1
|
Wang Y, Cao Y, Xie W, Guo Y, Cai J, Huang T, Li P. Advances in clinical translation of stem cell-based therapy in neurological diseases. J Cereb Blood Flow Metab 2025; 45:600-616. [PMID: 39883811 PMCID: PMC11783424 DOI: 10.1177/0271678x251317374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
Collapse
Affiliation(s)
- Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirong Cao
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wanqing Xie
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yunlu Guo
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jiayi Cai
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Peiying Li
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| |
Collapse
|
2
|
Myers MI, Hines KJ, Gray A, Spagnuolo G, Rosenwasser R, Iacovitti L. Intracerebral Transplantation of Autologous Mesenchymal Stem Cells Improves Functional Recovery in a Rat Model of Chronic Ischemic Stroke. Transl Stroke Res 2025; 16:248-261. [PMID: 37917400 PMCID: PMC11976345 DOI: 10.1007/s12975-023-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
While treatments exist for the acute phase of stroke, there are limited options for patients with chronic infarcts and long-term disability. Allogenic mesenchymal stem cells (alloMSCs) show promise for the treatment of stroke soon after ischemic injury. There is, however, no information on the use of autologous MSCs (autoMSCs), delivered intracerebrally in rats with a chronic infarct. In this study, rats underwent middle cerebral artery occlusion (MCAO) to induce stroke followed by bone marrow aspiration and MSC expansion in a closed bioreactor. Four weeks later, brain MRI was obtained and autoMSCs (1 × 106, 2.5 × 106 or 5 × 106; n = 6 each) were stereotactically injected into the peri-infarct and compared to controls (MCAO only; MCAO + PBS; n = 6-9). Behavior was assessed using the modified neurological severity score (mNSS). For comparison, an additional cohort of MCAO rats were implanted with 2.5 × 106 alloMSCs generated from a healthy rat. All doses of autoMSCs produced significant improvement (54-70%) in sensorimotor function 60 days later. In contrast, alloMSCs improved only 31.7%, similar to that in PBS controls 30%. Quantum dot-labeled auto/alloMSCs were found exclusively at the implantation site throughout the post-transplantation period with no tumor formation on MRI or Ki67 staining of engrafted MSCs. Small differences in stroke volume and no differences in corpus callosum width were observed after MSC treatment. Stroke-induced glial reactivity in the peri-infarct was long-lasting and unabated by auto/alloMSC transplantation. These studies suggest that intracerebral transplantation of autoMSCs as compared to alloMSCs may be a promising treatment in chronic stroke.
Collapse
Affiliation(s)
- Max I Myers
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Kevin J Hines
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Andrew Gray
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Gabrielle Spagnuolo
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Robert Rosenwasser
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Habib P, Steinberg GK. Clinical state and future directions of stem cell therapy in stroke rehabilitation. Exp Neurol 2025; 385:115132. [PMID: 39743037 DOI: 10.1016/j.expneurol.2024.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Despite substantial advances in the acute management of stroke, it remains a leading cause of adult disability and mortality worldwide. Currently, the reperfusion modalities thrombolysis and thrombectomy benefit only a fraction of patients in the hyperacute phase of ischemic stroke. Thus, with the exception of vagal nerve stimulation combined with intensive physical therapy, there are no approved neuroprotective/neurorestorative therapies for stroke survivors. Stem cell therapy is a promising treatment for stroke patients and has been the focus of an increasing number of clinical trials over the past two decades. We provide a comprehensive overview of stem cell therapies available to stroke patients, focusing on the different types and doses of stem cells, timing and route of administration, patient selection, clinical outcomes, translational challenges, and future directions for the field. Information on ongoing and completed studies was retrieved from ClinicalTrials.gov, PubMed, Google Scholar, ICTRP, and Scopus. Autologous bone marrow-derived mononuclear cells (BMMNCs) are the most used, followed by autologous bone marrow stromal cells. IV therapy is typically applied in acute to subacute phases, while IT or IC routes are utilized in chronic phases. Although early-phase trials (Phase I/II) indicate strong safety and tolerability, definitive clinical effectiveness has yet to be unequivocally proven. Cochrane meta-analyses show NIH Stroke Scale improvements, though studies often have high bias and small sample sizes. Larger randomized, double-blind, placebo-controlled trials are ongoing to refine stem cell transplantation protocols, addressing cell type and source, dosage, timing, patient selection, the potential for combination therapies, and clinical efficacy.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Wang Q, Yuan L, Wang F, Sun F. Global research trends and prospects on immune-related therapy in ischemic stroke: a bibliometric analysis. Front Cell Neurosci 2024; 18:1490607. [PMID: 39534685 PMCID: PMC11554536 DOI: 10.3389/fncel.2024.1490607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Following ischemic stroke, non-neuronal cells within the nervous system play a crucial role in maintaining neurovascular unit functions, regulating metabolic and inflammatory processes of the nervous system. Investigating the functions and regulation of these cells, particularly immune cells, deepens our understanding of the complex mechanisms of neuroinflammation and immune modulation after ischemic stroke and provides new perspectives and methods for immune-related therapy. Methods The annual distribution, journals, authors, countries, institutions, and keywords of articles published between 2015 and 2024 were visualized and analyzed using CiteSpace and other bibliometric tools. Results A total of 1,089 relevant articles or reviews were included, demonstrating an overall upward trend; The terms "cerebral ischemia," "immune response," "brain ischemia," "cerebral inflammation," "neurovascular unit," and "immune infiltration," etc. are hot keywords in this field. Conclusion In recent years, research on immune-related therapy for ischemic stroke has focused on mechanisms of occurrence, protection and repair of the blood-brain barrier (BBB) by non-neuronal cells, and regulation of immunosuppression and inflammation. Among these, reducing BBB disruption to minimize secondary brain damage has become a hotspot. At the same time, the complex roles of immune responses have attracted attention, particularly the balance between regulatory T cells and Th17 cells in regulating neuroinflammation and promoting neurological function recovery, which is crucial to reduce secondary neuronal damage and improve prognosis, potentially establishing a pivotal frontier in this domain of investigation.
Collapse
Affiliation(s)
- Qi Wang
- Medical College, Yangzhou University, Yangzhou, China
| | - Lei Yuan
- Medical College, Yangzhou University, Yangzhou, China
| | - Fei Wang
- Department of Thoracic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Fei Sun
- Department of Thoracic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
5
|
Gordon J, Borlongan CV. An update on stem cell therapy for stroke patients: Where are we now? J Cereb Blood Flow Metab 2024; 44:1469-1479. [PMID: 38639015 PMCID: PMC11418600 DOI: 10.1177/0271678x241227022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024]
Abstract
With a foundation built upon initial work from the 1980s demonstrating graft viability in cerebral ischemia, stem cell transplantation has shown immense promise in promoting survival, enhancing neuroprotection and inducing neuroregeneration, while mitigating both histological and behavioral deficits that frequently accompany ischemic stroke. These findings have led to a number of clinical trials that have thoroughly supported a strong safety profile for stem cell therapy in patients but have generated variable efficacy. As preclinical evidence continues to expand through the investigation of new cell lines and optimization of stem cell delivery, it remains critical for translational models to adhere to the protocols established through basic scientific research. With the recent shift in approach towards utilization of stem cells as a conjunctive therapy alongside standard thrombolytic treatments, key issues including timing, route of administration, and stem cell type must each be appropriately translated from the laboratory in order to resolve the question of stem cell efficacy for cerebral ischemia that ultimately will enhance therapeutics for stroke patients towards improving quality of life.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Ming J, Liao Y, Song W, Wang Z, Cui J, He L, Chen G, Xu K. Role of intracranial bone marrow mesenchymal stem cells in stroke recovery: A focus on post-stroke inflammation and mitochondrial transfer. Brain Res 2024; 1837:148964. [PMID: 38677450 DOI: 10.1016/j.brainres.2024.148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Stem cell therapy has become a hot research topic in the medical field in recent years, with enormous potential for treating a variety of diseases. In particular, bone marrow mesenchymal stem cells (BMSCs) have wide-ranging applications in the treatment of ischemic stroke, autoimmune diseases, tissue repair, and difficult-to-treat diseases. BMSCs can differentiate into multiple cell types and exhibit strong immunomodulatory properties. Although BMSCs can regulate the inflammatory response activated after stroke, the mechanism by which BMSCs regulate inflammation remains unclear and requires further study. Recently, stem cell therapy has emerged as a potentially effective approach for enhancing the recovery process following an ischemic stroke. For example, by regulating post-stroke inflammation and by transferring mitochondria to exert therapeutic effects. Therefore, this article reviews the therapeutic effects of intracranial BMSCs in regulating post-stroke inflammation and mitochondrial transfer in the treatment of stroke, providing a basis for further research.
Collapse
Affiliation(s)
- Jiang Ming
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yidong Liao
- Department of Cardio-Thoracic Surgery, The First Hospital of Guiyang, Guiyang 550002, Guizhou, China
| | - Wenxue Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Junshuan Cui
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Longcai He
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Hyperbaric Oxygen, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
7
|
Wang W, Ding L, Zhang Q, Jing J, Jiang Y, Meng X, Gu H, Yang K, Wang Y, Li H, Wang Y, Zhao X, Li Z. Data-Driven Analysis Reveals Cortical Infarction Patterns Correlated With Inflammation and Prognosis: A Retrospective, Multicenter Cohort Study. J Am Heart Assoc 2024; 13:e033616. [PMID: 38874064 PMCID: PMC11255772 DOI: 10.1161/jaha.123.033616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND We aim to identify the distinct lesion patterns and regions associated with functional outcome and inflammation in patients with acute ischemic stroke, and investigate whether the association between lesion patterns and functional outcome was mediated by inflammation. METHODS AND RESULTS We performed nonnegative matrix factorization to derived low-dimensional lesion patterns (atoms), and Bayesian linear regression models were applied to explore the associations of lesion patterns with inflammatory factors including high-sensitivity C-reactive protein and interleukin-6, as well as functional outcome (defined as modified Rankin Scale score at 3 months). The difference distribution mean and 95% highest probability density interval (HPDI) were calculated. Mediation analysis was used to examine the mediating effects of inflammation on the relationships between lesion patterns and functional outcome. Seven lesion patterns were derived from 5914 patients with acute ischemic stroke. Lesion patterns distributed in the cortical regions were associated with inflammatory response, including atom 1 (interleukin-6: mean, 0.113 [95% HPDI, 0.073-0.162]; high-sensitivity C-reactive protein: mean, 0.082 [95% HPDI, 0.038-0.123]) and atom 4 (interleukin-6: mean, 0.113 [95% HPDI, 0.071-0.167]; high-sensitivity C-reactive protein: mean, 0.108 [95% HPDI, 0.058-0.165]). These lesion patterns were also significantly associated with functional outcome (atom 1: mean, 1.958 [95% HPDI, 1.538-2.383]; atom 4: mean, 2.245 [95% HPDI, 1.773-2.741]). Mediation analysis suggested that interleukin-6 explained 15.34% and 7.47% in the association of atom 1 and atom 4 with functional outcome, respectively. CONCLUSIONS Certain lesion patterns that are associated with both inflammation and functional outcome of acute ischemic stroke, especially cortical infarction, may play a role in functional outcome through modulating inflammatory reactions.
Collapse
Affiliation(s)
- Wen‐Jie Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Lingling Ding
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Qiang Zhang
- China National Clinical Research Center‐Hanalytics Artificial Intelligence Research Centre for Neurological DisordersBeijingChina
| | - Jing Jing
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Yong Jiang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Xia Meng
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hongqiu Gu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Kaixuan Yang
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yilong Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Hao Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yongjun Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Zixiao Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
8
|
Cherkashova E, Namestnikova D, Leonov G, Gubskiy I, Sukhinich K, Melnikov P, Chekhonin V, Yarygin K, Goldshtein D, Salikhova D. Comparative study of the efficacy of intra-arterial and intravenous transplantation of human induced pluripotent stem cells-derived neural progenitor cells in experimental stroke. PeerJ 2023; 11:e16358. [PMID: 38025691 PMCID: PMC10640846 DOI: 10.7717/peerj.16358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cell therapy using neural progenitor cells (NPCs) is a promising approach for ischemic stroke treatment according to the results of multiple preclinical studies in animal stroke models. In the vast majority of conducted animal studies, the therapeutic efficacy of NPCs was estimated after intracerebral transplantation, while the information of the effectiveness of systemic administration is limited. Nowadays, several clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke patients were also conducted. In these studies, NPCs were transplanted intracerebrally in the subacute/chronic phase of stroke. The results of clinical trials confirmed the safety of the approach, however, the degree of functional improvement (the primary efficacy endpoint) was not sufficient in the majority of the studies. Therefore, more studies are needed in order to investigate the optimal transplantation parameters, especially the timing of cell transplantation after the stroke onset. This study aimed to evaluate the therapeutic effects of intra-arterial (IA) and intravenous (IV) administration of NPCs derived from induced pluripotent stem cells (iNPCs) in the acute phase of experimental stroke in rats. Induced pluripotent stem cells were chosen as the source of NPCs as this technology is perspective, has no ethical concerns and provides the access to personalized medicine. Methods Human iNPCs were transplanted IA or IV into male Wistar rats 24 h after the middle cerebral artery occlusion stroke modeling. Therapeutic efficacy was monitored for 14 days and evaluated in comparison with the cell transplantation-free control group. Additionally, cell distribution in the brain was assessed. Results The obtained results show that both routes of systemic transplantation (IV and IA) significantly reduced the mortality and improved the neurological deficit of experimental animals compared to the control group. At the same time, according to the MRI data, only IA administration led to faster and prominent reduction of the stroke volume. After IA administration, iNPCs transiently trapped in the brain and were not detected on day 7 after the transplantation. In case of IV injection, transplanted cells were not visualized in the brain. The obtained data demonstrated that the systemic transplantation of human iNPCs in the acute phase of ischemic stroke can be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Elvira Cherkashova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Daria Namestnikova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Georgiy Leonov
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Gubskiy
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Kirill Sukhinich
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Melnikov
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Konstantin Yarygin
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | | | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation
| |
Collapse
|
9
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 PMCID: PMC11410020 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
10
|
Monsour M, Borlongan CV. The central role of peripheral inflammation in ischemic stroke. J Cereb Blood Flow Metab 2023; 43:622-641. [PMID: 36601776 PMCID: PMC10108194 DOI: 10.1177/0271678x221149509] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023]
Abstract
Stroke pathology and its treatments conventionally focus on the brain. Probing inflammation, a critical secondary cell death mechanism in stroke, has been largely relegated to the brain. To this end, peripheral inflammation has emerged as an equally potent contributor to the onset and progression of stroke secondary cell death. Here, we review novel concepts on peripheral organs displaying robust inflammatory response to stroke. These inflammation-plagued organs include the spleen, cervical lymph nodes, thymus, bone marrow, gastrointestinal system, and adrenal glands, likely converging their inflammatory effects through B and T-cells. Recognizing the significant impact of this systemic inflammation, we also discuss innovative stroke therapeutics directed at sequestration of peripheral inflammation. This review paper challenges the paradigm of a brain-centered disease pathology and treatment and offers a peripheral approach to our stroke understanding.
Collapse
Affiliation(s)
- Molly Monsour
- Center of Excellence for Aging and Brain Repair,
Department of Neurosurgery and Brain Repair, University of South Florida Morsani
College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair,
Department of Neurosurgery and Brain Repair, University of South Florida Morsani
College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Savitz SI, Cox CS. Cell-based therapies for neurological disorders - the bioreactor hypothesis. Nat Rev Neurol 2023; 19:9-18. [PMID: 36396913 DOI: 10.1038/s41582-022-00736-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Cell-based therapies are an emerging biopharmaceutical paradigm under investigation for the treatment of a range of neurological disorders. Accumulating evidence is demonstrating that cell-based therapies might be effective, but the mechanism of action remains unclear. In this Review, we synthesize results from over 20 years of animal studies that illustrate how transdifferentiation, cell replacement and restoration of damaged tissues in the CNS are highly unlikely mechanisms. We consider the evidence for an alternative model that we refer to as the bioreactor hypothesis, in which exogenous cells migrate to peripheral organs and modulate and reprogramme host immune cells to generate an anti-inflammatory, regenerative environment. The results of clinical trials clearly demonstrate a role for immunomodulation in the effects of cell-based therapies. Greater understanding of these mechanisms could facilitate the optimization of cell-based therapies for a variety of neurological disorders.
Collapse
Affiliation(s)
- Sean I Savitz
- Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center, Houston, TX, USA. .,Department of Neurology, University of Texas Health Science Center, Houston, TX, USA.
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
12
|
Probing Interleukin-6 in Stroke Pathology and Neural Stem Cell Transplantation. Int J Mol Sci 2022; 23:ijms232415453. [PMID: 36555094 PMCID: PMC9779061 DOI: 10.3390/ijms232415453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell transplantation is historically understood as a powerful preclinical therapeutic following stroke models. Current clinical strategies including clot busting/retrieval are limited by their time windows (tissue plasminogen activator: 3-4 h) and inevitable reperfusion injuries. However, 24+ h post-stroke, stem cells reduce infarction size, improve neurobehavioral performance, and reduce inflammatory agents including interleukins. Typically, interleukin-6 (IL-6) is regarded as proinflammatory, and thus, preclinical studies often discuss it as beneficial for neurological recuperation when stem cells reduce IL-6's expression. However, some studies have also demonstrated neurological benefit with upregulation of IL-6 or preconditioning of stem cells with IL-6. This review specifically focuses on stem cells and IL-6, and their occasionally disparate, occasionally synergistic roles in the setting of ischemic cerebrovascular insults.
Collapse
|
13
|
Wang Z, Wang X, Liao Y, Chen G, Xu K. Immune response treated with bone marrow mesenchymal stromal cells after stroke. Front Neurol 2022; 13:991379. [PMID: 36203971 PMCID: PMC9530191 DOI: 10.3389/fneur.2022.991379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke. However, only a small part of patients could benefit from it. Therefore, finding a new treatment is necessary. Bone marrow mesenchymal stromal cells (BMSCs) provide a novel strategy for stroke patients. Now, many patients take stem cells to treat stroke. However, the researches of the precise inflammatory mechanism of cell replacement treatment are still rare. In this review, we summarize the immune response of BMSCs treated to stroke and may provide a new perspective for stem cell therapy.
Collapse
Affiliation(s)
- Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xudong Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yidong Liao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Kaya Xu
| |
Collapse
|
14
|
The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease. Antioxidants (Basel) 2022; 11:antiox11081447. [PMID: 35892653 PMCID: PMC9332234 DOI: 10.3390/antiox11081447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
Collapse
|
15
|
Zhou L, Zhu H, Bai X, Huang J, Chen Y, Wen J, Li X, Wu B, Tan Y, Tian M, Ren J, Li M, Yang Q. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Res Ther 2022; 13:195. [PMID: 35551643 PMCID: PMC9096773 DOI: 10.1186/s13287-022-02876-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in the world. Currently, most patients cannot choose intravenous thrombolysis or intravascular mechanical thrombectomy because of narrow therapeutic windows and severe complications. Stem cell transplantation is an emerging treatment and has been studied in various central nervous system diseases. Animal and clinical studies showed that transplantation of mesenchymal stem cells (MSCs) could alleviate neurological deficits and bring hope for ischemic stroke treatment. This article reviewed biological characteristics, safety, feasibility and efficacy of MSCs therapy, potential therapeutic targets of MSCs, and production process of Good Manufacturing Practices-grade MSCs, to explore the potential therapeutic targets of MSCs in the process of production and use and provide new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Huimin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xue Bai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, The First People's Hospital of Neijiang, Sichuan, 64100, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Bowen Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongjun Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mengxia Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
16
|
Abstract
Stroke remains a significant unmet clinical need with few treatment options that have a very narrow therapeutic window, thereby causing massive mortality and morbidity in the United States and around the world. Accordingly, finding safe and effective novel treatments with a wider therapeutic window stands as an urgent need in stroke. The progressive inflammation that occurs centrally and peripherally after stroke serves as a unique therapeutic target to retard and even halt the secondary cell death. Stem cell therapy represents a potent approach that can diminish inflammation in both the stroke brain and periphery (eg, spleen), advancing a paradigm shift from a traditionally brain-focused therapy to treating stroke as a neurological disorder with a significant peripheral pathology. The purpose of this review article is to highlight the inflammation-mediated secondary cell death that plagues both brain and spleen in stroke and to evaluate the therapeutic potential of stem cell therapy in dampening these inflammatory responses.
Collapse
Affiliation(s)
- Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Dorothy Cabantan
- Michigan State University College of Osteopathic Medicine, 965 Wilson Rd, East Lansing, MI 48824, USA
| | - Molly Monsour
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Tsai YR, Kim DS, Hsueh SC, Chen KY, Wu JCC, Wang JY, Tsou YS, Hwang I, Kim Y, Gil D, Jo EJ, Han BS, Tweedie D, Lecca D, Scerba MT, Selman WR, Hoffer BJ, Greig NH, Chiang YH. 3,6'- and 1,6'-Dithiopomalidomide Mitigate Ischemic Stroke in Rats and Blunt Inflammation. Pharmaceutics 2022; 14:950. [PMID: 35631536 PMCID: PMC9146426 DOI: 10.3390/pharmaceutics14050950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 01/20/2023] Open
Abstract
(1) Background: An important concomitant of stroke is neuroinflammation. Pomalidomide, a clinically available immunomodulatory imide drug (IMiD) used in cancer therapy, lowers TNF-α generation and thus has potent anti-inflammatory actions. Well-tolerated analogs may provide a stroke treatment and allow evaluation of the role of neuroinflammation in the ischemic brain. (2) Methods: Two novel pomalidomide derivatives, 3,6'-dithiopomalidomide (3,6'-DP) and 1,6'-dithiopomalidomide (1,6'-DP), were evaluated alongside pomalidomide in a rat middle cerebral artery occlusion (MCAo) stroke model, and their anti-inflammatory actions were characterized. (3) Results: Post-MCAo administration of all drugs lowered pro-inflammatory TNF-α and IL1-β levels, and reduced stroke-induced postural asymmetry and infarct size. Whereas 3,6'- and 1,6'-DP, like pomalidomide, potently bound to cereblon in cellular studies, 3,6'-DP did not lower Ikaros, Aiolos or SALL4 levels-critical intermediates mediating the anticancer/teratogenic actions of pomalidomide and IMiDs. 3,6'-DP and 1,6'-DP lacked activity in mammalian chromosome aberration, AMES and hERG channel assays -critical FDA regulatory tests. Finally, 3,6'- and 1,6'-DP mitigated inflammation across rat primary dopaminergic neuron and microglia mixed cultures challenged with α-synuclein and mouse LPS-challenged RAW 264.7 cells. (4) Conclusion: Neuroinflammation mediated via TNF-α plays a key role in stroke outcome, and 3,6'-DP and 1,6'-DP may prove valuable as stroke therapies and thus warrant further preclinical development.
Collapse
Affiliation(s)
- Yan-Rou Tsai
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Dong Seok Kim
- Aevisbio Inc., Gaithersburg, MD 20878, USA;
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Kai-Yun Chen
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - John Chung-Che Wu
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jia-Yi Wang
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Yi-Syue Tsou
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Inho Hwang
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Yukyung Kim
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Dayeon Gil
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Eui Jung Jo
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Baek-Soo Han
- Research Center for Biodefence, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea;
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, USA; (W.R.S.); (B.J.H.)
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, USA; (W.R.S.); (B.J.H.)
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Yung-Hsiao Chiang
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
18
|
Yu H, Cai Y, Zhong A, Zhang Y, Zhang J, Xu S. The "Dialogue" Between Central and Peripheral Immunity After Ischemic Stroke: Focus on Spleen. Front Immunol 2022; 12:792522. [PMID: 34975893 PMCID: PMC8717871 DOI: 10.3389/fimmu.2021.792522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
The immune response generated by the body after the incidence of ischemic stroke, runs through the comprehensive process of aftermath. During this process of ischemic stroke, the central neuroinflammation and peripheral immune response seriously affect the prognosis of patients, which has been the focus of research in recent years. As this research scenario progressed, the "dialogue" between central nervous inflammation and peripheral immune response after ischemic stroke has become more closely related. It's worth noting that the spleen, as an important peripheral immune organ, plays a pivotal role in this dialogue. Multiple mechanisms have previously been reported for brain-spleen crosstalk after ischemic stroke. Further, neuroinflammation in the brain can affect the peripheral immune state by activating/inhibiting spleen function. However, the activation of the peripheral immune inflammatory response can work reversibly in the spleen. It further affects intracerebral neuroinflammation through the injured blood-brain barrier. Therefore, paying close attention to the role of spleen as the pivot between central and peripheral immunity in ischemic stroke may help to provide a new target for immune intervention in the treatment of ischemic stroke. In the present review, we reviewed the important role of spleen in central neuroinflammation and peripheral immune response after ischemic stroke. We summarized the relevant studies and reports on spleen as the target of immune intervention which can provide new ideas for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongchen Yu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aiqin Zhong
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese, Tianjin, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
19
|
Kingsbury C, Shear A, Heyck M, Sadanandan N, Zhang H, Gonzales-Portillo B, Cozene B, Sheyner M, Navarro-Torres L, García-Sánchez J, Lee JY, Borlongan CV. Inflammation-relevant microbiome signature of the stroke brain, gut, spleen, and thymus and the impact of exercise. J Cereb Blood Flow Metab 2021; 41:3200-3212. [PMID: 34427146 PMCID: PMC8669279 DOI: 10.1177/0271678x211039598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stroke remains a significant unmet need in the clinic with few therapeutic options. We, and others, have implicated the role of inflammatory microbiota in stroke secondary cell death. Elucidating this inflammation microbiome as a biomarker may improve stroke diagnosis and treatment. Here, adult Sprague-Dawley rats performed 30 minutes of exercise on a motorized treadmill for 3 consecutive days prior to transient middle cerebral artery occlusion (MCAO). Stroke animals that underwent exercise showed 1) robust behavioral improvements, 2) significantly smaller infarct sizes and increased peri-infarct cell survival and 3) decreasing trends of inflammatory microbiota BAC303, EREC482, and LAB158 coupled with significantly reduced levels of inflammatory markers ionized calcium binding adaptor molecule 1, tumor necrosis factor alpha, and mouse monoclonal MHC Class II RT1B in the brain, gut, spleen, and thymus compared to non-exercised stroke rats. These results suggest that a specific set of inflammatory microbiota exists in central and peripheral organs and can serve as a disease biomarker and a therapeutic target for stroke.
Collapse
Affiliation(s)
- Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro-Torres
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
20
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
21
|
Cho JY, Matsukawa N. The unsolved mystery of hippocampal cholinergic neurostimulating peptide: A potent cholinergic regulator. Brain Circ 2021; 7:29-32. [PMID: 34084974 PMCID: PMC8057103 DOI: 10.4103/bc.bc_14_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022] Open
Abstract
Cholinergic efferent networks located from the medial septal nucleus to the hippocampus play a pivotal role in learning and memory outcomes by generating regular theta rhythms that enhance information retention. Hippocampal cholinergic neurostimulating peptide (HCNP), derived from the N-terminus of HCNP precursor protein (HCNP-pp), promotes the synthesis of acetylcholine in the medial septal nuclei. HCNP-pp deletion significantly reduced theta power in CA1 possibly due to lower levels of choline acetyltransferase-positive axons in CA1 stratum oriens, suggesting cholinergic disruptions in the septo-hippocampal system. This review also explores HCNP as a potent cholinergic regulator in the septo-hippocampal network while also examining the limitations of our understanding of the neurostimulating peptide.
Collapse
Affiliation(s)
- Justin Y Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | |
Collapse
|
22
|
Liang J, Cui R, Wang J, Shen J, Chen Y, Cao M, Ke K. Intracarotid Transplantation of Skin-Derived Precursor Schwann Cells Promotes Functional Recovery After Acute Ischemic Stroke in Rats. Front Neurol 2021; 12:613547. [PMID: 33633668 PMCID: PMC7902026 DOI: 10.3389/fneur.2021.613547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose: Skin-derived Precursor Schwann cells (SKP-SCs) have been reported to provide neuroprotection for the injured and dysmyelinated nervous system. However, little is known about SKP-SCs on acute ischemic stroke (AIS). We aimed to explore the efficacy and the potential mechanism of action of SKP-SCs on AIS in a rat ischemic stroke model. Methods: Adult male Sprague–Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) for 1.5 h on Day 0 and subsequently received an intracarotid injection of 2 × 106 green fluorescent protein (GFP) -labeled SKP-SCs or phosphate buffered saline (PBS) during reperfusion. Neurological function was assessed by behavioral tests on Days 1, 4, 7, 14, and 28. In a satellite cohort, rat brains were harvested and infarct volume was measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining on Days 1 and 7, and migration and survival of SKP-SCs in the brain were traced by monitoring green fluorescence at 6 and12 h on Day 0, and on Days 1, 4, 7, 14, and 28. Histopathology and immunofluorescence staining were used to analyze the morphology, survival and apoptosis of neurons. Additionally, in an in vitro SKP-SC co-culture model using fetal rat primary cortical neurons underwent oxygen glucose deprivation/reoxygenation (OGD/R), Western blot was used to detect the expression of apoptosis indicators including activated caspase-3, Bax, and Bcl-2. TUNEL staining was used to count apoptotic cells. Results: Intracarotid transplantation of SKP-SCs effectively migrated to the periinfarct area and survived for at least 4 weeks. Transplanted SKP-SCs inhibited neuronal apoptosis, reduced infarct volume, and improved neurological recovery in the MCAO rats. Moreover, in vitro data showed that SKP-SCs treatment inhibited OGD/R-induced neuronal apoptosis and promoted survival of the cultured primary cortical neurons. Conclusions: Intracarotid transplantation of SKP-SCs promoted functional recovery in the rat AIS model and possesses the potential to be further developed as a novel therapy to treat ischemic stroke in humans.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ronghui Cui
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University, Nantong, China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
23
|
Gonzales-Portillo BM, Lee JY, Vandenbark AA, Offner H, Borlongan CV. Major histocompatibility complex Class II-based therapy for stroke. Brain Circ 2021; 7:37-40. [PMID: 34084976 PMCID: PMC8057100 DOI: 10.4103/bc.bc_16_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022] Open
Abstract
This review discusses the potential of major histocompatibility complex (MHC) Class II constructs as stroke therapeutics. We focus on the delivery of MHC Class II construct, DRmQ, as a safe and effective treatment for ischemic stroke. DRmQ was observed to attenuate behavioral deficits and decrease microglia activation and proinflammatory cytokines, illustrating its ability to mitigate the secondary cell death following stroke. Similar anti-neuroinflammation treatments, such as transplantation of mesenchymal stem cells and mitochondrial transfers, are briefly discussed to provide further support that sequestration of inflammation stands as a robust therapeutic target for stroke.
Collapse
Affiliation(s)
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Arthur A. Vandenbark
- Department of Veterans Affairs, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology and Anaesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Halina Offner
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
24
|
Lee JY, Castelli V, Bonsack B, Coats AB, Navarro-Torres L, Garcia-Sanchez J, Kingsbury C, Nguyen H, Vandenbark AA, Meza-Romero R, Offner H, Borlongan CV. A Novel Partial MHC Class II Construct, DRmQ, Inhibits Central and Peripheral Inflammatory Responses to Promote Neuroprotection in Experimental Stroke. Transl Stroke Res 2020; 11:831-836. [PMID: 31797249 PMCID: PMC10166182 DOI: 10.1007/s12975-019-00756-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Recognizing that the pathologic progression of stroke is closely associated with aberrant immune responses, in particular the activation of peripheral leukocytes, namely T cells, we hypothesized that finding a treatment designed to inhibit neuroantigen-specific T cells and block cytotoxic monocytes and macrophages may render therapeutic effects in stroke. We previously reported that subcutaneous administration of partial MHC class II constructs promote behavioral and histological effects in stroke mice by centrally promoting a protective M2 macrophage/microglia phenotype in the CNS and peripherally reversing stroke-associated splenic atrophy. Here, we employed a second species using adult Sprague-Dawley rats exposed to the middle cerebral artery occlusion stroke model and observed similar therapeutic effects with a mouse partial MHC class II construct called DRmQ, as evidenced by reductions in stroke-induced motor deficits, infarcts, and peri-infarct cell loss and neuroinflammation. More importantly, we offered further evidence of peripheral sequestration of inflammation at the level of the spleen, which was characterized by attenuation of stroke-induced spleen weight reduction and TNF-ɑ and IL-6 upregulation. Collectively, these results satisfy the Stroke Therapy Academic Industry Roundtable criteria of testing a novel therapeutic in a second species and support the use of partial MHC class II constructs as a stroke therapeutic designed to sequester both central and peripheral inflammation responses in an effort to retard, or even halt, the neuroinflammation that exacerbates the secondary cell death in stroke.
Collapse
Affiliation(s)
- Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vanessa Castelli
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Alexandreya B Coats
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Lisset Navarro-Torres
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Julian Garcia-Sanchez
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Hung Nguyen
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710, SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology and Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710, SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology and Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710, SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology and Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
25
|
Brown J, Kingsbury C, Lee J, Vandenbark AA, Meza‐Romero R, Offner H, Borlongan CV. Spleen participation in partial MHC class II construct neuroprotection in stroke. CNS Neurosci Ther 2020; 26:663-669. [PMID: 32237074 PMCID: PMC7298973 DOI: 10.1111/cns.13369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pathological progression of stroke in the peripheral and central nervous systems (PNS and CNS) is characterized by multiple converging signalling pathways that exacerbate neuroinflammation-mediated secondary cell death. This creates a need for a novel type of immunotherapy capable of simultaneously lowering the synergistic inflammatory responses in the PNS and CNS, specifically the spleen and brain. Previously, we demonstrated that partial major histocompatibility complex (MHC) class II constructs can be administered subcutaneously to promote histological and behavioural effects that alleviate common symptoms found in a murine model of transient stroke. This MHC class II manipulates T cell cytokine expression in both PNS and CNS, resulting in dampened inflammation. In our long-standing efforts towards translational research, we recently demonstrated that a potent next generation mouse-based partial MHC class II construct named DRmQ (DRa1L50Q -mMOG-35-55) similarly induces neuroprotection in stroke rats, replicating the therapeutic effects of the human homolog as DRhQ (DRa1L50Q -human (h)MOG-35-55) in stroke mice. Our preclinical studies showed that DRmQ reduces motor deficits, infarct volume and peri-infarct cell loss by targeting inflammation in this second species. Moreover, we provided mechanistic support in both animal studies that partial MHC class II constructs effectively modulate the spleen, an organ which plays a critical role in modulating secondary cell death. Together, these preclinical studies satisfy testing the constructs in two stroke models, which is a major criterion of the Stroke Therapy Academic Industry Roundtable (STAIR) criteria and a key step in effectively translating this drug to the clinic. Additional translational studies, including dose-response and larger animal models may be warranted to bring MHC class II constructs closer to the clinic.
Collapse
Affiliation(s)
- John Brown
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| | - Chase Kingsbury
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| | - Jea‐Young Lee
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| | - Arthur A. Vandenbark
- Neuroimmunology Research R&D‐31VA Portland Health Care SystemPortlandORUSA,Department of Neurology and Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Roberto Meza‐Romero
- Neuroimmunology Research R&D‐31VA Portland Health Care SystemPortlandORUSA,Department of Neurology and Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Halina Offner
- Neuroimmunology Research R&D‐31VA Portland Health Care SystemPortlandORUSA,Department of Neurology and Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| |
Collapse
|
26
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
27
|
Kaneko Y, Coats AB, Tuazon JP, Jo M, Borlongan CV. Rhynchophylline promotes stem cell autonomous metabolic homeostasis. Cytotherapy 2020; 22:106-113. [PMID: 31983606 DOI: 10.1016/j.jcyt.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Rhynchophylline (Rhy) effectively obstructs the expansive signaling pathways of degenerative diseases, including Alzheimer disease, Parkinson disease, epilepsy and amyotrophic lateral sclerosis, and stimulates neurogenesis. Maintenance of stemness and cell proliferation requires sophisticated intracellular environments to achieve pluripotency via specific expression of genes and proteins. We examined whether Rhy promotes this regulation in bone marrow human mesenchymal stromal cells (BM-hMSCs). Results revealed (i) Rhy modulated biological activity by regulating the mitochondria, N-methyl-D-aspartate receptor subunit, and levels of FGFβ (basic fibroblast growth factor), BDNF (brain-derived neurotrophic factor), OXTR (oxytocin receptor) and ATP (Adenosine triphosphate); (ii) Rhy altered expression level of BM-MSC proliferation/differentiation-related transcription genes; and (iii) interestingly, Rhy amplified the glycolytic flow ratio and lactate dehydrogenase activity while reducing pyruvate dehydrogenase activity, indicating a BM-hMSC metabolic shift of mitochondrial oxidative phosphorylation into aerobic glycolysis. Altogether, we demonstrated a novel mechanism of action for Rhy-induced BM-hMSC modification, which can enhance the cell transplantation approach by amplifying the metabolic activity of stem cells.
Collapse
Affiliation(s)
- Yuji Kaneko
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA
| | - Alexandreya B Coats
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA
| | - Michiko Jo
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA.
| |
Collapse
|
28
|
Heyck M, Bonsack B, Zhang H, Sadanandan N, Cozene B, Kingsbury C, Lee JY, Borlongan CV. The brain and eye: Treating cerebral and retinal ischemia through mitochondrial transfer. Exp Biol Med (Maywood) 2019; 244:1485-1492. [PMID: 31604382 DOI: 10.1177/1535370219881623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke remains a devastating disease with limited treatment options, despite our growing understanding of its pathology. While ischemic stroke is traditionally characterized by a blockage of blood flow to the brain, this may coincide with reduced blood circulation to the eye, resulting in retinal ischemia, which may in turn lead to visual impairment. Although effective treatment options for retinal ischemia are similarly scarce, new evidence suggests that deleterious changes to mitochondrial structure and function play a major role in both cerebral and retinal ischemia pathologies. Prior studies establish that astrocytes transfer healthy mitochondria to ischemic neurons following stroke; however, this alone is not enough to significantly mitigate the damage caused by primary and secondary cell death. Thus, stem cell-based regenerative medicine targeting amelioration of ischemia-induced mitochondrial dysfunction via the transfer of functional mitochondria to injured neural cells represents a promising approach to improve stroke outcomes for both cerebral and retinal ischemia. In this review, we evaluate recent laboratory evidence supporting the remedial capabilities of mitochondrial transfer as an innovative stroke treatment. In particular, we examine exogenous stem cell transplants in their potential role as suppliers of healthy mitochondria to neurons, brain endothelial cells, and retinal cells.Impact statementStroke constitutes a global health crisis, yet potent, applicable therapeutic options remain effectively inaccessible for many patients. To this end, stem cell transplants stand as a promising stroke treatment and as an emerging subject of research for cell-based regenerative medicine. This is the first review to synthesize the implications of stem cell-derived mitochondrial transfer in both the brain and the eye. As such, this report carries fresh insight into the commonalities between the two stroke-affected organs. We present the findings of this developing area of research inquiry with the hope that our evaluation may advance the use of stem cell transplants as viable therapeutic alternatives for ischemic stroke and related disorders characterized by mitochondrial dysfunction. Such lab-to-clinic translational advancement has the potential to save and improve the ever increasing millions of lives affected by stroke.
Collapse
Affiliation(s)
- Matt Heyck
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Blaise Cozene
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
29
|
Zhang H, Lee JY, Borlongan CV, Tajiri N. A brief physical activity protects against ischemic stroke. Brain Circ 2019; 5:112-118. [PMID: 31620657 PMCID: PMC6785942 DOI: 10.4103/bc.bc_32_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
With restricted therapeutic opportunities, stroke remains a relevant, critical disease necessitating study. Due to the unique aspect of ischemic strokes, finding approaches to maintain the vigor of the cerebral vasculature, such as increased angiogenesis, may protect against stroke. Ischemic strokes are caused by disruptions in blood movement in the brain, resulting in a torrent of harmful cerebrovasculature modifications. In an investigation by Pianta et al., Sprague-Dawley rats have been separated into those that undergo exercise prior to middle cerebral artery occlusion (MCAO) and those that were not exposed to physical activity preceding MCAO. The outcomes and results of the current study gave new insights into the capacity of exercise to help prevent ischemic strokes or mitigate poststroke effects. The data collected from the study suggested that rats that went through a short bout of exercise before MCAO presented superior motor performance, more active cells in the peri-infarct region, and reduced infarct sizes. When compared to the control group, the rats that went through exercise also had heightened angiogenesis and improved neuroprotection. Thus, a brief bout of physical activity preceding a stroke may provide neuroprotection by enhancing the strength of the cerebrovasculature in the brain. This notion that even an instant of physical exercise before a stroke is induced can help dampen the effects of ischemic stroke, which could lead to future techniques in preventing the ischemic stroke so that it never happens at all.
Collapse
Affiliation(s)
- Henry Zhang
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| |
Collapse
|
30
|
Tuazon JP, Castelli V, Borlongan CV. Drug-like delivery methods of stem cells as biologics for stroke. Expert Opin Drug Deliv 2019; 16:823-833. [PMID: 31311344 DOI: 10.1080/17425247.2019.1645116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Stem cell therapy is an experimental treatment for brain disorders. Although a cellular product, stem cells can be classified as biologics based on the cells' secretion of therapeutic substances. Treatment with stem cell biologics may appeal to stroke because of the secondary cell death mechanisms, especially neuroinflammation, that are rampant from the onset and remain elevated during the progressive phase of the disease requiring multi-pronged biological targets to effectively abrogate the neurodegenerative pathology. However, the optimal delivery methods, among other logistical approaches (i.e. cell doses and timing of intervention), for stem cell therapy will need to be refined before stem cell biologics can be successfully utilized for stroke in large scale clinical trials. Areas covered: In this review, we discuss how the innate qualities of stem cells characterize them as biologics, how stem cell transplantation may be an ideal treatment for stroke, and the various routes of stem cell administration that have been employed in various preclinical and clinical investigations. Expert opinion: There is a need to optimize the delivery of stem cell biologics for stroke in order to guide the safe and effective translation of this therapy from the laboratory to the clinic.
Collapse
Affiliation(s)
- Julian P Tuazon
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| | - Vanessa Castelli
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| | - Cesar V Borlongan
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| |
Collapse
|
31
|
Borlongan CV. Concise Review: Stem Cell Therapy for Stroke Patients: Are We There Yet? Stem Cells Transl Med 2019; 8:983-988. [PMID: 31099181 PMCID: PMC6708064 DOI: 10.1002/sctm.19-0076] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Four decades of preclinical research demonstrating survival, functional integration, and behavioral effects of transplanted stem cells in experimental stroke models have provided ample scientific basis for initiating limited clinical trials of stem cell therapy in stroke patients. Although safety of the grafted cells has been overwhelmingly documented, efficacy has not been forthcoming. Two recently concluded stroke clinical trials on mesenchymal stem cells (MSCs) highlight the importance of strict adherence to the basic science findings of optimal transplant regimen of cell dose, timing, and route of delivery in enhancing the functional outcomes of cell therapy. Echoing the Stem Cell Therapeutics as an Emerging Paradigm for Stroke and Stroke Treatment Academic Industry Roundtable call for an NIH‐guided collaborative consortium of multiple laboratories in testing the safety and efficacy of stem cells and their derivatives, not just as stand‐alone but preferably in combination with approved thrombolytic or thrombectomy, may further increase the likelihood of successful fruition of translating stem cell therapy for stroke clinical application. The laboratory and clinical experience with MSC therapy for stroke may guide the future translational research on stem cell‐based regenerative medicine in neurological disorders. stem cells translational medicine2019;8:983&988
Collapse
Affiliation(s)
- Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
32
|
Pianta S, Lee JY, Tuazon JP, Castelli V, Mantohac LM, Tajiri N, Borlongan CV. A Short Bout of Exercise Prior to Stroke Improves Functional Outcomes by Enhancing Angiogenesis. Neuromolecular Med 2019; 21:517-528. [PMID: 30941660 PMCID: PMC6882782 DOI: 10.1007/s12017-019-08533-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 12/30/2022]
Abstract
Stroke remains a significant unmet clinical need with limited therapeutic options. The peculiar feature of ischemic stroke is the interruption in brain circulation, resulting in a cascade of detrimental cerebrovasculature alterations. Treatment strategies designed to maintain potency of the cerebrovasculature may protect against stroke. The present study assessed the effects of short bouts of exercise prior to stroke induction and characterized cerebral blood flow and motor functions in vivo. Adult Sprague-Dawley rats were exposed to a single short bout of exercise (30-min or 60-min forced running wheel) then subjected to transient middle cerebral artery occlusion (MCAO). Non-exercise stroke rats served as controls while non-stroke rats represented shams. Cerebral blood flow (CBF) was evaluated by laser Doppler at baseline (prior to MCAO), during MCAO, and during reperfusion. Behavioral tests using the elevated body swing test was conducted at baseline, day 0 (day of stroke), and at days 1 and 3 after stroke. Animals that received exercise displayed typical alterations in CBF after stroke, but exhibited improved motor performance compared to non-exercise rats. Exercised stroke rats showed a reduction in infarct size and an increased number of surviving cells in the peri-infarct area, with a trend towards prolonged duration of the exercise. Immunofluorescence staining and Western blot analysis of the peri-infarct area revealed increased levels of endothelial markers/angiogenesis markers, VEGF, VEGFR-2, and Ang-2, and endothelial progenitor cell marker CD34+ in exercise groups compared with the controls. These results demonstrated that prophylactic exercise affords neuroprotection possibly by improving cerebrovascular potency.
Collapse
Affiliation(s)
- Stefano Pianta
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Jea Young Lee
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vanessa Castelli
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Leigh Monica Mantohac
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Naoki Tajiri
- Department of Neurophysiology & Brain Science, Graduate School of Medical Sciences & Medical School, Nagoya City University, Nagoya, 467-8601, Japan
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
33
|
Killinger B, Labrie V. The Appendix in Parkinson's Disease: From Vestigial Remnant to Vital Organ? JOURNAL OF PARKINSON'S DISEASE 2019; 9:S345-S358. [PMID: 31609697 PMCID: PMC6839473 DOI: 10.3233/jpd-191703] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/13/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) has long been considered a brain disease, but studies now point to the gastrointestinal (GI) tract as a potential starting point for PD. In particular, the human vermiform appendix has been implicated in PD. The appendix is a tissue rich in immune cells, serving as part of the gut-associated lymphoid tissue and as a storehouse for the gut microbiome. The functions of the appendix converge with recent evidence demonstrating that gut inflammation and shifts in the microbiome are linked to PD. Some epidemiological studies have linked removal of the appendix to lowered PD risk, though there is controversy among these associations. What is apparent is that there is an abundance of aggregated forms of α-synuclein in the appendix relevant to PD pathology. α-Synuclein pathology is thought to propagate from gut to brain via the vagus nerve, which innervates GI tract locations, including the appendix. Remarkably, α-synuclein aggregates in the appendix occur not only in PD patients, but are also present in healthy individuals. This has led to the proposal that in the appendix α-synuclein aggregates are not unique to PD. Moreover, the molecular events leading to PD and the mechanisms by which α-synuclein aggregates transfers from gut to brain may be identifiable in the human appendix. The influence of the appendix on GI inflammation, autoimmunity, microbiome storage, and the lymphatic system may be yet unexplored mechanisms by which the appendix contributes to PD. Overall, the appendix represents a promising tissue site to advance our understanding of PD pathobiology.
Collapse
Affiliation(s)
- Bryan Killinger
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|