Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
34
|
Suarez-Carmona M, Williams A, Schreiber J, Hohmann N, Pruefer U, Krauss J, Jäger D, Frömming A, Beyer D, Eulberg D, Jungelius JU, Baumann M, Mangasarian A, Halama N. Combined inhibition of CXCL12 and PD-1 in MSS colorectal and pancreatic cancer: modulation of the microenvironment and clinical effects. J Immunother Cancer 2021; 9:e002505. [PMID: 34607895 PMCID: PMC8491418 DOI: 10.1136/jitc-2021-002505] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Immunotherapy in microsatellite stable colorectal or pancreatic cancer has not shown promising results. It has been hypothesized that targeting immunosuppressive molecules like SDF1-alpha/CXCL12 could contribute to immunotherapy and animal models showed promising results on T cell activation and migration in combination with immune checkpoint inhibition. METHODS Here, we describe the successful application of anti-CXCL12 (NOX-A12) in patients with advanced stage pretreated metastatic colorectal and pancreatic cancer (OPERA trial). The treatment consisted of 2 weeks of anti-CXCL12 monotherapy with NOX-A12 followed by combination therapy with pembrolizumab (n=20 patients) until progression or intolerable toxicity had occurred. RESULTS The treatment was safe and well tolerated with 83.8% grade I/II, 15.5% grade III and 0.7% grade V adverse events. Of note, for a majority of patients, time on trial treatment was prolonged compared with their last standard treatment preceding trial participation. Systematic serial biopsies revealed distinct patterns of modulation. Tissue and clinical responses were associated with Th1-like tissue reactivity upon CXCL12 inhibition. A downregulation of a cytokine cassette of interleukin (IL)-2/IL-16/CXCL-10 was associated with tumor resistance and furthermore linked to a rare, CXCL12-associated CD14+CD15+promonocytic population. T cells showed aggregation and directed movement towards the tumor cells in responding tissues. Serum analyses detected homogeneous immunomodulatory patterns in all patients, regardless of tissue responses. CONCLUSIONS We demonstrate that the combination of CXCL12 inhibition and checkpoint inhibition is safe and grants further exploration of synergistic combinatorial strategies.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Department of Translational Immunotherapy, German Cancer Research Centre, Heidelberg, Germany
| | - Anja Williams
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Jutta Schreiber
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Nicolas Hohmann
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Ulrike Pruefer
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Jürgen Krauss
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | | | | | | | | | | | | | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Centre, Heidelberg, Germany
| |
Collapse
|
35
|
Chen BM, Cheng TL, Roffler SR. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS NANO 2021; 15:14022-14048. [PMID: 34469112 DOI: 10.1021/acsnano.1c05922] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.
Collapse
Affiliation(s)
- Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tian-Lu Cheng
- Center for Biomarkers and Biotech Drugs, Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
36
|
A Cornflower Extract Containing N-Feruloylserotonin Reduces Inflammation in Human Skin by Neutralizing CCL17 and CCL22 and Inhibiting COX-2 and 5-LOX. Mediators Inflamm 2021; 2021:6652791. [PMID: 34557056 PMCID: PMC8455218 DOI: 10.1155/2021/6652791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Thymus and Activation-Regulated Chemokine (TARC/CCL17) and Macrophage-Derived Chemokine (MDC/CCL22) are two key chemokines exerting their biological effect via binding and activating a common receptor CCR4, expressed at the surface of type 2 helper T (Th2) cells. By recruiting Th2 cells in the dermis, CCL17 and CCL22 promote the development of inflammation in atopic skin. The aim of this research was to develop a plant extract whose biological properties, when applied topically, could be beneficial for people with atopic-prone skin. The strategy which was followed consisted in identifying ligands able to neutralize the biological activity of CCL17 and CCL22. Thus, an in silico molecular modeling and a generic screening assay were developed to screen natural molecules binding and blocking these two chemokines. N-Feruloylserotonin was identified as a neutraligand of CCL22 in these experiments. A cornflower extract containing N-feruloylserotonin was selected for further in vitro tests: the gene expression modulation of inflammation biomarkers induced by CCL17 or CCL22 in the presence or absence of this extract was assessed in the HaCaT keratinocyte cell line. Additionally, the same cornflower extract in another vehicle was evaluated in parallel with N-feruloylserotonin for cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymatic cellular inhibition. The cornflower extract was shown to neutralize the two chemokines in vitro, inhibited COX-2 and 5-LOX, and demonstrated anti-inflammatory activities due mainly to the presence of N-feruloylserotonin. Although these findings would need to be confirmed in an in vivo study, the in vitro studies lay the foundation to explain the benefits of the cornflower extract when applied topically to individuals with atopic-prone skin.
Collapse
|
37
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
38
|
Yu AM, Tu MJ. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol Ther 2021; 230:107967. [PMID: 34403681 PMCID: PMC9477512 DOI: 10.1016/j.pharmthera.2021.107967] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The concepts of developing RNAs as new molecular entities for therapies have arisen again and again since the discoveries of antisense RNAs, direct RNA-protein interactions, functional noncoding RNAs, and RNA-directed gene editing. The feasibility was demonstrated with the development and utilization of synthetic RNA agents to selectively control target gene expression, modulate protein functions or alter the genome to manage diseases. Rather, RNAs are labile to degradation and cannot cross cell membrane barriers, making it hard to develop RNA medications. With the development of viable RNA technologies, such as chemistry and pharmaceutics, eight antisense oligonucleotides (ASOs) (fomivirsen, mipomersen, eteplirsen, nusinersen, inotersen, golodirsen, viltolarsen and casimersen), one aptamer (pegaptanib), and three small interfering RNAs (siRNAs) (patisiran, givosiran and lumasiran) have been approved by the United States Food and Drug Administration (FDA) for therapies, and two mRNA vaccines (BNT162b2 and mRNA-1273) under Emergency Use Authorization for the prevention of COVID-19. Therefore, RNAs have become a great addition to small molecules, proteins/antibodies, and cell-based modalities to improve the public health. In this article, we first summarize the general characteristics of therapeutic RNA agents, including chemistry, common delivery strategies, mechanisms of actions, and safety. By overviewing individual RNA medications and vaccines approved by the FDA and some agents under development, we illustrate the unique compositions and pharmacological actions of RNA products. A new era of RNA research and development will likely lead to commercialization of more RNA agents for medical use, expanding the range of therapeutic targets and increasing the diversity of molecular modalities.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
39
|
Mascarelli DE, Rosa RSM, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, Lima GC, Bajgelman MC. Boosting Antitumor Response by Costimulatory Strategies Driven to 4-1BB and OX40 T-cell Receptors. Front Cell Dev Biol 2021; 9:692982. [PMID: 34277638 PMCID: PMC8277962 DOI: 10.3389/fcell.2021.692982] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy explores several strategies to enhance the host immune system’s ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.
Collapse
Affiliation(s)
- Daniele E Mascarelli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jessica M Toscaro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isadora F Semionatto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana P Ruas
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carolinne T Fogagnolo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel C Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Pro Rectory of Graduation, University of São Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
40
|
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021; 22:3295. [PMID: 33804856 PMCID: PMC8036554 DOI: 10.3390/ijms22073295] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need. Oligonucleotide therapeutics, which include antisense oligonucleotides, small interfering RNAs, and aptamers, show promising clinical outcomes for disease indications such as Duchenne muscular dystrophy, familial amyloid neuropathies, and macular degeneration. While no approved oligonucleotide drug currently exists for any type of cancer, results obtained in preclinical studies and clinical trials are encouraging. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in oncology, review current clinical trials, and discuss associated challenges.
Collapse
Affiliation(s)
- Haoyu Xiong
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia;
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
41
|
Wu X, Zhang H, Sui Z, Wang Y, Yu Z. The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0140. [PMID: 33710803 PMCID: PMC8185864 DOI: 10.20892/j.issn.2095-3941.2020.0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is the eighth most common malignant tumor and the sixth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main histological type of esophageal cancer, and accounts for 90% of all cancer cases. Despite the progress made in surgery, chemotherapy, and radiotherapy, the mortality rate from esophageal cancer remains high, and the overall 5-year survival rate is less than 20%, even in developed countries. The C-X-C motif chemokine ligand 12 (CXCL12) is a member of the CXC chemokine subgroup, which is widely expressed in a variety of tissues and cells. CXCL12 participates in the regulation of many physiological and pathological processes by binding to its specific receptor, C-X-C motif chemokine receptor type 4 (CXCR4), where it causes embryonic development, immune response, and angiogenesis. In addition, increasing evidence indicates that the CXCL12/CXCR4 axis plays an important role in the biological processes of tumor cells. Studies have shown that CXCL12 and its receptor, CXCR4, are highly expressed in ESCC. This abnormal expression contributes to tumor proliferation, lymph node and distant metastases, and worsening prognosis. At present, antagonists and imaging agents against CXCL12 or CXCR4 have been developed to interfere with the malignant process and monitor metastasis of tumors. This article summarizes the structure, function, and regulatory mechanism of CXCL12/CXCR4 and its role in the malignancy of ESCC. Current results from preclinical research targeting CXCL12/CXCR4 are also summarized to provide a reference for the clinical diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Xianxian Wu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hongdian Zhang
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhilin Sui
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhentao Yu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
42
|
Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang BT, Lu A, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9500-9519. [PMID: 32603135 DOI: 10.1021/acsami.0c05750] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aptamers are oligonucleotide sequences with a length of about 25-80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer-drug conjugates, and targeted delivery materials are comprehensively summarized.
Collapse
Affiliation(s)
- Shuaijian Ni
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Yu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Fangfei Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Jin Liu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Luyao Wang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Xiaoqiu Wu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Dijie Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Youyang Wan
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Aiping Lu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| |
Collapse
|
43
|
Huynh C, Henrich A, Strasser DS, Boof ML, Al-Ibrahim M, Meyer Zu Schwabedissen HE, Dingemanse J, Ufer M. A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker. Clin Pharmacol Ther 2021; 109:1648-1659. [PMID: 33406277 DOI: 10.1002/cpt.2154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022]
Abstract
The C-X-C chemokine receptor 7 (CXCR7) has evolved as a promising, druggable target mainly in the immunology and oncology fields modulating plasma concentrations of its ligands CXCL11 and CXCL12 through receptor-mediated internalization. This "scavenging" activity creates concentration gradients of these ligands between blood vessels and tissues that drive directional cell migration. This randomized, double-blind, placebo-controlled first-in-human study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT-1004-1239, a first-in-class drug candidate small-molecule CXCR7 antagonist. Food effect and absolute bioavailability assessments were also integrated in this multipurpose study. Healthy male subjects received single ascending oral doses of ACT-1004-1239 (n = 36) or placebo (n = 12). At each of six dose levels (1-200 mg), repeated blood sampling was done over 144 hours for pharmacokinetic/pharmacodynamic assessments using CXCL11 and CXCL12 as biomarkers of target engagement. ACT-1004-1239 was safe and well tolerated up to the highest tested dose of 200 mg. CXCL12 plasma concentrations dose-dependently increased and more than doubled compared with baseline, indicating target engagement, whereas CXCL11 concentrations remained unchanged. An indirect-response pharmacokinetic/pharmacodynamic model well described the relationship between ACT-1004-1239 and CXCL12 concentrations across the full dose range, supporting once-daily dosing for future clinical studies. At doses ≥ 10 mg, time to reach maximum plasma concentration ranged from 1.3 to 3.0 hours and terminal elimination half-life from 17.8 to 23.6 hours. The exposure increase across the dose range was essentially dose-proportional and no relevant food effect on pharmacokinetics was determined. The absolute bioavailability was 53.0% based on radioactivity data after oral vs. intravenous 14 C-radiolabeled microtracer administration of ACT-1004-1239. Overall, these comprehensive data support further clinical development of ACT-1004-1239.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Mike Ufer
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
44
|
Jin H. Perspectives of Aptamers for Medical Applications. APTAMERS FOR MEDICAL APPLICATIONS 2021:405-462. [DOI: 10.1007/978-981-33-4838-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Batra K, Maan S, Sehrawat A. An Insight on RNA Based Therapeutics and Vaccines: Challenges and Opportunities. Curr Top Med Chem 2021; 21:2851-2855. [PMID: 34792013 DOI: 10.2174/1568026621666211118095451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
In this era, RNA molecules have provided a unique opportunity to researchers all over the world for expanding their range of targets in the development of drugs. Due to the unique pharmacological as well as physicochemical characteristics of different RNA molecules such as aptamers, small interfering RNAs (siRNA), antisense oligonucleotides (ASO) and guide RNAs (gRNA), they have emerged recently as a new class of drugs. They are used for selective action on proteins and genes that were not possible to target by conventional drug molecules. These RNA molecules like guide RNAs are also components of novel gene editing mechanisms which can modify the genome nearly in all cells. Vaccines based on RNA molecules have also provided a promising alternative to conventional live attenuated vaccines. RNA based vaccines have high potency, can be rapidly developed, and have potential for manufacturing at a cheaper rate and safe administration. However, the application of these RNAs has been restricted by the high instability and inefficient in vivo delivery. Technological advancement needs to overcome these issues so that RNA based drugs targeting several diseases can be developed. This article emphasizes the potential of RNA based drugs and the major barriers associated with the development of RNA therapeutics. Additionally, the role of RNA based vaccines and their challenges in advancing this promising vaccine platform for the prevention of infectious diseases have been discussed.
Collapse
Affiliation(s)
- Kanisht Batra
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, Haryana,India
| | - Sushila Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, Haryana,India
| | - Anju Sehrawat
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, Haryana,India
| |
Collapse
|
46
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
47
|
Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev 2020; 72:862-898. [PMID: 32929000 PMCID: PMC7495341 DOI: 10.1124/pr.120.019554] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Betacoronavirus
- COVID-19
- Chemistry Techniques, Analytical/methods
- Chemistry Techniques, Analytical/standards
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coronavirus Infections/drug therapy
- Drug Delivery Systems/methods
- Drug Development/organization & administration
- Drug Discovery
- Humans
- MicroRNAs/pharmacology
- MicroRNAs/therapeutic use
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Pandemics
- Pneumonia, Viral/drug therapy
- RNA/adverse effects
- RNA/drug effects
- RNA/pharmacology
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/pharmacology
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/pharmacology
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- RNA, Viral/drug effects
- Ribonucleases/metabolism
- Riboswitch/drug effects
- SARS-CoV-2
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Young Hee Choi
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| |
Collapse
|
48
|
Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol 2020; 10:1672. [PMID: 33014834 PMCID: PMC7499473 DOI: 10.3389/fonc.2020.01672] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts with the bone marrow microenvironment regulates self-renewal, growth signaling, as well as chemotherapy resistance. The chemokine receptor, CXC receptor 4 (CXCR4), with its ligand chemokine ligand 12 (CXCL12), plays a key role in the survival and migration of normal and malignant stem cells to the bone marrow. High expression of CXCR4 on AML and ALL blasts has been shown to be a predictor of poor prognosis for these diseases. Several small molecule inhibitors, short peptides, antibodies, and antibody drug conjugates have been developed for the purposes of more effective targeting and killing of malignant cells expressing CXCR4. In this review we will discuss recent results and strategies in targeting CXCR4 with these agents in patients with AML or ALL.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
49
|
Aberrant CXCR4 Signaling at Crossroad of WHIM Syndrome and Waldenstrom's Macroglobulinemia. Int J Mol Sci 2020; 21:ijms21165696. [PMID: 32784523 PMCID: PMC7460815 DOI: 10.3390/ijms21165696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Given its pleiotropic functions, including its prominent role in inflammation, immune responses and cancer, the C-X-C chemokine receptor type 4 (CXCR4) has gained significant attention in recent years and has become a relevant target in drug development. Although the signaling properties of CXCR4 have been extensively studied, several aspects deserve deeper investigations. Mutations in the C-term tail of the CXCR4 gene cause WHIM syndrome, a rare congenital immunodeficiency associated by chronic leukopenia. Similar mutations have also been recently identified in 30% of patients affected by Waldenstrom’s macroglobulinaemia, a B-cell neoplasia with bone marrow accumulation of malignant cells. An ample body of work has been generated to define the impact of WHIM mutations on CXCR4 signaling properties and evaluate their role on pathogenesis, diagnosis, and response to therapy, although the identity of disease-causing signaling pathways and their relevance for disease development in different genetic variants are still open questions. This review discusses the current knowledge on biochemical properties of CXCR4 mutations to identify their prototypic signaling profile potentially useful to highlighting novel opportunities for therapeutic intervention.
Collapse
|
50
|
Huynh C, Dingemanse J, Meyer Zu Schwabedissen HE, Sidharta PN. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol Res 2020; 161:105092. [PMID: 32758634 DOI: 10.1016/j.phrs.2020.105092] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The impact of the C-X-C receptor (CXCR) 7 and its close co-player CXCR4 in different physiological and pathophysiological processes has been extensively investigated within the last decades. Following activation by their shared ligand C-X-C ligand (CXCL) 12, both chemokine receptors can induce various routes of cell signaling and/or scavenge CXCL12 from the extracellular environment. This contributes to organ development and maintenance of homeostasis. Alterations of the CXCR4/CXCR7-CXCL12 axis have been detected in diseases such as cancer, central nervous system and cardiac disorders, and autoimmune diseases. These alterations include changes of the expression pattern, distribution, or downstream effects. The progression of the diseases can be regulated in preclinical models by the use of various modulators suggesting that this axis serves as a promising therapeutic target. It is therefore of great interest to investigate CXCR4/CXCR7/CXCL12 modulators in clinical development, with several CXCR4 and CXCL12 modulators such as plerixafor, ulocuplumab, balixafortide, and olaptesed pegol having already reached this stage. An overview is presented of the most important diseases whose outcomes can be positively or negatively regulated by the CXCR4/CXCR7-CXCL12 axis and summarizes preclinical and clinical data of modulators of that axis. Contrary to CXCR4 and CXCL12 modulators, CXCR7 modulators have, thus far, not been extensively studied. Therefore, more (pre)clinical investigations are needed.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | | | - Patricia N Sidharta
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland.
| |
Collapse
|