1
|
Raghani NR, Chorawala MR, Mahadik M, Patel RB, Prajapati BG, Parekh PS. Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. Med Oncol 2024; 41:51. [PMID: 38195781 DOI: 10.1007/s12032-023-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
Cancer, characterized by the uncontrolled proliferation of aberrant cells, underscores the imperative for innovative therapeutic approaches. Immunotherapy has emerged as a pivotal constituent in cancer treatment, offering improved prognostic outcomes for a substantial patient cohort. Noteworthy for its precision, immunotherapy encompasses strategies such as adoptive cell therapy and checkpoint inhibitors, orchestrating the immune system to recognize and selectively target malignant cells. Exploiting the specificity of the immune response renders immunotherapy efficacious, as it selectively targets the body's immune milieu. Diverse mechanisms underlie cancer immunotherapies, leading to distinct toxicity profiles compared to conventional treatments. A remarkable clinical stride in the anticancer resources is immunotherapy. Remarkably, certain recalcitrant cancers like skin malignancies exhibit resistance to radiation or chemotherapy, yet respond favorably to immunotherapeutic interventions. Notably, combination therapies involving chemotherapy and immunotherapy have exhibited synergistic effects, enhancing overall therapeutic efficacy. Understanding the pivotal role of immunotherapy elucidates its complementary value, bolstering the therapeutic landscape. In this review, we elucidate the taxonomy of cancer immunotherapy, encompassing adoptive cell therapy and checkpoint inhibitors, while scrutinizing their distinct adverse event profiles. Furthermore, we expound on the unprecedented potential of immunogenic vaccines to bolster the anticancer immune response. This comprehensive analysis underscores the significance of immunotherapy in modern oncology, unveiling novel prospects for tailored therapeutic regimens.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mayuresh Mahadik
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA, 52242, USA
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
| | - Priyajeet S Parekh
- A V Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
2
|
Hruba L, Das V, Hajduch M, Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem Pharmacol 2023; 215:115741. [PMID: 37567317 DOI: 10.1016/j.bcp.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Nucleoside-based drugs, recognized as purine or pyrimidine analogs, have been potent therapeutic agents since their introduction in 1950, deployed widely in the treatment of diverse diseases such as cancers, myelodysplastic syndromes, multiple sclerosis, and viral infections. These antimetabolites establish complex interactions with cellular molecular constituents, primarily via activation of phosphorylation cascades leading to consequential interactions with nucleic acids. However, the therapeutic efficacy of these agents is frequently compromised by the development of drug resistance, a continually emerging challenge in their clinical application. This comprehensive review explores the mechanisms of resistance to nucleoside-based drugs, encompassing a wide spectrum of phenomena from alterations in membrane transporters and activating kinases to changes in drug elimination strategies and DNA damage repair mechanisms. The critical analysis in this review underlines complex interactions of drug and cell and also guides towards novel therapeutic strategies to counteract resistance. The development of targeted therapies, novel nucleoside analogs, and synergistic drug combinations are promising approaches to restore tumor sensitivity and improve patient outcomes.
Collapse
Affiliation(s)
- Lenka Hruba
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic.
| |
Collapse
|
3
|
Sun T, Niu X, He Q, Liu M, Qiao S, Qi RQ. Development, efficacy and side effects of antibody‑drug conjugates for cancer therapy (Review). Mol Clin Oncol 2023; 18:47. [PMID: 37206431 PMCID: PMC10189422 DOI: 10.3892/mco.2023.2643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are anticancer drugs that combine cytotoxic small-molecule drugs (payloads) with monoclonal antibodies through a chemical linker and that transfer toxic payloads to tumor cells expressing target antigens. All ADCs are based on human IgG. In 2009, the Food and Drug Administration (FDA) approved gemtuzumab ozogamicin as the initial first-generation ADC. Since then, at least 100 ADC-related projects have been initiated, and 14 ADCs are currently being tested in clinical trials. The limited success of gemtuzumab ozogamicin has led to the development of optimization strategies for the next generation of drugs. Subsequently, experts have improved the first-generation ADCs and have developed second-generation ADCs such as ado-trastuzumab emtansine. Second-generation ADCs have higher specific antigen levels, more stable linkers and longer half-lives and show great potential to transform cancer treatment models. Since the first two generations of ADCs have served as a good foundation, the development of ADCs is accelerating, and third-generation ADCs, represented by trastuzumab deruxtecan, are ready for wide application. Third-generation ADCs are characterized by strong pharmacokinetics and high pharmaceutical activity, and their drug-to-antibody ratio mainly ranges from 2 to 4. In the past decade, the research prospects of ADCs have broadened, and an increasing number of specific antigen targets and mechanisms of cytotoxic drug release have been discovered and studied. To date, seven ADCs have been approved by the FDA for lymphoma, and three have been approved to treat breast cancer. The present review explores the function and development of ADCs and their clinical use in cancer treatment.
Collapse
Affiliation(s)
- Te Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
| | - Xueli Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
| | - Qing He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
| | - Min Liu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuai Qiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
- Correspondence to: Professor Rui-Qun Qi or Mrs. Shuai Qiao, Department of Dermatology, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, Liaoning 110001, P.R. China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
- Correspondence to: Professor Rui-Qun Qi or Mrs. Shuai Qiao, Department of Dermatology, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
4
|
High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines 2022; 10:biomedicines10061405. [PMID: 35740427 PMCID: PMC9220202 DOI: 10.3390/biomedicines10061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric acute myeloid leukemia is a clonal disorder characterized by malignant transformation of the hematopoietic stem cell. The incidence and the outcome remain inferior when compared to pediatric ALL, although prognosis has improved in the last decades, with 80% overall survival rate reported in some studies. The standard therapeutic approach is a combined cytarabine and anthracycline-based regimen followed by consolidation with allogeneic stem cell transplantation (allo-SCT) for high-risk AML and allo-SCT for non-high-risk patients only in second complete remission after relapse. In the last decade, several drugs have been used in clinical trials to improve outcomes in pediatric AML treatment.
Collapse
|
5
|
Fatima SW, Khare SK. Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. J Control Release 2021; 341:555-565. [PMID: 34906604 DOI: 10.1016/j.jconrel.2021.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Antibody drug conjugates (ADCs) are an emerging therapeutic modality for targeted cancer treatment. They represent the unique amalgamation of chemotherapy and immunotherapy. ADCs comprise of monoclonal antibodies linked with drugs (payloads) through a chemical linker designed to deliver the cytotoxic moiety to the cancer cells. The present paper is a review of recent clinical advances of each component of ADCs (antibody/linker/payload) and how the individual component influences the activity of ADCs. The review discusses opportunities for improving ADCs efficiency and ways to have a better antibody-based molecular platform, which could substantially increase chemotherapy outcomes. This review casts an outlook on how ADCs enhancement in terms of their pharmacokinetics, therapeutic indexes and safety profiles can overcome the prevailing challenges like drug resistance in cancer treatment. A novel strategy of augmenting antibodies with nanoparticles anticipates a huge success in terms of targeted delivery of drugs in several diseases. Antibody conjugated nanoparticles (ACNPs) are a very promising strategy for the cutting-edge development of chemo/immunotherapies for efficient delivery of payloads at the targeted cancer cells. The avenues of a high drug to antibody ratio (DAR) owing to the selection of broad chemotherapy payloads, regulating drug release eliciting higher avidity of ACNPs over ADCs will be the modern immunotherapeutics. ACNPs carry immense potential to mark a paradigm shift in cancer chemotherapy that may be a substitute for ADCs.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Abstract
Acute myeloid leukemia (AML) is an uncommon but potentially catastrophic diagnosis with historically high mortality rates. The standard of care treatment remained unchanged for decades; however, recent discoveries of molecular drivers of leukemogenesis and disease progression have led to novel therapies for AML. Ongoing research and clinical trials are actively seeking to personalize therapy by identifying molecular targets, discovering patient specific and disease specific risk factors, and identifying effective combinations of modalities and drugs. This review focuses on important updates in diagnostic and disease classifications that reflect new understanding of the biology of AML, its mutational heterogeneity, some important genetic and environmental risk factors, and new treatment options including cytotoxic chemotherapy, novel targeted agents, and cellular therapies.
Collapse
Affiliation(s)
- Laura F Newell
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Rachel J Cook
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Hubscher E, Sikirica S, Bell T, Brown A, Welch V, Russell-Smith A, D'Amico P. Patterns of undertreatment among patients with acute myeloid leukemia (AML): considerations for patients eligible for non-intensive chemotherapy (NIC). J Cancer Res Clin Oncol 2021; 147:3359-3368. [PMID: 34462785 PMCID: PMC8484094 DOI: 10.1007/s00432-021-03756-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Acute myeloid leukemia (AML) is a life-threatening malignancy that is more prevalent in the elderly. Because the patient population is heterogenous and advanced in age, choosing the optimal therapy can be challenging. There is strong evidence supporting antileukemic therapy, including standard intensive induction chemotherapy (IC) and non-intensive chemotherapy (NIC), for older patients with AML, and guidelines recommend treatment selection based on a patient’s individual and disease characteristics as opposed to age alone. Nonetheless, historic evidence indicates that a high proportion of patients who may be candidates for NIC receive no active antileukemic treatment (NAAT), instead receiving only best supportive care (BSC). We conducted a focused literature review to assess current real-world patterns of undertreatment in AML. From a total of 25 identified studies reporting the proportion of patients with AML receiving NAAT, the proportion of patients treated with NAAT varied widely, ranging from 10 to 61.4% in the US and 24.1 to 35% in Europe. Characteristics associated with receipt of NAAT included clinical factors such as age, poor performance status, comorbidities, and uncontrolled concomitant conditions, as well as sociodemographic factors such as female sex, unmarried status, and lower income. Survival was diminished among patients receiving NAAT, with reported median overall survival values ranging from 1.2 to 4.8 months compared to 5 to 14.4 months with NIC. These findings suggest a proportion of patients who are candidates for NIC receive NAAT, potentially forfeiting the survival benefit of active antileukemic treatment.
Collapse
|
8
|
Nicolaou KC, Rigol S, Pitsinos EN, Das D, Lu Y, Rout S, Schammel AW, Holte D, Lin B, Gu C, Sarvaiya H, Trinidad J, Barbour N, Valdiosera AM, Sandoval J, Lee C, Aujay M, Fernando H, Dhar A, Karsunky H, Taylor N, Pysz M, Gavrilyuk J. Uncialamycin-based antibody-drug conjugates: Unique enediyne ADCs exhibiting bystander killing effect. Proc Natl Acad Sci U S A 2021; 118:e2107042118. [PMID: 34155147 PMCID: PMC8237573 DOI: 10.1073/pnas.2107042118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as valuable targeted anticancer therapeutics with at least 11 approved therapies and over 80 advancing through clinical trials. Enediyne DNA-damaging payloads represented by the flagship of this family of antitumor agents, N-acetyl calicheamicin [Formula: see text], have a proven success track record. However, they pose a significant synthetic challenge in the development and optimization of linker drugs. We have recently reported a streamlined total synthesis of uncialamycin, another representative of the enediyne class of compounds, with compelling synthetic accessibility. Here we report the synthesis and evaluation of uncialamycin ADCs featuring a variety of cleavable and noncleavable linkers. We have discovered that uncialamycin ADCs display a strong bystander killing effect and are highly selective and cytotoxic in vitro and in vivo.
Collapse
Affiliation(s)
- K C Nicolaou
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005;
| | - Stephan Rigol
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | - Emmanuel N Pitsinos
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 153 10 Agia Paraskevi, Greece
| | - Dipendu Das
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | - Yong Lu
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | - Subhrajit Rout
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | | | - Dane Holte
- Discovery Chemistry Department, AbbVie Inc., South San Francisco, CA 94080
| | - Baiwei Lin
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Christine Gu
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Hetal Sarvaiya
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Jose Trinidad
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Nicole Barbour
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Amanda M Valdiosera
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Joseph Sandoval
- Assay Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Christina Lee
- Assay Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Monette Aujay
- Assay Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Hanan Fernando
- Cancer Biology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Anukriti Dhar
- Cancer Biology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Holger Karsunky
- Cancer Biology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Nicole Taylor
- In Vivo Pharmacology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Marybeth Pysz
- In Vivo Pharmacology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Julia Gavrilyuk
- Discovery Chemistry Department, AbbVie Inc., South San Francisco, CA 94080;
| |
Collapse
|
9
|
Fatobene G, Souza GRD, Rodrigues CA, Novis YAS, Rocha V. Gemtuzumab ozogamicin is efficacious in attaining complete remission in relapsed/refractory acute leukemia prior to hematopoietic cell transplant: A case series. Hematol Transfus Cell Ther 2020; 43:532-536. [PMID: 33055008 PMCID: PMC8573029 DOI: 10.1016/j.htct.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Giancarlo Fatobene
- Sírio-Libanês Hospital, São Paulo, SP, Brazil; Instituto do Câncer do Estado de São Paulo da Universidade de São Paulo (ICESP USP), São Paulo, SP, Brazil; Laboratório Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (LIM/31 HCFMUSP), São Paulo, SP, Brazil.
| | | | | | | | - Vanderson Rocha
- Sírio-Libanês Hospital, São Paulo, SP, Brazil; Instituto do Câncer do Estado de São Paulo da Universidade de São Paulo (ICESP USP), São Paulo, SP, Brazil; Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Churchill Hospital, Oxford University Hospitals, United Kingdom; Laboratório Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (LIM/31 HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Zhou Z, Austin GL, Shaffer R, Armstrong DD, Gentry MS. Antibody-Mediated Enzyme Therapeutics and Applications in Glycogen Storage Diseases. Trends Mol Med 2019; 25:1094-1109. [PMID: 31522955 PMCID: PMC6889062 DOI: 10.1016/j.molmed.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
Abstract
The use of antibodies as targeting molecules or cell-penetrating tools has emerged at the forefront of pharmaceutical research. Antibody-directed therapies in the form of antibody-drug conjugates, immune modulators, and antibody-directed enzyme prodrugs have been most extensively utilized as hematological, rheumatological, and oncological therapies, but recent developments are identifying additional applications of antibody-mediated delivery systems. A novel application of this technology is for the treatment of glycogen storage disorders (GSDs) via an antibody-enzyme fusion (AEF) platform to penetrate cells and deliver an enzyme to the cytoplasm, nucleus, and/or other organelles. Exciting developments are currently underway for AEFs in the treatment of the GSDs Pompe disease and Lafora disease (LD). Antibody-based therapies are quickly becoming an integral part of modern disease therapeutics.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Epilepsy and Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|