1
|
Wang Y, Zhang X, Li X, Cheng M, Cui X. The vascular microenvironment and its stem cells regulate vascular homeostasis. Front Cell Dev Biol 2025; 13:1544129. [PMID: 40114970 PMCID: PMC11922910 DOI: 10.3389/fcell.2025.1544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The vascular microenvironment comprises of anatomical structures, extracellular matrix components, and various cell populations, which play a crucial role in regulating vascular homeostasis and influencing vascular structure and function. Under physiological conditions, intrinsic regulation of the vascular microenvironment is required to sustain vascular homeostasis. In contrast, under pathological conditions, alterations to this microenvironment lead to vascular injury and pathological remodeling. According to the anatomy, the vascular microenvironment can be subdivided into three sections from the inside out. The vascular endothelial microenvironment, centered on vascular endothelial cells (VECs), includes the extracellular matrix and various vascular physicochemical factors. The VECs interact with vascular physicochemical factors to regulate the function of various parenchymal cells, including hepatocytes, neurons and tumor cells. The vascular wall microenvironment, comprising the vasa vasorum and their unique stem/progenitor cell niches, plays a pivotal role in vascular inflammation and pathological remodeling. Additionally, the perivascular microenvironment, which includes perivascular adipose tissue, consists of adipocytes and stem cells, which contribute to the pathological processes of atherosclerosis. It is anticipated that targeted regulation of the vascular microenvironment will emerge as a novel approach for the treatment of various diseases. Accordingly, this review will examine the structure of the vascular microenvironment, the regulation of vascular function by vascular cells and stem/progenitor cells, and the role of the vascular microenvironment in regulating cardiovascular diseases.
Collapse
Affiliation(s)
- Yanhui Wang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaoyun Zhang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xin Li
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaodong Cui
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Li M, Sun G, Zhao J, Pu S, Lv Y, Wang Y, Li Y, Zhao X, Wang Y, Yang S, Cheng T, Cheng H. Small extracellular vesicles derived from acute myeloid leukemia cells promote leukemogenesis by transferring miR-221-3p. Haematologica 2024; 109:3209-3221. [PMID: 38450521 PMCID: PMC11443396 DOI: 10.3324/haematol.2023.284145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEV) transfer cargos between cells and participate in various physiological and pathological processes through their autocrine and paracrine effects. However, the pathological mechanisms employed by sEV-encapsulated microRNA (miRNA) in acute myeloid leukemia (AML) are still obscure. In this study, we aimed to investigate the effects of AML cell-derived sEV (AML-sEV) on AML cells and delineate the underlying mechanisms. We initially used high-throughput sequencing to identify miR-221-3p as the miRNA prominently enriched in AML-sEV. Our findings revealed that miR-221-3p promoted AML cell proliferation and leukemogenesis by accelerating cell cycle entry and inhibiting apoptosis. Furthermore, Gbp2 was confirmed as a target gene of miR-221-3p by dual luciferase reporter assays and rescue experiments. Additionally, AML-sEV impaired the clonogenicity, particularly the erythroid differentiation ability, of hematopoietic stem and progenitor cells. Taken together, our findings reveal how sEV-delivered miRNA contribute to AML pathogenesis, which can be exploited as a potential therapeutic target to attenuate AML progression.
Collapse
MESH Headings
- MicroRNAs/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Cell Proliferation
- Apoptosis/genetics
- Cell Line, Tumor
- Mice
- Animals
- Gene Expression Regulation, Leukemic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Differentiation/genetics
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Jinlian Zhao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming
| | - Shuangshuang Pu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematologyand Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Celland Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming.
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| |
Collapse
|
3
|
Chen H, Lu J, Wang Z, Wu S, Zhang S, Geng J, Hou C, He P, Lu X. Unlocking reproducible transcriptomic signatures for acute myeloid leukaemia: Integration, classification and drug repurposing. J Cell Mol Med 2024; 28:e70085. [PMID: 39267259 PMCID: PMC11392829 DOI: 10.1111/jcmm.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, which lead to various findings in transcriptomic research. This study addresses these challenges by integrating 34 datasets, including 26 control groups, 6 prognostic datasets and 2 single-cell RNA sequencing (scRNA-seq) datasets to identify 10,000 AML-related genes (ARGs). We focused on genes with low variability and high consistency and successfully discovered 191 AML signatures (ASs). Leveraging machine learning techniques, specifically the XGBoost model and our custom framework, we classified AML subtypes with both scRNA-seq and bulk RNA-seq data, complementing the ELN2022 classification approach. Our research also identified promising treatments for AML through drug repurposing, with solasonine showing potential efficacy for high-risk AML patients, supported by molecular docking and transcriptomic analyses. To enhance reproducibility and customizability, we developed CSAMLdb, a user-friendly database platform. It facilitates the reuse and personalized analysis of nearly all results obtained in this research, including single-gene prognostics, multi-gene scoring, enrichment analysis, machine learning risk assessment, drug repositioning analysis and literature abstract named entity recognition. CSAMLdb is available at http://www.csamldb.com.
Collapse
Affiliation(s)
- Haoran Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Jinqi Lu
- Department of Computer Science, Boston University, Boston, Massachusetts, USA
| | - Zining Wang
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shengnan Wu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Jie Geng
- Basic Medicine College, Shanxi Medical University, Taiyuan, China
| | - Chuandong Hou
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Xuechun Lu
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| |
Collapse
|
4
|
Bauer A, Boehme C, Mayer-Suess L, Rudzki D, Knoflach M, Kiechl S, Reindl M. Peripheral inflammatory response in people after acute ischaemic stroke and isolated spontaneous cervical artery dissection. Sci Rep 2024; 14:12063. [PMID: 38802464 PMCID: PMC11130263 DOI: 10.1038/s41598-024-62557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
The systemic inflammatory response following acute ischaemic stroke remains incompletely understood. We characterised the circulating inflammatory profile in 173 acute ischaemic stroke patients by measuring 65 cytokines and chemokines in plasma. Participants were grouped based on their inflammatory response, determined by high-sensitivity C-reactive protein levels in the acute phase. We compared stroke patients' profiles with 42 people experiencing spontaneous cervical artery dissection without stroke. Furthermore, variations in cytokine levels among stroke aetiologies were analysed. Follow-up samples were collected in a subgroup of ischaemic stroke patients at three and twelve months. Ischaemic stroke patients had elevated plasma levels of HGF and SDF-1α, and lower IL-4 levels, compared to spontaneous cervical artery dissection patients without stroke. Aetiology-subgroup analysis revealed reduced levels of nine cytokines/chemokines (HGF, SDF-1α, IL-2R, CD30, TNF-RII, IL-16, MIF, APRIL, SCF), and elevated levels of IL-4 and MIP-1β, in spontaneous cervical artery dissection (with or without ischaemic stroke as levels were comparable between both groups) compared to other aetiologies. The majority of cytokine/chemokine levels remained stable across the study period. Our research indicates that stroke due to large artery atherosclerosis, cardioembolism, and small vessel occlusion triggers a stronger inflammatory response than spontaneous cervical artery dissection.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Boehme
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Mayer-Suess
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dagmar Rudzki
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Michael Knoflach
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Stefan Kiechl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Wijshake T, Rose J, Wang J, Zielke J, Marlar-Pavey M, Chen W, Collins JJ, Agathocleous M. Schistosome Infection Impacts Hematopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:607-616. [PMID: 38169327 PMCID: PMC10872488 DOI: 10.4049/jimmunol.2300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. In this article, we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm that causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.
Collapse
Affiliation(s)
- Tobias Wijshake
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Rose
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- Current address: State Key Laboratory of Genetic Engineering, School of Life Sciences at Fudan University, Shanghai, China
| | - Jacob Zielke
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Huang M, Wang L, Zhang Q, Zhou L, Liao R, Wu A, Wang X, Luo J, Huang F, Zou W, Wu J. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals (Basel) 2024; 17:109. [PMID: 38256942 PMCID: PMC10820339 DOI: 10.3390/ph17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.
Collapse
Affiliation(s)
- Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Ling Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Rui Liao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Xinle Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Jiesi Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
- The Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education of China, Luzhou 646000, China
| |
Collapse
|
7
|
Li Y, Wang S, Xiao H, Lu F, Zhang B, Zhou T. Evaluation and validation of the prognostic value of platelet indices in patients with leukemia. Clin Exp Med 2023; 23:1835-1844. [PMID: 36622510 DOI: 10.1007/s10238-022-00985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
Platelets (PLTs) are believed to play a role in the process by which tumors can accelerate their growth rate, as well as offer the physical and mechanical support necessary to evade the immunological system and metastasis. There is, however, no literature available if PLTs have a role in leukemia. It is significant for PLTs to play a part in hematological malignancies from a therapeutic standpoint and to have the capacity to serve as a prognostic marker in the evolution of leukemia. This is because PLTs play a crucial role in the development of cancer and tumors. In this study, it will be shown that PLT count can be used to predict long-term prognosis after chemotherapy especially in the case of acute myeloid leukemia patients. Furthermore, low PLT-to-lymphocyte ratio and mean PLT volume, as well as high PLT distribution width, are associated with poor prognosis and may represent a novel independent prognostic factor.
Collapse
Affiliation(s)
- Yuyan Li
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Shuangge Wang
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Han Xiao
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Fang Lu
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Bin Zhang
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Tingting Zhou
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China.
| |
Collapse
|
8
|
Gao A, Xu S, Li Q, Zhu C, Wang F, Wang Y, Hao S, Dong F, Cheng H, Cheng T, Gong Y. Interlukin-4 weakens resistance to stress injury and megakaryocytic differentiation of hematopoietic stem cells by inhibiting Psmd13 expression. Sci Rep 2023; 13:14253. [PMID: 37653079 PMCID: PMC10471741 DOI: 10.1038/s41598-023-41479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombocytopenia is a major and fatal complication in patients with acute myeloid leukemia (AML), which results from disrupted megakaryopoiesis by leukemic niche and blasts. Our previous research revealed that elevated interleukin-4 (IL-4) in AML bone marrow had adverse impact on multiple stages throughout megakaryopoiesis including hematopoietic stem cells (HSCs), but the specific mechanism remains unknown. In the present study, we performed single-cell transcriptome analysis and discovered activated oxidative stress pathway and apoptosis pathway in IL-4Rαhigh versus IL-4Rαlow HSCs. IL-4 stimulation in vitro led to apoptosis of HSCs and down-regulation of megakaryocyte-associated transcription factors. Functional assays displayed higher susceptibility of IL-4Rαhigh HSCs to tunicamycin and irradiation-induced apoptosis, demonstrating their vulnerability to endoplasmic reticulum (ER) stress injury. To clarify the downstream signaling of IL-4, we analyzed the transcriptomes of HSCs from AML bone marrow and found a remarkable down-regulation of the proteasome component Psmd13, whose expression was required for megakaryocytic-erythroid development but could be inhibited by IL-4 in vitro. We knocked down Psmd13 by shRNA in HSCs, and found their repopulating capacity and megakaryocytic differentiation were severely compromised, with increased apoptosis in vivo. In summary, our study uncovered a previous unrecognized regulatory role of IL-4-Psmd13 signaling in anti-stress and megakaryocytic differentiation capability of HSCs.
Collapse
Affiliation(s)
- Ai Gao
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuhui Xu
- Medical School, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Fengjiao Wang
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yajie Wang
- Medical School, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yuemin Gong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
9
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
10
|
Deng S, Du J, Gale RP, Wang L, Zhan H, Liu F, Huang K, Xu H, Zeng H. Glucose partitioning in the bone marrow micro-environment in acute myeloid leukaemia. Leukemia 2023; 37:1407-1412. [PMID: 37120691 DOI: 10.1038/s41375-023-01912-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Acute myeloid leukaemia (AML) cells metabolise glucose by glycolysis-based re-programming. However, how glucose uptake is partitioned between leukaemia cells and other cells of the bone marrow micro-environment is unstudied. We used a positron emission tomography (PET) tracer 18F fluorodeoxyglucose ([18F]-FDG) probe and transcriptomic analyses to detect glucose uptake by diverse cells in the bone marrow micro-environment in a MLL-AF9-induced mouse model. Leukaemia cells had the greatest glucose uptake with leukaemia stem and progenitor cells having the greatest glucose uptake. We also show the effects of anti-leukaemia drugs on leukaemia cell numbers and glucose uptake. Our data suggest targeting glucose uptake as a potential therapy strategy in AML if our observations are validated in humans with AML.
Collapse
Affiliation(s)
- Suqi Deng
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Juan Du
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, SW7 2BX, UK
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huien Zhan
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fangshu Liu
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kexiu Huang
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hui Zeng
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
11
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Li Y, He M, Zhang W, Liu W, Xu H, Yang M, Zhang H, Liang H, Li W, Wu Z, Fu W, Xu S, Liu X, Fan S, Zhou L, Wang C, Zhang L, Li Y, Gu J, Yin J, Zhang Y, Xia Y, Mao X, Cheng T, Shi J, Du Y, Gao Y. Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche. Nat Commun 2023; 14:2207. [PMID: 37072407 PMCID: PMC10113370 DOI: 10.1038/s41467-023-37954-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Limited numbers of available hematopoietic stem cells (HSCs) limit the widespread use of HSC-based therapies. Expansion systems for functional heterogenous HSCs remain to be optimized. Here, we present a convenient strategy for human HSC expansion based on a biomimetic Microniche. After demonstrating the expansion of HSC from different sources, we find that our Microniche-based system expands the therapeutically attractive megakaryocyte-biased HSC. We demonstrate scalable HSC expansion by applying this strategy in a stirred bioreactor. Moreover, we identify that the functional human megakaryocyte-biased HSCs are enriched in the CD34+CD38-CD45RA-CD90+CD49f lowCD62L-CD133+ subpopulation. Specifically, the expansion of megakaryocyte-biased HSCs is supported by a biomimetic niche-like microenvironment, which generates a suitable cytokine milieu and supplies the appropriate physical scaffolding. Thus, beyond clarifying the existence and immuno-phenotype of human megakaryocyte-biased HSC, our study demonstrates a flexible human HSC expansion strategy that could help realize the strong clinical promise of HSC-based therapies.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing CytoNiche Biotechnology Co. Ltd., 100195, Beijing, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haiwei Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Weichao Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiqi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaolei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Sibin Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Liwei Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lele Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingjing Yin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xuemei Mao
- Nankai Hospital, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing CytoNiche Biotechnology Co. Ltd., 100195, Beijing, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
13
|
Kuang C, Xia M, An G, Liu C, Hu C, Zhang J, Liu Z, Meng B, Su P, Xia J, Guo J, Zhu Y, Liu X, Wu X, Shen Y, Feng X, He Y, Li J, Qiu L, Zhou J, Zhou W. Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma. Nat Commun 2023; 14:2093. [PMID: 37055385 PMCID: PMC10102122 DOI: 10.1038/s41467-023-37699-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Thrombocytopenia is a major complication in a subset of patients with multiple myeloma (MM). However, little is known about its development and significance during MM. Here, we show thrombocytopenia is linked to poor prognosis in MM. In addition, we identify serine, which is released from MM cells into the bone marrow microenvironment, as a key metabolic factor that suppresses megakaryopoiesis and thrombopoiesis. The impact of excessive serine on thrombocytopenia is mainly mediated through the suppression of megakaryocyte (MK) differentiation. Extrinsic serine is transported into MKs through SLC38A1 and downregulates SVIL via SAM-mediated tri-methylation of H3K9, ultimately leading to the impairment of megakaryopoiesis. Inhibition of serine utilization or treatment with TPO enhances megakaryopoiesis and thrombopoiesis and suppresses MM progression. Together, we identify serine as a key metabolic regulator of thrombocytopenia, unveil molecular mechanisms governing MM progression, and provide potential therapeutic strategies for treating MM patients by targeting thrombocytopenia.
Collapse
Affiliation(s)
- Chunmei Kuang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - CuiCui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Cong Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyu Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhenhao Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Meng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiliang Xia
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jiaojiao Guo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xing Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuan Wu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yi Shen
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Xu C, Lu T, Lv X, Cheng T, Cheng H. Role of the bone marrow vascular niche in chemotherapy for MLL-AF9-induced acute myeloid leukemia. BLOOD SCIENCE 2023; 5:92-100. [PMID: 37228781 PMCID: PMC10205361 DOI: 10.1097/bs9.0000000000000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/08/2023] [Indexed: 05/27/2023] Open
Abstract
Leukemia stem cells in acute myeloid leukemia (AML) can persist within unique bone marrow niches similar to those of healthy hematopoietic stem cells and resist chemotherapy. In the context of AML, endothelial cells (ECs) are crucial components of these niches that appear to promote malignant expansion despite treatment. To better understand these interactions, we developed a real-time cell cycle-tracking mouse model of AML (Fucci-MA9) with an aim of unraveling why quiescent leukemia cells are more resistant to chemotherapy than cycling cells and proliferate during disease relapse. We found that quiescent leukemia cells were more prone to escape chemotherapy than cycling cells, leading to relapse and proliferation. Importantly, post-chemotherapy resting leukemia cells tended to localize closer to blood vessels. Mechanistically, after chemotherapy, resting leukemia cells interacted with ECs, promoting their adhesion and anti-apoptotic capacity. Further, expression analysis of ECs and leukemia cells during AML, after chemotherapy, and after relapse revealed the potential of suppressing the post-chemotherapy inflammatory response to regulate the functions of leukemia cells and ECs. These findings highlight the role of leukemia cells in evading chemotherapy by seeking refuge near blood vessels and provide important insights and directions for future AML research and treatment.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 300020, China
| |
Collapse
|
15
|
Gao A, Zhang L, Zhong D. Chemotherapy-induced thrombocytopenia: literature review. Discov Oncol 2023; 14:10. [PMID: 36695938 PMCID: PMC9877263 DOI: 10.1007/s12672-023-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Chemotherapy-induced thrombocytopenia (CIT) is a common condition that frequently results in reduced chemotherapy dosages, postponed treatment, bleeding, and unfavorable oncological outcomes. At present, there is no clear suggestions for preventing or treating CIT. Thrombopoietin (TPO) replacement therapy has been invented and used to treat CIT to promote the production of megakaryocytes and stimulate the formation of platelets. However, this treatment is limited to the risk of immunogenicity and cancer progression. Therefore, an unmet need exists for exploring alternatives to TPO to address the clinical issue of CIT. Application of appropriate therapeutic drugs may be due to understanding the potential mechanisms of CIT. Studies have shown that chemotherapy significantly affects various cells in bone marrow (BM) microenvironment, reduces their ability to support normal hematopoiesis, and may lead to BM damage, including CIT in cancer patients. This review focuses on the epidemiology and treatment of cancer patients with CIT. We also introduce some recent progress to understand the cellular and molecular mechanisms of chemotherapy inhibiting normal hematopoiesis and causing thrombocytopenia.
Collapse
Affiliation(s)
- Ai Gao
- Department of Medical Oncology, Tianjin Medical University General Hospital, No.154, Anshandao, Heping District, Tianjin, 300052, China.
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, No.154, Anshandao, Heping District, Tianjin, 300052, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, No.154, Anshandao, Heping District, Tianjin, 300052, China
| |
Collapse
|
16
|
Tian C, Li Y, Wang L, Si J, Zheng Y, Kang J, Wang Y, You MJ, Zheng G. Blockade of FGF2/FGFR2 partially overcomes bone marrow mesenchymal stromal cells mediated progression of T-cell acute lymphoblastic leukaemia. Cell Death Dis 2022; 13:922. [PMID: 36333298 PMCID: PMC9636388 DOI: 10.1038/s41419-022-05377-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The development of acute lymphoblastic leuakemia (ALL) is partly attributed to the effects of bone marrow (BM) microenvironment, especially mesenchymal stromal cells (MSCs), which interact bilaterally with leukaemia cells, leading to ALL progression. In order to find MSCs-based microenvironment targeted therapeutic strategies, Notch1-induced T-cell ALL (T-ALL) mice models were used and dynamic alterations of BM-MSCs with increased cell viability during T-ALL development was observed. In T-ALL mice derived stroma-based condition, leukaemia cells showed significantly elevated growth capacity indicating that MSCs participated in leukaemic niche formation. RNA sequence results revealed that T-ALL derived MSCs secreted fibroblast growth factor 2 (FGF2), which combined with fibroblast growth factor receptor 2 (FGFR2) on leukaemia cells, resulting in activation of PI3K/AKT/mTOR signalling pathway in leukaemia cells. In vitro blocking the interaction between FGF2 and FGFR2 with BGJ398 (infigratinib), a FGFR1-3 kinase inhibitor, or knockdown FGF2 in MSCs by interference caused deactivation of PI3K/AKT/mTOR pathway and dysregulations of genes associated with cell cycle and apoptosis in ALL cells, leading to decrease of leukaemia cells. In mouse model received BGJ398, overall survival was extended and dissemination of leukaemia cells in BM, spleen, liver and peripheral blood was decreased. After subcutaneous injection of primary human T-ALL cells with MSCs, tumour growth was suppressed when FGF2/FGFR2 was interrupted. Thus, inhibition of FGF2/FGFR2 interaction appears to be a valid strategy to overcome BM-MSCs mediated progression of T-ALL, and BGJ398 could indeed improve outcomes in T-ALL, which provide theoretical basis of BGJ398 as a BM microenvironment based therapeutic strategy to control disease progression.
Collapse
Affiliation(s)
- Chen Tian
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Yueyang Li
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Lina Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Junqi Si
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Yaxin Zheng
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Junnan Kang
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Yafei Wang
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - M. James You
- grid.240145.60000 0001 2291 4776Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77479 USA
| | - Guoguang Zheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
17
|
Si X, Gu T, Liu L, Huang Y, Han Y, Qian P, Huang H. Hematologic cytopenia post CAR T cell therapy: Etiology, potential mechanisms and perspective. Cancer Lett 2022; 550:215920. [PMID: 36122628 DOI: 10.1016/j.canlet.2022.215920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Chimeric Antigen-Receptor (CAR) T-cell therapies have shown dramatic efficacy in treating relapsed and refractory cancers, especially B cell malignancies. However, these innovative therapies cause adverse toxicities that limit the broad application in clinical settings. Hematologic cytopenias, one frequently reported adverse event following CAR T cell treatment, are manifested as a disorder of hematopoiesis with decreased number of mature blood cells and subdivided into anemia, thrombocytopenia, leukopenia, and neutropenia, which increase the risk of infections, fatigue, bleeding, fever, and even fatality. Herein, we initially summarized the symptoms, etiology, risk factors and management of cytopenias. Further, we elaborated the cellular and molecular mechanisms underlying the initiation and progression of cytopenias following CAR T cell therapy based on previous studies about acquired cytopenias. Overall, this review will facilitate our understanding of the etiology of cytopenias and shed lights into developing new therapies against CAR T cell-induced cytopenias.
Collapse
Affiliation(s)
- Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Tianning Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lianxuan Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
18
|
Li Y, Wang C, Gao H, Gu J, Zhang Y, Zhang Y, Xie M, Cheng X, Yang M, Zhang W, Li Y, He M, Xu H, Zhang H, Ji Q, Ma T, Ding S, Zhao Y, Gao Y. KDM4 inhibitor SD49-7 attenuates leukemia stem cell via KDM4A/MDM2/p21 CIP1 axis. Theranostics 2022; 12:4922-4934. [PMID: 35836814 PMCID: PMC9274755 DOI: 10.7150/thno.71460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/04/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Traditional treatments for leukemia fail to address stem cell drug resistance characterized by epigenetic mediators such as histone lysine-specific demethylase 4 (KDM4). The KDM4 family, which acts as epigenetic regulators inducing histone demethylation during the development and progression of leukemia, lacks specific molecular inhibitors. Methods: The KDM4 inhibitor, SD49-7, was synthesized and purified based on acyl hydrazone Schiff base. The interaction between SD49-7 and KDM4s was monitored in vitro by surface plasma resonance (SPR). In vitro and in vivo biological function experiments were performed to analyze apoptosis, colony-formation, proliferation, differentiation, and cell cycle in cell sub-lines and mice. Molecular mechanisms were demonstrated by RNA-seq, ChIP-seq, RT-qPCR and Western blotting. Results: We found significantly high KDM4A expression levels in several human leukemia subtypes. The knockdown of KDM4s inhibited leukemogenesis in the MLL-AF9 leukemia mouse model but did not affect the survival of normal human hematopoietic cells. We identified SD49-7 as a selective KDM4 inhibitor that impaired the progression of leukemia stem cells (LSCs) in vitro. SD49-7 suppressed leukemia development in the mouse model and patient-derived xenograft model of leukemia. Depletion of KDM4s activated the apoptosis signaling pathway by suppressing MDM2 expression via modulating H3K9me3 levels on the MDM2 promoter region. Conclusion: Our study demonstrates a unique KDM4 inhibitor for LSCs to overcome the resistance to traditional treatment and offers KDM4 inhibition as a promising strategy for resistant leukemia therapy.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Huier Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| | - Min Xie
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qing Ji
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| |
Collapse
|
19
|
CD44-fibrinogen binding promotes bleeding in acute promyelocytic leukemia by in situ fibrin(ogen) deposition. Blood Adv 2022; 6:4617-4633. [PMID: 35511736 DOI: 10.1182/bloodadvances.2022006980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Early haemorrhagic death is still the main obstacle for the successful treatment of acute promyelocytic leukaemia (APL). However, the mechanisms underlying haemostatic perturbations in APL have not been fully elucidated. Here, we report that CD44 on the membrane of APL blasts and NB4 cells ligated bound fibrinogen, resulting in in situ deposition of fibrin and abnormal fibrin distribution. Clots formed by leukaemic cells in response to CD44 and fibrinogen interaction exhibited low permeability and resistance to fibrinolysis. Using flow cytometry and confocal microscopy, we found that CD44 was also involved in platelet and leukaemic cell adhesion. CD44 bound activated platelets but not resting platelets through interaction with P-selectin. APL cell-coated fibrinogen-activated platelets directly induce enhanced procoagulant activity of platelets. In vivo studies revealed that CD44 knockdown shortened bleeding time, increased the level of fibrinogen, and elevated the number of platelets by approximately 2-fold in an APL mouse model. Moreover, CD44 expression on leukaemic cells in an APL mouse model was not only associated with bleeding complications but was also related to the wound healing process and the survival time of APL mice. Collectively, our results suggest that CD44 may be a potential intervention target for preventing bleeding complications in APL.
Collapse
|
20
|
Bonilla H, Hampton D, Marques de Menezes EG, Deng X, Montoya JG, Anderson J, Norris PJ. Comparative Analysis of Extracellular Vesicles in Patients with Severe and Mild Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Immunol 2022; 13:841910. [PMID: 35309313 PMCID: PMC8931328 DOI: 10.3389/fimmu.2022.841910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Myalgic encephalomyelitis, or chronic fatigue syndrome (ME/CFS) is a serious disease whose cause has yet to be identified. Objective markers of the disease are also not well understood and would serve as important tools in diagnosis and management. One potential biomarker or transmitter of immune signals in ME/CFS is the extracellular vesicle (EV) compartment. These small, membrane bound particles have been shown to play a key role in intercellular signaling. Our laboratory has focused on methods of detection of EVS in clinical samples. In this study we explored whether the prevalence of EVs in the plasma of participants with mild or severe ME/CFS differed from the plasma of healthy control participants. By staining for multiple cell surface molecules, plasma EVs could be fingerprinted as to their cell of origin. Our study revealed a significant correlation between severe ME/CSF and levels of EVs bearing the B cell marker CD19 and the platelet marker CD41a, though these changes were not significant after correction for multiple comparisons. These findings point to potential dysregulation of B cell and platelet activation or homeostasis in ME/CFS, which warrants validation in a replication cohort and further exploration of potential mechanisms underlying the association.
Collapse
Affiliation(s)
- Hector Bonilla
- Department of Medicine, Stanford University, Palo Alto, CA, United States
- *Correspondence: Hector Bonilla,
| | - Dylan Hampton
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, United States
| | - José G. Montoya
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jill Anderson
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Erratum: Ultrastructural alterations of megakaryocytes in thrombocytopenia: A review of 43 cases. BLOOD SCIENCE 2022; 3:107-112. [PMID: 35402843 PMCID: PMC8975046 DOI: 10.1097/bs9.0000000000000093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Thrombocytopenia is a frequent occurrence in a variety of hematopoietic diseases; however, the details of the mechanism leading to low platelet count remain elusive. Megakaryocytes are a series of progenitor cells responsible for the production of platelets. Alterations in megakaryocytes in the bone marrow are a causative factor resulting in thrombocytopenia in varied diseases. Based on ultrastructural analysis of incidentally encountered megakaryocytes in 43 patients with blood diseases marked by low platelet counts, electron micrographs demonstrated that aberrant megakaryocytes predominated in idiopathic thrombocytopenic purpura, aplastic anemia, and myelodysplastic syndrome; autophagy, apoptosis, and cellular damage in megakaryocytes were a prominent feature in aplastic anemia. On the other hand, poorly differentiated megakaryocytes predominated in acute megakaryoblastic leukemia (AMKL) although damaged megakaryocytes were seen in non-AMKL acute leukemia. This paper documents the ultrastructural alterations of megakaryocytes associated with thrombocytopenia and reveals distinctive features for particular blood diseases. A comment is made on future avenues of research emphasizing membrane fusion proteins.
Collapse
|
22
|
Hu X, Wang B, Chen Q, Huang A, Fu W, Liu L, Zhang Y, Tang G, Cheng H, Ni X, Gao L, Chen J, Chen L, Zhang W, Yang J, Cao S, Yu L, Wang J. A clinical prediction model identifies a subgroup with inferior survival within intermediate risk acute myeloid leukemia. J Cancer 2021; 12:4912-4923. [PMID: 34234861 PMCID: PMC8247394 DOI: 10.7150/jca.57231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Intermediate risk acute myeloid leukemia (AML) comprises around 50% of AML patients and is featured with heterogeneous clinical outcomes. The study aimed to generate a prediction model to identify intermediate risk AML patients with an inferior survival. We performed targeted next generation sequencing analysis for 121 patients with 2017 European LeukemiaNet-defined intermediate risk AML, revealing 122 mutated genes, with 24 genes mutated in > 10% of patients. A prognostic nomogram characterized by white blood cell count ≥10×109/L at diagnosis, mutated DNMT3A and genes involved in signaling pathways was developed for 110 patients who were with clinical outcomes. Two subgroups were identified: intermediate low risk (ILR; 43.6%, 48/110) and intermediate high risk (IHR; 56.4%, 62/110). The model was prognostic of overall survival (OS) and relapse-free survival (RFS) (OS: Concordance index [C-index]: 0.703, 95%CI: 0.643-0.763; RFS: C-index: 0.681, 95%CI 0.620-0.741), and was successfully validated with two independent cohorts. Allogeneic hematopoietic stem cell transplantation (alloHSCT) reduced the relapse risk of IHR patients (3-year RFS: alloHSCT: 40.0±12.8% vs. chemotherapy: 8.6±5.8%, P= 0.010). The prediction model can help identify patients with an unfavorable prognosis and refine risk-adapted therapy for intermediate risk AML patients.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Bianhong Wang
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Department of Health Statistics, Second Military Medical University, Shanghai 200433, China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd. Beijing, 100176, China
| | - Ying Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Hui Cheng
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Jie Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd. Beijing, 100176, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Hematology and Oncology, Shenzhen University General Hospital; Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
23
|
Tso S, Satchwell F, Moiz H, Hari T, Dhariwal S, Barlow R, Forbat E, Randeva H, Tan YT, Ilchyshyn A, Kwok MM, Barber TM, Thind C, Tso ACY. Erythroderma (exfoliative dermatitis). Part 1: underlying causes, clinical presentation and pathogenesis. Clin Exp Dermatol 2021; 46:1001-1010. [PMID: 33639006 DOI: 10.1111/ced.14625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Erythroderma (exfoliative dermatitis), first described by Von Hebra in 1868, manifests as a cutaneous inflammatory state, with associated skin barrier and metabolic dysfunctions. The annual incidence of erythroderma is estimated to be 1-2 per 100 000 population in Europe with a male preponderance. Erythroderma may present at birth, or may develop acutely or insidiously (due to progression of an underlying primary pathology, including malignancy). Although there is a broad range of diseases that associate with erythroderma, the vast majority of cases result from pre-existing and chronic dermatoses. In the first part of this two-part concise review, we explore the underlying causes, clinical presentation, pathogenesis and investigation of erythroderma, and suggest potential treatment targets for erythroderma with unknown causes.
Collapse
Affiliation(s)
- S Tso
- Jephson Dermatology Centre, South Warwickshire NHS Foundation Trust, Warwick, UK
| | - F Satchwell
- Jephson Dermatology Centre, South Warwickshire NHS Foundation Trust, Warwick, UK
| | - H Moiz
- Department of Public Health, University of Warwick, Coventry, UK
| | - T Hari
- University of Buckingham Medical School, Buckingham, UK
| | - S Dhariwal
- Jephson Dermatology Centre, South Warwickshire NHS Foundation Trust, Warwick, UK
| | - R Barlow
- Department of Dermatology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - E Forbat
- Department of Dermatology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.,Department of Dermatology, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - H Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Y T Tan
- Department of Cardiology, South Warwickshire NHS Foundation Trust, Warwick, UK
| | - A Ilchyshyn
- Department of Dermatology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - M M Kwok
- Anaesthetics, Westmead Hospital, Sydney, Australia
| | - T M Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - C Thind
- Jephson Dermatology Centre, South Warwickshire NHS Foundation Trust, Warwick, UK
| | - A C Y Tso
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
24
|
Man Y, Yao X, Yang T, Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front Cell Dev Biol 2021; 9:621214. [PMID: 33553181 PMCID: PMC7862549 DOI: 10.3389/fcell.2021.621214] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Self-renewal and multidirectional differentiation of hematopoietic stem cells (HSCs) are strictly regulated by numerous cellular components and cytokines in the bone marrow (BM) microenvironment. Several cell types that regulate HSC niche have been identified, including both non-hematopoietic cells and HSC-derived cells. Specific changes in the niche composition can result in hematological malignancies. Furthermore, processes such as homing, proliferation, and differentiation of HSCs are strongly controlled by the BM niche and have been reported to be related to the success of hematopoietic stem cell transplantation (HSCT). Single-cell sequencing and in vivo imaging are powerful techniques to study BM microenvironment in hematological malignancies and after HSCT. In this review, we discuss how different components of the BM niche, particularly non-hematopoietic and hematopoietic cells, regulate normal hematopoiesis, and changes in the BM niche in leukemia and after HSCT. We believe that this comprehensive review will provide clues for further research on improving HSCT efficiency and exploring potential therapeutic targets for leukemia.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
Huang D, Sun G, Hao X, He X, Zheng Z, Chen C, Yu Z, Xie L, Ma S, Liu L, Zhou BO, Cheng H, Zheng J, Cheng T. ANGPTL2-containing small extracellular vesicles from vascular endothelial cells accelerate leukemia progression. J Clin Invest 2021; 131:138986. [PMID: 33108353 DOI: 10.1172/jci138986] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Small extracellular vesicles (SEVs) are functional messengers of certain cellular niches that permit noncontact cell communications. Whether niche-specific SEVs fulfill this role in cancer is unclear. Here, we used 7 cell type-specific mouse Cre lines to conditionally knock out Vps33b in Cdh5+ or Tie2+ endothelial cells (ECs), Lepr+ BM perivascular cells, Osx+ osteoprogenitor cells, Pf4+ megakaryocytes, and Tcf21+ spleen stromal cells. We then examined the effects of reduced SEV secretion on progression of MLL-AF9-induced acute myeloid leukemia (AML), as well as normal hematopoiesis. Blocking SEV secretion from ECs, but not perivascular cells, megakaryocytes, or spleen stromal cells, markedly delayed the leukemia progression. Notably, reducing SEV production from ECs had no effect on normal hematopoiesis. Protein analysis showed that EC-derived SEVs contained a high level of ANGPTL2, which accelerated leukemia progression via binding to the LILRB2 receptor. Moreover, ANGPTL2-SEVs released from ECs were governed by VPS33B. Importantly, ANGPTL2-SEVs were also required for primary human AML cell maintenance. These findings demonstrate a role of niche-specific SEVs in cancer development and suggest targeting of ANGPTL2-SEVs from ECs as a potential strategy to interfere with certain types of AML.
Collapse
Affiliation(s)
- Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiaoxin Hao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
26
|
Yuan J, Jia J, Wu T, Liu X, Hu S, Zhang J, Ding R, Pang C, Cheng X. Comprehensive evaluation of differential long non-coding RNA and gene expression in patients with cartilaginous endplate degeneration of cervical vertebra. Exp Ther Med 2020; 20:260. [PMID: 33199985 PMCID: PMC7664616 DOI: 10.3892/etm.2020.9390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key regulators in gene expression; however, little is currently known regarding their role in cartilaginous endplate (CE) degeneration (CED) of cervical vertebra. The present study aimed to investigate the expression levels of lncRNAs and analyze their potential functions in CED of cervical vertebra in patients with cervical fracture and cervical spondylosis. Human competitive endogenous RNA (ceRNA) array was used to analyze lncRNA and mRNA expression levels in CE samples from patients with cervical fracture and cervical spondylosis, who received anterior cervical discectomy and fusion. Differentially expressed lncRNAs (DELs) or differentially expressed genes (DEGs) were identified and functionally analyzed, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. An lncRNA-microRNA(miRNA)-mRNA ceRNA regulatory network was constructed based on the DELs and DEGs, and the ceRNA network was visualized using Cytoscape 3.7.2 software. In total, one downregulated mRNA, one upregulated miRNA and five downstream regulated lncRNAs were identified using reverse transcription-quantitative PCR in CED and healthy CE samples. A total of 369 lncRNAs and 246 mRNAs were identified as differentially expressed in CE. The GO and KEGG analyses demonstrated that the majority of GO and KEGG enrichments were associated with CED. Furthermore, a ceRNA network was established, including 168 putative miRNA response elements, 189 upregulated and 37 downregulated lncRNAs and 47 upregulated and 10dow regulated DEGs. The present study analyzed the function of DEGs in the ceRNA network and filtered out the same items as in DEG-function enrichment analysis. These results provide a new perspective for an improved understanding of ceRNA-mediated gene regulation in cervical spondylosis, and provide a novel theoretical basis for further studies on the function of lncRNA in cervical spondylosis. However, further experiments are required to validate the results of the present study.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shen Hu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chongzhi Pang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Correspondence to: Professor Xigao Cheng, Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
27
|
Highly multiplexed proteomic assessment of human bone marrow in acute myeloid leukemia. Blood Adv 2020; 4:367-379. [PMID: 31985806 DOI: 10.1182/bloodadvances.2019001124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by abnormal clonal proliferation of myeloid progenitor cells found predominantly within the bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic alterations in the BM microenvironment support leukemogenesis and allow leukemic cells to survive and evade chemotherapy-induced death. However, despite substantial evidence indicating the role of tumor-host interactions in AML pathogenesis, little is known about the complex microenvironment of the BM. To address this, we performed novel proteomic profiling of the noncellular compartment of the BM microenvironment in patients with AML (n = 10) and age- and sex-matched healthy control subjects (n = 10) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal alternate screening strategies to determine the true proteomic composition of the extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that 168 proteins significantly differed in abundance, with 91 upregulated and 77 downregulated in leukemic BM. A highly connected signaling network of cytokines and chemokines, including IL-8, was found to be the most prominent proteomic signature associated with AML in the BM microenvironment. We report the first description of significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and perform functional experiments supportive of a role in the suppression of normal hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides innovative mechanistic insights into AML and healthy aging and should serve as a useful public resource.
Collapse
|
28
|
Sun T, Ju M, Dai X, Dong H, Gu W, Gao Y, Fu R, Liu X, Huang Y, Liu W, Ch Y, Wang W, Li H, Zhou Y, Shi L, Yang R, Zhang L. Multilevel defects in the hematopoietic niche in essential thrombocythemia. Haematologica 2019; 105:661-673. [PMID: 31289202 PMCID: PMC7049349 DOI: 10.3324/haematol.2018.213686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
The role of the bone marrow niche in essential thrombocythemia (ET) remains unclear. Here, we observed multilevel defects in the hematopoietic niche of patients with JAK2V617F-positive ET, including functional deficiency in mesenchymal stromal cells (MSC), immune imbalance, and sympathetic-nerve damage. Mesenchymal stromal cells from patients with JAK2V617F-positive essential thrombocythemia had a transformed transcriptome. In parallel, they showed enhanced proliferation, decreased apoptosis and senescence, attenuated ability to differentiate into adipocytes and osteocytes, and insufficient support for normal hematopoiesis. Additionally, they were inefficient in suppressing immune responses. For instance, they poorly inhibited proliferation and activation of CD4-positive T cells and the secretion of the inflammatory factor soluble CD40-ligand. They also poorly induced formation of mostly immunosuppressive T-helper 2 cells (Th2) and the secretion of the anti-inflammatory factor interleukin-4 (IL-4). Furthermore, we identified WDR4 as a potent protein with low expression and which was correlated with increased proliferation, reduced senescence and differentiation, and insufficient support for normal hematopoiesis in MSC from patients with JAK2V617F-positive ET. We also observed that loss of WDR4 in MSC cells downregulated the interleukin-6 (IL-6) level through the ERK–GSK3β–CREB signaling based on our in vitro studies. Altogether, our results show that multilevel changes occur in the bone marrow niche of patients with JAK2V617F-positive ET, and low expression of WDR4 in MSC may be critical for inducing hematopoietic related changes.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology
| | - Huan Dong
- State Key Laboratory of Experimental Hematology
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Yueting Huang
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Wei Liu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Ying Ch
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology.,Tianjin Laboratory of Blood Disease Gene Therapy.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology .,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Center for Stem Cell Medicine.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases.,CAMS Center for Stem Cell Medicine
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases.,CAMS Center for Stem Cell Medicine.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| |
Collapse
|
29
|
Ge C, An N, Li L, Wei W, Ji L, Yuan N, Fang Y, Xu L, Song L, Zhang J, Song C, Wang J, Zhang S. Autophagy-deficient mice are more susceptible to engrafted leukemogenesis. Blood Cells Mol Dis 2019; 77:129-136. [PMID: 31059942 DOI: 10.1016/j.bcmd.2019.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022]
Abstract
Autophagy is primarily considered as an important survival mechanism for both normal cells and cancer cells in response to metabolic stress or chemotherapy; but the role of autophagy in leukemogenesis is not fully understood. The aim of this study is to explore the role of intrinsic autophagy in the leukemogenesis of B-cell acute lymphoblastic leukemia (B-ALL). In this study, conditional knockout mice Atg7f/f;Ubc-Cre, in which an autophagy-essential gene Atg7 is universally deleted, were used as recipients, B-ALL cell line 697 was used as donor cells to generate leukemia mouse model. Compared to wild-type mice, Atg7 knockout mice were more susceptible to engrafted leukemogenesis, shown by increase in white blood cells, lymphocytes, and platelets, decrease in HSPC number and its colony-forming unit (CFU). The liver and spleen displayed hepatosplenomegaly and inflammatory cell infiltration. Furthermore, second competitive transplantation revealed dysfunction of the HSPC in Atg7-knockout leukemia mice represented by destructive self-renew ability (CFU) and reconstitution ability including decreased B220, Ter 119 cells, and increased Gr-1 cell percentage. In summary, Mice with universal deletion of Atg7 are more inclined to the occurrence of engrafted human leukemia, which is largely attributed to the deterioration of the function of HSPC in autophagy deficient mice.
Collapse
Affiliation(s)
- Chaorong Ge
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Ni An
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Li Ji
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Lin Song
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Jingyi Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Chenglin Song
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China.
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China.
| |
Collapse
|