1
|
Oikonomou A, Watrin T, Valsecchi L, Scharov K, Savino AM, Schliehe-Diecks J, Bardini M, Fazio G, Bresolin S, Biondi A, Borkhardt A, Bhatia S, Cazzaniga G, Palmi C. Synergistic drug interactions of the histone deacetylase inhibitor givinostat (ITF2357) in CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia identified by high-throughput drug screening. Heliyon 2024; 10:e34033. [PMID: 39071567 PMCID: PMC11277435 DOI: 10.1016/j.heliyon.2024.e34033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Combining multiple drugs broadens the window of therapeutic opportunities and is crucial for diseases that are currently lacking fully curative treatments. A powerful emerging tool for selecting effective drugs and combinations is the high-throughput drug screening (HTP). The histone deacetylase inhibitor (HDACi) givinostat (ITF2357) has been shown to act effectively against CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), a subtype characterized by poor outcome and enriched in children with Down Syndrome, very fragile patients with a high susceptibility to treatment-related toxicity. The aim of this study is to investigate possible synergies with givinostat for these difficult-to-treat patients by performing HTP screening with a library of 174 drugs, either approved or in preclinical studies. By applying this approach to the CRLF2-r MHH-CALL-4 cell line, we identified 19 compounds with higher sensitivity in combination with givinostat compared to the single treatments. Next, the synergy between givinostat and the promising candidates was further validated in CRLF2r cell lines with a broad matrix of concentrations. The combinations with trametinib (MEKi) or venetoclax (BCL2i) were found to be the most effective and with the greatest synergy across three metrics (ZIP, HAS, Bliss). Their efficacy was confirmed in primary blasts treated ex vivo at concentration ranges with a safe profile on healthy cells. Finally, we described givinostat-induced modifications in gene expression of MAPK and BCL-2 family members, supporting the observed synergistic interactions. Overall, our study represents a model of drug repurposing strategy using HTP screening for identifying synergistic, efficient, and safe drug combinations.
Collapse
Affiliation(s)
| | - Titus Watrin
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Luigia Valsecchi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Angela Maria Savino
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Julian Schliehe-Diecks
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
2
|
Hosseini SA, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. Epigenetic disruption of histone deacetylase-2 accelerated apoptotic signaling and retarded malignancy in gastric cells. Epigenomics 2024; 16:277-292. [PMID: 38356395 DOI: 10.2217/epi-2023-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background: The objective of this research was to determine whether HDAC2 function is associated with gastric cancer progression. Methods: HDAC2 was knocked out in EPG85.257 cells using CRISPR/Cas9 and tumorigenesis pathways were evaluated. Results: Cell proliferation, colony formation, wound healing and transwell invasion were inhibited in ΔHDAC2:EPG85.257 cells. Quantitative analyses revealed a significant downregulation of MMP1, p53, Bax, MAPK1, MAPK3, pro-Caspase3, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, p-NF-κB (p65), Twist, Snail and p-FAK transcripts/proteins, while SIRT1, PTEN, p21 and Caspase3 were upregulated in ΔHDAC2:EPG85.257 cells. Conclusion: These results indicated that HDAC2 enhanced migration, colony formation and transmigration ability. HDAC2 inhibition may improve gastric cancer chemotherapy pathways.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Ferro A, Pantazaka E, Athanassopoulos CM, Cuendet M. Histone deacetylase-based dual targeted inhibition in multiple myeloma. Med Res Rev 2023; 43:2177-2236. [PMID: 37191917 DOI: 10.1002/med.21972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Despite enormous advances in terms of therapeutic strategies, multiple myeloma (MM) still remains an incurable disease with MM patients often becoming resistant to standard treatments. To date, multiple combined and targeted therapies have proven to be more beneficial compared to monotherapy approaches, leading to a decrease in drug resistance and an improvement in median overall survival in patients. Moreover, recent breakthroughs highlighted the relevant role of histone deacetylases (HDACs) in cancer treatment, including MM. Thus, the simultaneous use of HDAC inhibitors with other conventional regimens, such as proteasome inhibitors, is of interest in the field. In this review, we provide a general overview of HDAC-based combination treatments in MM, through a critical presentation of publications from the past few decades related to in vitro and in vivo studies, as well as clinical trials. Furthermore, we discuss the recent introduction of dual-inhibitor entities that could have the same beneficial effects as drug combinations with the advantage of having two or more pharmacophores in one molecular structure. These findings could represent a starting-point for both reducing therapeutic doses and lowering the risk of developing drug resistance.
Collapse
Affiliation(s)
- Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras, Greece
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology, and Development, Department of Biology, University of Patras, Patras, Greece
| | | | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Tagoug A, Safra I. The Impact of Panobinostat on Cell Death in Combination with S63845 in Multiple Myeloma Cells. Indian J Hematol Blood Transfus 2023; 39:245-257. [PMID: 37006981 PMCID: PMC10064410 DOI: 10.1007/s12288-022-01584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/13/2022] [Indexed: 01/03/2023] Open
Abstract
Multiple myeloma is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. The Overexpression of histone deacetylase prevents apoptosis of myeloma cells by different mechanisms. The combination of Panobinostat with a BH3 mimetic, S63845, has demonstrated significant antitumor activity in multiple myeloma. We examined the impact of Panobinostat combined with MCL-1 inhibitor on multiple myeloma cell lines in vivo and in vitro as well as on fresh human myeloma cells. Our study shows that MCL-1 remains a major resistant factor to cell death induced by Panobinostat. Therefore, the inhibition of the MCL-1 member is considered a therapeutic strategy to kill the myeloma cells. We examined that the MCL-1 inhibitor (S63845) enhanced the cytotoxic effect of Panobinostat and decreased the viability of human cell lines and primary myeloma patient cells. Mechanistically, Panobinostat/S63845 control cell death via an intrinsic pathway. Given these data, the combination can be a promising therapeutic target for myeloma patients and should be further explored in clinical trials.
Collapse
Affiliation(s)
- Arwa Tagoug
- Laboratory of Molecular and Cellular Hematology, LR6IPT07, Pasteur Institute of Tunis, 13 Place Pasteur BP 74, 1002 Tunis Belvedere, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Ines Safra
- Laboratory of Molecular and Cellular Hematology, LR6IPT07, Pasteur Institute of Tunis, 13 Place Pasteur BP 74, 1002 Tunis Belvedere, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Kim SJ, Kim S, Choi YJ, Kim UJ, Kang KW. CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy. Biomol Ther (Seoul) 2022; 30:435-446. [PMID: 35794797 PMCID: PMC9424334 DOI: 10.4062/biomolther.2022.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anti-cancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - U Ji Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol 2022; 12:755053. [PMID: 35372044 PMCID: PMC8970599 DOI: 10.3389/fonc.2022.755053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted therapy has revolutionized the landscape of cancer treatment due to better therapeutic responses and less systemic toxicity. However, therapeutic resistance is a major challenge in clinical settings that hinders continuous clinical benefits for cancer patients. In this regard, unraveling the mechanisms of drug resistance may identify new druggable genetic alterations for molecularly targeted therapies, thus contributing to improved therapeutic efficacies. The recent rapid development of novel methodologies including CRISPR-Cas9 screening technology and patient-derived models provides powerful tools to dissect the underlying mechanisms of resistance to targeted cancer therapies. In this review, we updated therapeutic targets undergoing preclinical and clinical evaluation for various cancer types. More importantly, we provided comprehensive elaboration of high throughput CRISPR-Cas9 screening in deciphering potential mechanisms of unresponsiveness to molecularly targeted therapies, which will shed light on the discovery of novel opportunities for designing next-generation anti-cancer drugs.
Collapse
Affiliation(s)
- Jue Hou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
8
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Kulbay M, Paimboeuf A, Ozdemir D, Bernier J. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J Cell Biochem 2021; 123:1736-1761. [PMID: 34791699 DOI: 10.1002/jcb.30173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The apoptosis pathway is a programmed cell death mechanism that is crucial for cellular and tissue homeostasis and organ development. There are three major caspase-dependent pathways of apoptosis that ultimately lead to DNA fragmentation. Cancerous cells are known to highly regulate the apoptotic pathway and its role in cancer hallmark acquisition has been discussed over the past decades. Numerous mutations in cancer cell types have been reported to be implicated in chemoresistance and treatment outcome. In this review, we summarize the mutations of the caspase-dependant apoptotic pathways that are the source of cancer development and the targeted therapies currently available or in trial.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada.,Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Adeline Paimboeuf
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Derman Ozdemir
- Department of Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, New York, USA
| | - Jacques Bernier
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
10
|
Gao F, Lin MS, You JS, Zhang MY, Cheng L, Lin K, Zhao P, Chen QY. Long-term outcomes of busulfan plus melphalan-based versus melphalan 200 mg/m 2 conditioning regimens for autologous hematopoietic stem cell transplantation in patients with multiple myeloma: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:601. [PMID: 34758834 PMCID: PMC8579671 DOI: 10.1186/s12935-021-02313-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background High-dose melphalan (HDMEL, 200 mg/m2) is considered as the standard conditioning regimen for autologous hematopoietic stem cell transplantation (auto-HSCT) in multiple myeloma (MM). However, whether the combination of melphalan with busulfan (BUMEL) conditioning outperforms HDMEL remains controversy. Accordingly, a systematic review and meta-analysis was carried out to compare the outcomes of HDMEL and BUMEL-based conditioning regimens in newly diagnosed MM patients having undergone auto-HSCT. Methods A systematic literature search was conducted in PubMed, Embase and Cochrane Library database until July 31, 2021, to identify all eligible studies comparing progression-free survival (PFS), overall survival (OS), optimal treatment response after auto-HSCT, duration of stem cell engraftment and incidence of toxic events between patients undergoing BUMEL-based and HDMEL conditioning regimens. Hazard ratio (HR), mean difference (MD) or odds ratio (OR) corresponding to 95% confidence interval (CI) were determined to estimate outcomes applying RevMan 5.4 software. Publication biases were assessed by performing Egger’s test and Begg’s test by Stata 15 software. Results Ten studies with a total of 2855 MM patients were covered in the current meta-analysis. The results of this study demonstrated that patients having received BUMEL-based regimen was correlated with longer PFS (HR 0.77; 95% CI 0.67~0.89, P = 0.0002) but similar OS (HR 1.08; 95% CI 0.92~1.26, P = 0.35) compared with those having received HDMEL. The differences of best treatment response after auto-HSCT and duration of neutrophil or platelet engraftment did not have statistical significance between the two groups of patients. With respect to adverse effects, the patients in BUMEL-based group were less frequently subject to gastrointestinal toxicity while the patients in HDMEL group less often experienced mucositis and infection. No significant difference was observed in hepatic toxicity between the two groups of patients. Conclusions In the present study, BUMEL-based conditioning was identified as a favorable regimen for a better PFS and equivalent OS as compared with HDMEL, which should be balanced against higher incidences of mucositis and infection. BUMEL-based conditioning is likely to act as an alternative strategy to more effectively improve auto-HSCT outcomes in MM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02313-z.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Mei-Si Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.,Sichuan Provincial Acupuncture School, Chengdu, 611731, China
| | - Jie-Shu You
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, Guangdong Province, China.
| | - Min-Yue Zhang
- Division of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Long Cheng
- Department of Cardiology, Gongli Hospital, Shanghai, 200135, China
| | - Ke Lin
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Peng Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Qi-Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
11
|
Zhang R, Wang H, Li E, Wu Y, Wen Y, Li C, Liao B, Ma Q. Quantitative phosphoproteomic analysis reveals chemoresistance-related proteins and signaling pathways induced by rhIL-6 in human osteosarcoma cells. Cancer Cell Int 2021; 21:581. [PMID: 34717622 PMCID: PMC8557500 DOI: 10.1186/s12935-021-02286-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background IL-6 plays a pivotal role in resistance to chemotherapeutics, including lobaplatin. However, the underlying mechanisms are still unclear. This study was to investigate the changes in phosphoproteins and their related signaling pathways in the process of IL-6-induced chemoresistance to lobaplain in osteosarcoma cells. Methods We performed a quantitative phosphoproteomic analysis of the response of SaOS-2 osteosarcoma cells to recombinant human IL-6 (rhIL-6) intervention prior to lobaplatin treatment. The cells were divided into the control group (Con), the lobaplatin group (Lob), and the rhIL-6-and-lobaplatin group (IL-6). Three biological replicates of each group were included. The differentially expressed phosphoproteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Netphos 3.1 was used for the prediction of kinases, and STRING was used for the visualization of protein–protein interactions. The conserved motifs surrounding the phosphorylated residues were analyzed using the motif-x algorithm. Western blot analysis was performed to verify the differential expression of p-FLNC, its predicted kinase and the related signaling pathway. The results of the bioinformatic analysis were validated by immunohistochemical staining of clinical specimens. Results In total, 3373 proteins and 12,183 peptides, including 3232 phosphorylated proteins and 11,358 phosphorylated peptides, were identified and quantified. Twenty-three significantly differentially expressed phosphoproteins were identified in the comparison between the IL-6 and Lob groups, and p-FLNC ranked second among these phosphoproteins. GO and KEGG analyses revealed the pivotal role of mitogen-activated protein kinase signaling in drug resistance induced by rhIL-6. Four motifs, namely, -SPxxK-, -RxxSP-, -SP-, and -SPK-, demonstrated higher expression in the IL-6 group than in the Lob group. The western blot analysis results verified the higher expression of p-FLNC, AKT1, and p-ERK and the lower expression of p-JNK in the IL-6 group than in the Con and Lob groups. The immunohistochemical staining results showed that p-FLNC, AKT1 and p-ERK1/2 were highly expressed in platinum-resistant clinical specimens but weakly expressed in platinum-sensitive specimens, and platinum-resistant osteosarcoma specimens demonstrated weak expression of p-JNK. Conclusions This phosphoproteomic study is the first to reveal the signature associated with rhIL-6 intervention before lobaplatin treatment in human osteosarcoma cells. p-FLNC, AKT1, and MAPK signaling contributes to resistance to lobaplatin in osteosarcoma SaOS-2 cells and may represent molecular targets to overcome osteosarcoma chemoresistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02286-z.
Collapse
Affiliation(s)
- Rui Zhang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Wang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Erliang Li
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yonghong Wu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chenyu Li
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Liao
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qiong Ma
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Targeting the Interplay between HDACs and DNA Damage Repair for Myeloma Therapy. Int J Mol Sci 2021; 22:ijms221910406. [PMID: 34638744 PMCID: PMC8508842 DOI: 10.3390/ijms221910406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells, and accounts for 10% of all hematologic malignancies and 1% of all cancers. MM is characterized by genomic instability which results from DNA damage with certain genomic rearrangements being prognostic factors for the disease and patients’ clinical response. Following genotoxic stress, the evolutionary conserved DNA damage response (DDR) is activated and, in turn, coordinates DNA repair with cell-cycle events. However, the process of carcinogenesis cannot be attributed only to the genetic alterations, but also involves epigenetic processes. Regulation of expression and activity of key players in DNA repair and checkpoint proteins are essential and mediated partly by posttranslational modifications (PTM), such as acetylation. Crosstalk between different PTMs is important for regulation of DNA repair pathways. Acetylation, which is mediated by acetyltransferases (HAT) and histone deacetylases (HDAC), not only affects gene expression through its modulation of histone tails but also has recently been implicated in regulating non-histone proteins. Currently, several HDAC inhibitors (HDACi) have been developed both in pre-clinical and clinical studies, with some of them exhibiting significant anti-MM activities. Due to reversibility of epigenetic changes during the evolutionary process of myeloma genesis, the potency of epigenetic therapies seems to be of great importance. The aim of the present paper is the summary of all data on the role of HDACi in DDR, the interference with each DNA repair mechanism and the therapeutic implications of HDACi in MM.
Collapse
|
13
|
Zeng Z, Lin J, Zhang K, Guo X, Zheng X, Yang A, Chen J. Single cell RNA-seq data and bulk gene profiles reveal a novel signature of disease progression in multiple myeloma. Cancer Cell Int 2021; 21:511. [PMID: 34563174 PMCID: PMC8465778 DOI: 10.1186/s12935-021-02190-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023] Open
Abstract
Background The development of multiple myeloma (MM) is considered to involve a multistep transformation process, but the role of cytogenetic abnormalities and molecular alterations in determining the cell fate of multiple myeloma (MM) remains unclear. Here, we have analyzed single cell RNA-seq data and bulk gene profiles to reveal a novel signature associated with MM development. Methods The scRNA-seq data from GSE118900 was used to profile the transcriptomes of cells from MM patients at different stages. Pseudotemporal ordering of the single cells was performed using Monocle package to feature distinct transcriptomic states of the developing MM cells. The bulk microarray profiles from GSE24080 and GSE9782 were applied to identify a signature associated with MM development. Results The 597 cells were divided into 7 clusters according to different risk levels. They were initiated mainly from monoclonal gammopathy of undetermined significance (MGUS), newly diagnosed MM (NDMM), or relapsed and/or refractory myeloma (RRMM) with cytogenetically favorable t(11;14), moved towards the cells from smoldering MM (SMM) or NDMM without t(11;14) or t(4;14), and then finally to cells from SMM or RRMM with t(4;14). Based on the markers identified in the late stage, the bulk data was used to develop a 20-gene signature stratifying patients into high and low-risk groups (GSE24080: HR = 3.759, 95% CI 2.746–5.145; GSE9782: HR = 2.612, 95% CI 1.894–3.603), which was better than the previously published gene signatures (EMC92, UAMS70, and UAMS17) and International Staging System. This signature also succeeded in predicting the clinical outcome of patients treated with bortezomib (HR = 2.884, 95% CI 1.994–4.172, P = 1.89e−8). The 20 genes were further verified by quantitative real-time polymerase chain reaction using samples obtained from the patients with MM. Conclusion Our comprehensive analyses offered new insights in MM development, and established a 20-gene signature as an independent biomarker for MM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02190-6.
Collapse
Affiliation(s)
- Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junfang Lin
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kejie Zhang
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xizhe Guo
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoqiang Zheng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Apeng Yang
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
14
|
Waldschmidt JM, Kloeber JA, Anand P, Frede J, Kokkalis A, Dimitrova V, Potdar S, Nair MS, Vijaykumar T, Im NG, Guillaumet-Adkins A, Chopra N, Stuart H, Budano L, Sotudeh N, Guo G, Grassberger C, Yee AJ, Laubach JP, Richardson PG, Anderson KC, Raje NS, Knoechel B, Lohr JG. Single-Cell Profiling Reveals Metabolic Reprogramming as a Resistance Mechanism in BRAF-Mutated Multiple Myeloma. Clin Cancer Res 2021; 27:6432-6444. [PMID: 34518309 PMCID: PMC8639639 DOI: 10.1158/1078-0432.ccr-21-2040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Although remarkably effective in some patients, precision medicine typically induces only transient responses despite initial absence of resistance-conferring mutations. Using BRAF-mutated myeloma as a model for resistance to precision medicine we investigated if BRAF-mutated cancer cells have the ability to ensure their survival by rapidly adapting to BRAF inhibitor treatment. EXPERIMENTAL DESIGN Full-length single-cell RNA (scRNA) sequencing (scRNA-seq) was conducted on 3 patients with BRAF-mutated myeloma and 1 healthy donor. We sequenced 1,495 cells before, after 1 week, and at clinical relapse to BRAF/MEK inhibitor treatment. We developed an in vitro model of dabrafenib resistance using genetically homogeneous single-cell clones from two cell lines with established BRAF mutations (U266, DP6). Transcriptional and epigenetic adaptation in resistant cells were defined by RNA-seq and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq). Mitochondrial metabolism was characterized by metabolic flux analysis. RESULTS Profiling by scRNA-seq revealed rapid cellular state changes in response to BRAF/MEK inhibition in patients with myeloma and cell lines. Transcriptional adaptation preceded detectable outgrowth of genetically discernible drug-resistant clones and was associated with widespread enhancer remodeling. As a dominant vulnerability, dependency on oxidative phosphorylation (OxPhos) was induced. In treated individuals, OxPhos was activated at the time of relapse and showed inverse correlation to MAPK activation. Metabolic flux analysis confirmed OxPhos as a preferential energetic resource of drug-persistent myeloma cells. CONCLUSIONS This study demonstrates that cancer cells have the ability to rapidly adapt to precision treatments through transcriptional state changes, epigenetic adaptation, and metabolic rewiring, thus facilitating the development of refractory disease while simultaneously exposing novel vulnerabilities.
Collapse
Affiliation(s)
- Johannes M Waldschmidt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jake A Kloeber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Praveen Anand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Julia Frede
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Antonis Kokkalis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Valeriya Dimitrova
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sayalee Potdar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Monica S Nair
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tushara Vijaykumar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nam Gyu Im
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Amy Guillaumet-Adkins
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nitish Chopra
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hannah Stuart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Lillian Budano
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noori Sotudeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Guangwu Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Clemens Grassberger
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew J Yee
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jacob P Laubach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Jerome Lipper Multiple Myeloma Center and LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Jerome Lipper Multiple Myeloma Center and LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Noopur S Raje
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Birgit Knoechel
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jens G Lohr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
15
|
Schneller A, Zojer N, Bolomsky A, Ludwig H. Synergistic interaction between HDAC and MCL-1 inhibitors through downregulation of BCL-XL in multiple myeloma. Haematologica 2021; 106:2516-2521. [PMID: 33910332 PMCID: PMC8409038 DOI: 10.3324/haematol.2020.277152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anja Schneller
- Department of Medicine I, Wilhelminen Cancer Research Institute, Clinic Ottakring, Vienna, Austria; Recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Wilhelminen Cancer Research Institute
| | - Niklas Zojer
- Department of Medicine I, Wilhelminen Cancer Research Institute, Clinic Ottakring, Vienna
| | - Arnold Bolomsky
- Department of Medicine I, Wilhelminen Cancer Research Institute, Clinic Ottakring, Vienna
| | - Heinz Ludwig
- Department of Medicine I, Wilhelminen Cancer Research Institute, Clinic Ottakring, Vienna.
| |
Collapse
|
16
|
Berdeja JG, Laubach JP, Richter J, Stricker S, Spencer A, Richardson PG, Chari A. Panobinostat From Bench to Bedside: Rethinking the Treatment Paradigm for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:752-765. [PMID: 34340951 DOI: 10.1016/j.clml.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
Relapsed and refractory multiple myeloma (RRMM) presents a therapeutic challenge due to the development of drug resistance. Panobinostat is an oral histone deacetylase inhibitor (HDACi) that affects multiple cellular pathways and has demonstrated the ability to resensitize refractory-multiple myeloma cells in preclinical studies, as well as in patients with RRMM in clinical trials. Synergy of panobinostat with a number of different classes of antimyeloma drugs (proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies) has also been shown. Panobinostat is a promising HDACi for the treatment of multiple myeloma. Here, we present a comprehensive review of preclinical and clinical studies of panobinostat.
Collapse
Affiliation(s)
- Jesus G Berdeja
- Sarah Cannon Research Institute, Nashville, TN; Tennessee Oncology PLLC, Nashville, TN
| | - Jacob P Laubach
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Joshua Richter
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY
| | | | - Andrew Spencer
- Alfred Hospital - Monash University, Melbourne, Australia
| | | | - Ajai Chari
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
17
|
Gao X, Li B, Ye A, Wang H, Xie Y, Yu D, Xu Z, Shi B, Zhang H, Feng Q, Hu K, Zhang Y, Huang C, Yang G, Shi J, Zhu W. A novel phosphoramide compound, DCZ0805, shows potent anti-myeloma activity via the NF-κB pathway. Cancer Cell Int 2021; 21:285. [PMID: 34053438 PMCID: PMC8165811 DOI: 10.1186/s12935-021-01973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. METHODS We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. RESULTS The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. CONCLUSION The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.
Collapse
Affiliation(s)
- Xuejie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Anqi Ye
- Shanghai Children's Medical Center, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Bingqing Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Hui Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Qilin Feng
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Ke Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Cheng Huang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
18
|
Lernoux M, Schnekenburger M, Dicato M, Diederich M. Susceptibility of multiple myeloma to B-cell lymphoma 2 family inhibitors. Biochem Pharmacol 2021; 188:114526. [PMID: 33741332 DOI: 10.1016/j.bcp.2021.114526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023]
Abstract
Multiple myeloma (MM) is a biologically complex hematological disorder defined by the clonal proliferation of malignant plasma cells producing excessive monoclonal immunoglobulin that interacts with components of the bone marrow microenvironment, resulting in the major clinical features of MM. Despite the development of numerous protocols to treat MM patients, this cancer remains currently incurable; due in part to the emergence of resistant clones, highlighting the unmet need for innovative therapeutic approaches. Accumulating evidence suggests that the survival of MM molecular subgroups depends on the expression profiles of specific subsets of anti-apoptotic B-cell lymphoma (BCL)-2 family members. This review summarizes the mechanisms underlying the anti-myeloma activities of the potent BCL-2 family protein inhibitors, individually or in combination with conventional therapeutic options, and provides an overview of the strong rationale to clinically investigate such interventions for MM therapy.
Collapse
Affiliation(s)
- Manon Lernoux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Cardona-Benavides IJ, de Ramón C, Gutiérrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021; 10:336. [PMID: 33562668 PMCID: PMC7914805 DOI: 10.3390/cells10020336] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Some genetic abnormalities of multiple myeloma (MM) detected more than two decades ago remain major prognostic factors. In recent years, the introduction of cutting-edge genomic methodologies has enabled the extensive deciphering of genomic events in MM. Although none of the alterations newly discovered have significantly improved the stratification of the outcome of patients with MM, some of them, point mutations in particular, are promising targets for the development of personalized medicine. This review summarizes the main genetic abnormalities described in MM together with their prognostic impact, and the therapeutic approaches potentially aimed at abrogating the undesirable pathogenic effect of each alteration.
Collapse
Affiliation(s)
- Ignacio J. Cardona-Benavides
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Cristina de Ramón
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
20
|
Liu CD, Chang CC, Huang WH. The perspectives of interleukin-10 in the pathogenesis and therapeutics of multiple myeloma. Tzu Chi Med J 2020; 33:257-262. [PMID: 34386363 PMCID: PMC8323651 DOI: 10.4103/tcmj.tcmj_141_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is typically featured by the increased levels of inflammatory cytokines in the neoplastic plasma cells (PCs) producing monoclonal immunoglobulin. PCs proliferate in the bone marrow, which will lead to extensive skeletal destruction with osteolytic lesions, osteopenia, or pathologic fractures. The diagnostic biology of MM has progressed from morphology and low-sensitivity protein analysis into multiomics-based high-throughput readout, whereas therapeutics has evolved from single active agent to potential active drug combinations underlying precision medicine. Many studies have focused on the cytokine networks that control growth, progression, and dissemination of the disease. The complexity of cytokines in MM development remains to be elucidated comprehensively. Apart from knowing that interleukin (IL)-6 is important in the pathogenesis of MM, it has been shown that IL-6 is a paracrine factor supplied by the microenvironment comprising of those cells from the myeloid compartment. Due to IL-10 was considered an immunosuppressive cytokine to promote cancer escape from immune surveillance, the role of IL-10 in this regard has been underestimated although recent advances have reported that IL-10 induces both PC proliferation and angiogenesis in MM. In addition, cumulative studies have suggested that IL-10 plays an important role in the induction of chemoresistance in many cancers; a virtual requirement of autocrine IL-10 for MM cells to escape from an IL-6-dependent proliferation loop was implicated. In this review, we summarize the available information to elucidate a new understanding of the molecular and functional roles of IL-10 in MM.
Collapse
Affiliation(s)
- Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Han Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Clinical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
21
|
Anti-tumor activities of the new oral pan-RAF inhibitor, TAK-580, used as monotherapy or in combination with novel agents in multiple myeloma. Oncotarget 2020; 11:3984-3997. [PMID: 33216827 PMCID: PMC7646837 DOI: 10.18632/oncotarget.27775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Many RAS pathway inhibitors, including pan-RAF inhibitors, have shown significant anti-tumor activities in both solid and hematological tumors. The pan-RAF inhibitor, TAK-580, is a representative of the novel RAF inhibitors that act by disrupting RAF homo- or heterodimerization. In this study, we examined the anti-tumor effects of TAK-580 used as monotherapy or in combination with bortezomib, lenalidomide, or other novel agents in multiple myeloma (MM) cells in vitro. TAK-580 monotherapy potently targeted proteins in the RAS-RAF-MEK-ERK signaling pathway and induced potent cytotoxicity and apoptosis in MM cell lines and myeloma cells from patients with newly diagnosed and relapsed and/or refractory MM, compared with a representative RAF inhibitor, dabrafenib. Normal donor peripheral blood B lymphocytes and cord blood CD34-positive cells were not affected. Importantly, TAK-580 significantly inhibited phospho-FOXO3 and induced upregulation of BimL and BimS in a dose-dependent manner, finally leading to apoptosis in MM cells. Moreover, TAK-580 enhanced bortezomib-induced cytotoxicity and apoptosis in MM cells via the FOXO3-Bim axis and the terminal unfolded protein response. Importantly, TAK-580 also enhanced lenalidomide-induced cytotoxicity and apoptosis in MM cells. Taken together, our results provide the rationale for TAK-580 monotherapy and/or treatment in combination with novel agents to improve outcomes in patients with MM.
Collapse
|
22
|
Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 2020; 11:941. [PMID: 33139702 PMCID: PMC7608616 DOI: 10.1038/s41419-020-03144-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Defects in apoptosis can promote tumorigenesis and impair responses of malignant B cells to chemotherapeutics. Members of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins are key regulators of the intrinsic, mitochondrial apoptotic pathway. Overexpression of antiapoptotic BCL-2 family proteins is associated with treatment resistance and poor prognosis. Thus, inhibition of BCL-2 family proteins is a rational therapeutic option for malignancies that are dependent on antiapoptotic BCL-2 family proteins. Venetoclax (ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor that represents the first approved agent of this class and is currently widely used in the treatment of chronic lymphocytic leukemia (CLL) as well as acute myeloid leukemia (AML). Despite impressive clinical activity, venetoclax monotherapy for a prolonged duration can lead to drug resistance or loss of dependence on the targeted protein. In this review, we provide an overview of the mechanism of action of BCL-2 inhibition and the role of this approach in the current treatment paradigm of B-cell malignancies. We summarize the drivers of de novo and acquired resistance to venetoclax that are closely associated with complex clonal shifts, interplay of expression and interactions of BCL-2 family members, transcriptional regulators, and metabolic modulators. We also examine how tumors initially resistant to venetoclax become responsive to it following prior therapies. Here, we summarize preclinical data providing a rationale for efficacious combination strategies of venetoclax to overcome therapeutic resistance by a targeted approach directed against alternative antiapoptotic BCL-2 family proteins (MCL-1, BCL-xL), compensatory prosurvival pathways, epigenetic modifiers, and dysregulated cellular metabolism/energetics for durable clinical remissions.
Collapse
|
23
|
Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol 2020; 182:114224. [PMID: 32956642 DOI: 10.1016/j.bcp.2020.114224] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clinical trials. Recently, dual targeting strategy comprising the HDACs component has emerged as an alternative approach for combination therapies. In this perspective, we intend to gather all HDACs-containing dual inhibitors related to cancer therapy published in literature since 2015, classify them into five categories based on targets' biological functions, and discuss the rationale why dual acting agents should work better than combinatorial therapies using two separate drugs. The article discusses the pharmacological aspects of these dual inhibitors, including in vitro biological activities, pharmacokinetic studies, in vivo efficacy studies, as well as available clinical trials. The review of the current status and advances should provide better analysis for future opportunities and challenges of this field.
Collapse
|
24
|
Yu T, Du C, Ma X, Sui W, Yu Z, Liu L, Zhao L, Li Z, Xu J, Wei X, Zhou W, Deng S, Zou D, An G, Tai YT, Tricot G, Anderson KC, Qiu L, Zhan F, Hao M. Polycomb-like Protein 3 Induces Proliferation and Drug Resistance in Multiple Myeloma and Is Regulated by miRNA-15a. Mol Cancer Res 2020; 18:1063-1073. [PMID: 32312841 DOI: 10.1158/1541-7786.mcr-19-0852] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 02/02/2023]
Abstract
Multiple myeloma remains incurable due to the persistence of a minor population of multiple myeloma cells that exhibit drug resistance, which leads to relapsed and/or refractory multiple myeloma. Elucidating the mechanism underlying drug resistance and developing an effective treatment are critical for clinical management of multiple myeloma. Here we showed that promoting expression of the gene for polycomb-like protein 3 (PHF19) induced multiple myeloma cell growth and multidrug resistance in vitro and in vivo. PHF19 was overexpressed in high-risk and drug-resistant primary cells from patients. High levels of PHF19 were correlated with inferior survival of patients with multiple myeloma, in the Total Therapy 2 cohort and in the Intergroup Francophone du Myeloma (IFM) cohort. Enhancing PHF19 expression levels increased Bcl-xL, Mcl-1, and HIF-1a expression in multiple myeloma cells. PHF19 also bound directly with EZH2 and promoted the phosphorylation of EZH2 through PDK1/AKT signaling. miR-15a is a small noncoding RNA that targeted the 3'UTR of PHF19. We found that downregulation of miR-15a led to high levels of PHF19 in multiple myeloma cells. These findings revealed that PHF19 served a crucial role in multiple myeloma proliferation and drug resistance and suggested that the miR-15a/PHF19/EZH2 pathway made a pivotal contribution to multiple myeloma pathogenesis, offering a promising approach to multiple myeloma treatment. IMPLICATIONS: Our findings identify that PHF19 mediates EZH2 phosphorylation as a mechanism of myeloma cell drug resistance, providing a rationale to explore therapeutic potential of targeting PHF19 in relapsed or refractory patients with multiple myeloma.
Collapse
Affiliation(s)
- Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhao
- Department of Biophysics and Molecular Physiology, The University of Iowa, Roy J and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Zhongqing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wen Zhou
- Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Guido Tricot
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
25
|
Satta T, Grant S. Enhancing venetoclax activity in hematological malignancies. Expert Opin Investig Drugs 2020; 29:697-708. [PMID: 32600066 PMCID: PMC7529910 DOI: 10.1080/13543784.2020.1789588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Targeting anti-apoptotic pathways involving the BCL2 family proteins represents a novel treatment strategy in hematologic malignancies. Venetoclax, a selective BCL2 inhibitor, represents the first approved agent of this class, and is currently used in CLL and AML. However, monotherapy is rarely sufficient for sustained responses due to the development of drug resistance and loss of dependence upon the targeted protein. Numerous pre-clinical studies have shown that combining venetoclax with other agents may represent a more effective therapeutic strategy by circumventing resistance mechanisms. In this review, we summarize pre-clinical data providing a foundation for rational combination strategies involving venetoclax. AREAS COVERED Novel combination strategies in hematologic malignancies involving venetoclax, primarily at the pre-clinical level, will be reviewed. We emphasize novel agents that interrupt complementary or compensatory pro-survival pathways, and particularly mechanistic insights underlying synergism. PubMed, Cochrane, EMBASE, and Google scholar were searched from 2000. EXPERT OPINION Although venetoclax has proven to be an effective therapeutic in hematologic malignancies, monotherapy may be insufficient for maximal effectiveness due to the development of resistance and/or loss of BCL2 addiction. Further pre-clinical and clinical development of combination therapies may be necessary for optimal outcomes in patients with diverse blood cancers.
Collapse
Affiliation(s)
- Toshihisa Satta
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
| | - Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
- Department of Biochemistry, Virginia Commonwealth University , Richmond, USA
- Department of Pharmacology, Virginia Commonwealth University , Richmond, USA
- Department of Molecular and Human Genetics, Virginia Commonwealth University , Richmond, USA
| |
Collapse
|
26
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
27
|
Bolomsky A, Muller J, Stangelberger K, Lejeune M, Duray E, Breid H, Vrancken L, Pfeiffer C, Hübl W, Willheim M, Weetall M, Branstrom A, Zojer N, Caers J, Ludwig H. The anti-mitotic agents PTC-028 and PTC596 display potent activity in pre-clinical models of multiple myeloma but challenge the role of BMI-1 as an essential tumour gene. Br J Haematol 2020; 190:877-890. [PMID: 32232850 DOI: 10.1111/bjh.16595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
Abstract
Future progress in the treatment of multiple myeloma (MM) requires both the characterisation of key drivers of the disease and novel, innovative approaches to tackle these vulnerabilities. The present study focussed on the pre-clinical evaluation of a novel drug class, BMI-1 modulators, in MM. We demonstrate potent activity of PTC-028 and PTC596 in a comprehensive set of in vitro and in vivo models, including models of drug resistance and stromal support. Treatment of MM cells with PTC-028 and PTC596 downregulated BMI-1 protein levels, which was found to correlate with drug activity. Surprisingly, BMI-1 was dispensable for the activity of BMI-1 modulators and MM cell growth. Our data rather point to mitotic arrest accompanied by myeloid cell leukaemia-1 (MCL-1) loss as key anti-MM mechanisms and reveal impaired MYC and AKT signalling activity due to BMI-1 modulator treatment. Moreover, we observed a complete eradication of MM after PTC596 treatment in the 5TGM.1 in vivo model and define epigenetic compounds and B cell leukaemia/lymphoma 2 homology domain 3 (BH3) mimetics as promising combination partners. These results bring into question the postulated role of BMI-1 as an essential MM gene and confirm BMI-1 modulators as potent anti-mitotic agents with encouraging pre-clinical activity that supports their rapid translation into clinical trials.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Department of Medicine I, Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Joséphine Muller
- Laboratory of Hematology, GIGA-I3, University of Liège, Liège, Belgium
| | - Kathrin Stangelberger
- Department of Medicine I, Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA-I3, University of Liège, Liège, Belgium
| | - Elodie Duray
- Laboratory of Hematology, GIGA-I3, University of Liège, Liège, Belgium
| | - Helene Breid
- Department of Medicine I, Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Louise Vrancken
- Laboratory of Hematology, GIGA-I3, University of Liège, Liège, Belgium
| | - Christina Pfeiffer
- Department of Medicine I, Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Wolfgang Hübl
- Department of Laboratory Medicine, Wilhelminenspital, Vienna, Austria
| | - Martin Willheim
- Department of Laboratory Medicine, Wilhelminenspital, Vienna, Austria
| | | | | | - Niklas Zojer
- Department of Medicine I, Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Jo Caers
- Laboratory of Hematology, GIGA-I3, University of Liège, Liège, Belgium
| | - Heinz Ludwig
- Department of Medicine I, Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| |
Collapse
|
28
|
Abstract
Apoptosis is a highly conserved programme for removing damaged and unwanted cells. Apoptosis in most cells is coordinated on mitochondria by the Bcl-2 family of proteins. The balance between pro- and anti-apoptotic Bcl-2 family proteins sets a threshold for mitochondrial apoptosis, a balance that is altered during cancer progression. Consequently, avoidance of cell death is an established cancer hallmark. Although there is a general perception that tumour cells are more resistant to apoptosis than their normal counterparts, the realities of cell death regulation in cancer are more nuanced. In this review we discuss how a profound understanding of this control has led to new therapeutic approaches, including the new class of BH3-mimetics, which directly target apoptosis as a vulnerability in cancer. We discuss recent findings that highlight the current limitations in our understanding of apoptosis and how these novel therapeutics work.
Collapse
Affiliation(s)
- Andrew Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Louise King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|