1
|
Shu W, Yang Q, He D, Li Y, Le J, Cai Q, Dai H, Luo L, Chen B, Gong Y, Jin D. Impact of KIT mutation on efficacy of venetoclax and hypomethylating agents in newly diagnosed acute myeloid leukemia. Eur J Med Res 2025; 30:354. [PMID: 40312469 DOI: 10.1186/s40001-025-02637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND The combination of venetoclax (VEN) with hypomethylating agents (HMAs) has emerged as a new standard treatment for older or unfit patients with acute myeloid leukemia (AML). However, the predictive factors for VEN/HMA efficacy remain unclear. In our study, we performed the first analysis of the impact of KIT mutations on therapeutic outcomes in newly diagnosed AML patients undergoing VEN/HMA regimens. METHODS In this retrospective study, we included 16 KIT-mutant AML patients receiving VEN/HMA (Cohort A), 141 KIT-wild-type AML patients receiving VEN/HMA (Cohort B), and 69 KIT-mutant AML patients receiving intensive chemotherapy (IC) (Cohort C). We compared the differences in therapeutic efficacy among the different cohorts. Furthermore, we conducted multivariate analyses in patients receiving VEN/HMA to identify factors influencing therapeutic outcomes. RESULTS Compared to Cohort B, Cohort A exhibited significantly lower overall response rate (ORR) (18.8% vs. 72.3%, p < 0.001) and measurable residual disease (MRD) negativity rate (18.8% vs. 68.1%, p < 0.001), with a shorter median event-free survival (EFS) (1.9 months vs. 7.8 months, p < 0.001). No significant difference in overall survival (OS) was observed. Among KIT-mutant patients, IC showed superior ORR (78.3% vs. 18.8%, p < 0.001), MRD negativity rate (75.4% vs. 18.8%, p < 0.001), and EFS (12.2 months vs. 1.9 months, p < 0.001) compared to VEN/HMA. No significant difference in OS was observed between the two cohorts. Multivariate analysis confirmed KIT mutations as an independent predictor of lower ORR (OR 0.020, 95% CI 0.002-0.211, p = 0.001) and shorter EFS (HR 6.318, 95% CI 2.659-15.012, p < 0.001). CONCLUSIONS Our findings suggest that KIT mutations are associated with poor response and shorter EFS in AML patients treated with VEN/HMA, highlighting the importance of KIT mutation status in risk stratification and treatment selection.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Sulfonamides/therapeutic use
- Sulfonamides/administration & dosage
- Female
- Male
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Retrospective Studies
- Mutation
- Middle Aged
- Aged
- Proto-Oncogene Proteins c-kit/genetics
- Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aged, 80 and over
- Treatment Outcome
- DNA Methylation/drug effects
Collapse
Affiliation(s)
- Wenxiu Shu
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Qianqian Yang
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jing Le
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Qianqian Cai
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Hui Dai
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Liufei Luo
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Bingrong Chen
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Yuan Gong
- Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550001, China
| | - Dian Jin
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China.
| |
Collapse
|
2
|
Saxena K, Hung SH, Ryu E, Singh S, Zhang Tatarata Q, Zeng Z, Wang Z, Konopleva MY, Yee C. BH3 mimetics augment cytotoxic T cell killing of acute myeloid leukemia via mitochondrial apoptotic mechanism. Cell Death Discov 2025; 11:120. [PMID: 40140361 PMCID: PMC11947210 DOI: 10.1038/s41420-025-02375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8+ T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8+ T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, our data suggests that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the mitochondrial apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Gilead Sciences Inc., Foster City, CA, USA
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Esther Ryu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shailbala Singh
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Proteomic Comparison of Acute Myeloid Leukemia Cells and Normal CD34 + Bone Marrow Cells: Studies of Leukemia Cell Differentiation and Regulation of Iron Metabolism/Ferroptosis. Proteomes 2025; 13:11. [PMID: 39982321 PMCID: PMC11843884 DOI: 10.3390/proteomes13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy that can be cured only by intensive chemotherapy possibly combined with allogeneic stem cell transplantation. We compared the pretreatment proteomic profiles of AML cells derived from 50 patients at the time of first diagnosis with normal CD34+ bone marrow cells. A comparison based on all AML and CD34+ normal cell populations identified 121 differentially abundant proteins that showed at least 2-fold differences, and these proteins included several markers of neutrophil differentiation (e.g., TLR2, the integrins ITGM and ITGX, and downstream mediators including RHO GTPase, S100A8, S100A9, S100A22). However, the expression of these 121 proteins varied between patients, and a subset of 28 patients was characterized by increased long-term AML-free survival, signs of myeloid AML cell differentiation, and favorable genetic abnormalities. These two main patient subsets (28 with differentiation versus 22 with fewer signs of differentiation) also differed with regard to the phosphorylation of 16 differentially abundant proteins. Furthermore, we also classified our patients based on their expression of 16 proteins involved in the regulation of iron metabolism/ferroptosis and showing differential expression when comparing AML cells and normal CD34+ cells. Among the 22 patients with less favorable prognosis, we could then identify a genetically heterogeneous subset characterized by adverse prognosis (i.e., death from primary resistance/relapse) and an iron metabolism/ferroptosis protein profile showing similarities with normal CD34+ cells. We conclude that proteomic profiles differ between AML and normal CD34+ cells; especially, proteomic differences reflecting differentiation and regulation of iron metabolism/ferroptosis are associated with risk of relapse after intensive conventional therapy.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
4
|
Kytölä S, Vänttinen I, Ruokoranta T, Partanen A, Holopainen A, Saad J, Kuusisto MEL, Koskela S, Räty R, Itälä-Remes M, Västrik I, Suvela M, Parsons A, Porkka K, Wennerberg K, Heckman CA, Jalkanen T, Huttunen T, Ettala P, Rimpiläinen J, Siitonen T, Pyörälä M, Kuusanmäki H, Kontro M. Ex vivo venetoclax sensitivity predicts clinical response in acute myeloid leukemia in the prospective VenEx trial. Blood 2025; 145:409-421. [PMID: 39357056 DOI: 10.1182/blood.2024024968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT The B-cell lymphoma 2 inhibitor venetoclax has shown promise for treating acute myeloid leukemia (AML). However, identifying patients likely to respond remains a challenge, especially for those with relapsed/refractory (R/R) disease. We evaluated the utility of ex vivo venetoclax sensitivity testing to predict treatment responses to venetoclax-azacitidine in a prospective, multicenter, phase 2 trial. The trial recruited 104 participants with previously untreated (n = 48), R/R (n = 39), or previously treated secondary AML (sAML) (n = 17). The primary end point was complete remission or complete remission with incomplete hematologic recovery (CR/CRi) rate in ex vivo sensitive trial participants during the first 3 therapy cycles. The key secondary end points included the correlations between ex vivo drug sensitivity, responses, and survival. Venetoclax sensitivity was successfully assessed in 102 of 104 participants, with results available within a median of 3 days from sampling. In previously untreated AML, ex vivo sensitivity corresponded to an 85% (34/40) CR/CRi rate, with a median overall survival (OS) of 28.7 months, compared with 5.5 months for ex vivo resistant patients (P = .002). For R/R/sAML, ex vivo sensitivity resulted in a 62% CR/CRi rate (21/34) and median OS of 9.7 vs 3.3 months for ex vivo resistant patients (P < .001). In univariate and multivariate analysis, ex vivo venetoclax sensitivity was the strongest predictor for a favorable treatment response and survival. This trial demonstrates the feasibility of integrating ex vivo drug testing into clinical practice to identify patients with AML, particularly in the R/R setting, who benefit from venetoclax. This trial was registered at www.clinicaltrials.gov as #NCT04267081.
Collapse
MESH Headings
- Humans
- Sulfonamides/therapeutic use
- Sulfonamides/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Female
- Middle Aged
- Aged
- Adult
- Prospective Studies
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Treatment Outcome
- Remission Induction
- Drug Resistance, Neoplasm
Collapse
Affiliation(s)
- Sari Kytölä
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ida Vänttinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tanja Ruokoranta
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anu Partanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Joseph Saad
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Sirpa Koskela
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Riikka Räty
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Maija Itälä-Remes
- Department of Clinical Hematology and Stem Cell Transplantations, Turku University Hospital, Turku, Finland
| | - Imre Västrik
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Minna Suvela
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Alun Parsons
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Pia Ettala
- Department of Clinical Hematology and Stem Cell Transplantations, Turku University Hospital, Turku, Finland
| | - Johanna Rimpiläinen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Timo Siitonen
- Department of Hematology, University of Oulu, Oulu, Finland
| | - Marja Pyörälä
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Mika Kontro
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
5
|
Goulart H, Kantarjian H, Pemmaraju N, Daver N, DiNardo CD, Rausch CR, Ravandi F, Kadia TM. Venetoclax-Based Combination Regimens in Acute Myeloid Leukemia. Blood Cancer Discov 2025; 6:23-37. [PMID: 39565177 PMCID: PMC11707511 DOI: 10.1158/2643-3230.bcd-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
SIGNIFICANCE In recent years, there has been tremendous interest surrounding the integration of venetoclax into both non-intensive and intensive chemotherapy regimens for AML. However, with this increasing utilization of venetoclax, considerable questions surrounding key issues such as dosing strategies and the practicality of venetoclax administration have arisen. This review highlights the evolution of venetoclax-based regimens in AML and provides a commentary on notable practical considerations when utilizing this agent.
Collapse
Affiliation(s)
- Hannah Goulart
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D. DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caitlin R. Rausch
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M. Kadia
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Tomska K, Scheinost S, Kivioja J, Kummer S, Do THL, Zenz T. Lymphoma and Leukemia Cell Vulnerabilities and Resistance Identified by Compound Library Screens. Methods Mol Biol 2025; 2865:259-272. [PMID: 39424728 DOI: 10.1007/978-1-0716-4188-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Response to anticancer agents is often restricted to subsets of patients. Recognition of factors underlying this heterogeneity and identification of biomarkers associated with response to drugs would greatly improve the efficacy of drug treatment. Platforms that can comprehensively map cellular response to compounds in high-throughput provide a unique tool to identify associated biomarkers and provide hypotheses for mechanisms underlying variable response. Such screens can be performed on cell lines and short-term cultures of primary cells to take advantage of the respective models' strength, which include, e.g., the ability to silence genes or introduce somatic mutations to cell lines. Cohorts of patient samples represent the natural diversity of cancers, including rarer mutations and combinatorial patterns of mutations that are often absent from existing cell lines. We here summarize a simple and scalable method for the measurement of viability after drug exposure based on ATP measurements as a surrogate for viability, which we use to measure and understand drug response in cell lines and primary cells.
Collapse
Affiliation(s)
- Katarzyna Tomska
- Department of Molecular Therapy in Hematology and Oncology, DKFZ & NCT Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Scheinost
- Department of Translational Oncology, German Cancer Research Center DKFZ & NCT Heidelberg, Heidelberg, Germany
| | - Jarno Kivioja
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Sandra Kummer
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Thi Huong Lan Do
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Yee C, Saxena K, Ryu E, Hung SH, Singh S, Zhang Q, Zeng Z, Wang Z, Konopleva M. BH3 Mimetics Augment Cytotoxic T Cell Killing of Acute Myeloid Leukemia via Mitochondrial Apoptotic Mechanism. RESEARCH SQUARE 2024:rs.3.rs-5307127. [PMID: 39711535 PMCID: PMC11661303 DOI: 10.21203/rs.3.rs-5307127/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8 + T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8 + T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, we found that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the same apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Cassian Yee
- The University of Texas MD Anderson Cancer Center
| | | | - Esther Ryu
- University of Texas MD Anderson Cancer Center
| | | | | | - Qi Zhang
- University of Texas MD Anderson Cancer Center
| | | | - Zhe Wang
- University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
8
|
Sango J, Carcamo S, Sirenko M, Maiti A, Mansour H, Ulukaya G, Tomalin LE, Cruz-Rodriguez N, Wang T, Olszewska M, Olivier E, Jaud M, Nadorp B, Kroger B, Hu F, Silverman L, Chung SS, Wagenblast E, Chaligne R, Eisfeld AK, Demircioglu D, Landau DA, Lito P, Papaemmanuil E, DiNardo CD, Hasson D, Konopleva M, Papapetrou EP. RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax. Nature 2024; 636:241-250. [PMID: 39478230 PMCID: PMC11618090 DOI: 10.1038/s41586-024-08137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1-6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte-monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Cell Lineage/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Monocytes/metabolism
- Monocytes/drug effects
- Mutation
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- ras Proteins/metabolism
- ras Proteins/genetics
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Granulocytes
- Clone Cells/metabolism
- Clone Cells/pathology
- Stem Cells/metabolism
- Stem Cells/pathology
- Recurrence
Collapse
Affiliation(s)
- Junya Sango
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Sirenko
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hager Mansour
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gulay Ulukaya
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis E Tomalin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nataly Cruz-Rodriguez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manon Jaud
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bettina Nadorp
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Benjamin Kroger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Hu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lewis Silverman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen S Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligne
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan A Landau
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Iyer P, Jasdanwala SS, Wang Y, Bhatia K, Bhatt S. Decoding Acute Myeloid Leukemia: A Clinician's Guide to Functional Profiling. Diagnostics (Basel) 2024; 14:2560. [PMID: 39594226 PMCID: PMC11593197 DOI: 10.3390/diagnostics14222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex clonal disorder characterized by clinical, genetic, metabolomic, and epigenetic heterogeneity resulting in the uncontrolled proliferation of aberrant blood-forming precursor cells. Despite advancements in the understanding of the genetic, metabolic, and epigenetic landscape of AML, it remains a significant therapeutic challenge. Functional profiling techniques, such as BH3 profiling (BP), gene expression profiling (GEP), proteomics, metabolomics, drug sensitivity/resistance testing (DSRT), CRISPR/Cas9, and RNAi screens offer valuable insights into the functional behavior of leukemia cells. BP evaluates the mitochondrial response to pro-apoptotic BH3 peptides, determining a cell's apoptotic threshold and its reliance on specific anti-apoptotic proteins. This knowledge can pinpoint vulnerabilities in the mitochondria-mediated apoptotic pathway in leukemia cells, potentially informing treatment strategies and predicting therapeutic responses. GEP, particularly RNA sequencing, evaluates the transcriptomic landscape and identifies gene expression alterations specific to AML subtypes. Proteomics and metabolomics, utilizing mass spectrometry and nuclear magnetic resonance (NMR), provide a detailed view of the active proteins and metabolic pathways in leukemia cells. DSRT involves exposing leukemia cells to a panel of chemotherapeutic and targeted agents to assess their sensitivity or resistance profiles and potentially guide personalized treatment strategies. CRISPR/Cas9 and RNAi screens enable systematic disruption of genes to ascertain their roles in leukemia cell survival and proliferation. These techniques facilitate precise disease subtyping, uncover novel biomarkers and therapeutic targets, and provide a deeper understanding of drug-resistance mechanisms. Recent studies utilizing functional profiling have identified specific mutations and gene signatures associated with aggressive AML subtypes, aberrant signaling pathways, and potential opportunities for drug repurposing. The integration of multi-omics approaches, advances in single-cell sequencing, and artificial intelligence is expected to refine the precision of functional profiling and ultimately improve patient outcomes in AML. This review highlights the diverse landscape of functional profiling methods and emphasizes their respective advantages and limitations. It highlights select successes in how these methods have further advanced our understanding of AML biology, identifies druggable targets that have improved outcomes, delineates challenges associated with these techniques, and provides a prospective view of the future where these techniques are likely to be increasingly incorporated into the routine care of patients with AML.
Collapse
Affiliation(s)
- Prasad Iyer
- Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Shaista Shabbir Jasdanwala
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| | - Yuhan Wang
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| | - Karanpreet Bhatia
- Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| |
Collapse
|
10
|
Wegmann R, Bonilla X, Casanova R, Chevrier S, Coelho R, Esposito C, Ficek-Pascual J, Goetze S, Gut G, Jacob F, Jacobs A, Kuipers J, Lischetti U, Mena J, Milani ES, Prummer M, Del Castillo JS, Singer F, Sivapatham S, Toussaint NC, Vilinovszki O, Wildschut MHE, Thavayogarajah T, Malani D, Aebersold R, Bacac M, Beerenwinkel N, Beisel C, Bodenmiller B, Heinzelmann-Schwarz V, Koelzer VH, Levesque MP, Moch H, Pelkmans L, Rätsch G, Tolnay M, Wicki A, Wollscheid B, Manz MG, Snijder B, Theocharides APA. Single-cell landscape of innate and acquired drug resistance in acute myeloid leukemia. Nat Commun 2024; 15:9402. [PMID: 39477946 PMCID: PMC11525670 DOI: 10.1038/s41467-024-53535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Deep single-cell multi-omic profiling offers a promising approach to understand and overcome drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML). Here, we combine single-cell ex vivo drug profiling (pharmacoscopy) with single-cell and bulk DNA, RNA, and protein analyses, alongside clinical data from 21 rrAML patients. Unsupervised data integration reveals reduced ex vivo response to the Bcl-2 inhibitor venetoclax (VEN) in patients treated with both a hypomethylating agent (HMA) and VEN, compared to those pre-exposed to chemotherapy or HMA alone. Integrative analysis identifies both known and unreported mechanisms of innate and treatment-related VEN resistance and suggests alternative treatments, like targeting increased proliferation with the PLK inhibitor volasertib. Additionally, high CD36 expression in VEN-resistant blasts associates with sensitivity to CD36-targeted antibody treatment ex vivo. This study demonstrates how single-cell multi-omic profiling can uncover drug resistance mechanisms and treatment vulnerabilities, providing a valuable resource for future AML research.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Single-Cell Analysis
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Female
- Male
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Aged
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ximena Bonilla
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Ruben Casanova
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Stéphane Chevrier
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Ricardo Coelho
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cinzia Esposito
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Sandra Goetze
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gabriele Gut
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ulrike Lischetti
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emanuela S Milani
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Prummer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | | | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | - Sujana Sivapatham
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nora C Toussaint
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
- Swiss Data Science Center, ETH Zürich, Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Disha Malani
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, USA
| | - Rudolf Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- AI Center at ETH Zurich, Zurich, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | |
Collapse
|
11
|
Ianevski A, Nader K, Driva K, Senkowski W, Bulanova D, Moyano-Galceran L, Ruokoranta T, Kuusanmäki H, Ikonen N, Sergeev P, Vähä-Koskela M, Giri AK, Vähärautio A, Kontro M, Porkka K, Pitkänen E, Heckman CA, Wennerberg K, Aittokallio T. Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones. Nat Commun 2024; 15:8579. [PMID: 39362905 PMCID: PMC11450203 DOI: 10.1038/s41467-024-52980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Intratumoral cellular heterogeneity necessitates multi-targeting therapies for improved clinical benefits in advanced malignancies. However, systematic identification of patient-specific treatments that selectively co-inhibit cancerous cell populations poses a combinatorial challenge, since the number of possible drug-dose combinations vastly exceeds what could be tested in patient cells. Here, we describe a machine learning approach, scTherapy, which leverages single-cell transcriptomic profiles to prioritize multi-targeting treatment options for individual patients with hematological cancers or solid tumors. Patient-specific treatments reveal a wide spectrum of co-inhibitors of multiple biological pathways predicted for primary cells from heterogenous cohorts of patients with acute myeloid leukemia and high-grade serous ovarian carcinoma, each with unique resistance patterns and synergy mechanisms. Experimental validations confirm that 96% of the multi-targeting treatments exhibit selective efficacy or synergy, and 83% demonstrate low toxicity to normal cells, highlighting their potential for therapeutic efficacy and safety. In a pan-cancer analysis across five cancer types, 25% of the predicted treatments are shared among the patients of the same tumor type, while 19% of the treatments are patient-specific. Our approach provides a widely-applicable strategy to identify personalized treatment regimens that selectively co-inhibit malignant cells and avoid inhibition of non-cancerous cells, thereby increasing their likelihood for clinical success.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kristen Nader
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kyriaki Driva
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Wojciech Senkowski
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Daria Bulanova
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Lidia Moyano-Galceran
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Tanja Ruokoranta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Foundation for the Finnish Cancer Institute (FCI), Helsinki, Finland
| | - Nemo Ikonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Philipp Sergeev
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute (FCI), Helsinki, Finland
| | - Anna Vähärautio
- Foundation for the Finnish Cancer Institute (FCI), Helsinki, Finland
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Kontro
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Foundation for the Finnish Cancer Institute (FCI), Helsinki, Finland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esa Pitkänen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Shahswar R, Ganser A. Relapse and resistance in acute myeloid leukemia post venetoclax: improving second lines therapy and combinations. Expert Rev Hematol 2024; 17:723-739. [PMID: 39246164 DOI: 10.1080/17474086.2024.2402283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION The combined use of the BCL-2 inhibitor venetoclax with azacitidine now is the standard of care for patients with acute myeloid leukemia (AML) unfit for intensive chemotherapy with outcomes exceeding those achieved with hypomethylating agents alone. Venetoclax in combination with intensive chemotherapy is also increasingly used both as frontline as well as salvage therapy. However, resistance to and relapse after venetoclax-based therapies are of major concern and outcomes after treatment failure remain poor. AREAS COVERED A comprehensive search was performed using PubMed database (up to April 2024). Studies evaluating venetoclax-based combination treatments in AML and studies assessing markers of response and resistance to venetoclax were investigated. We summarize the status of venetoclax-based therapies in the frontline and relapsed/refractory setting with focus on the main mechanisms of resistance to BCL-2 inhibition. Further, strategies to overcome resistance including combinatorial regimens of hypomethylating agent (HMA) + venetoclax + inhibitors targeting actionable mutations like IDH1/2 or FLT3-ITD and the introduction of novel agents like menin-inhibitors are addressed. EXPERT OPINION Although venetoclax is reshaping the treatment of unfit and fit AML patients, prognosis of patients after HMA/VEN failure remains dismal, and strategies to abrogate primary and secondary resistance are an unmet clinical need.
Collapse
Affiliation(s)
- Rabia Shahswar
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Chang YH, Yamamoto K, Fujino T, Wang TW, Sugimoto E, Zhang W, Yabushita T, Suzaki K, Pietsch EC, Weir BA, Crescenzo R, Cowley GS, Attar R, Philippar U, Wunderlich M, Mizukawa B, Zheng Y, Enomoto Y, Imai Y, Kitamura T, Goyama S. SETDB1 suppresses NK cell-mediated immunosurveillance in acute myeloid leukemia with granulo-monocytic differentiation. Cell Rep 2024; 43:114536. [PMID: 39096901 DOI: 10.1016/j.celrep.2024.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
Monocytic acute myeloid leukemia (AML) responds poorly to current treatments, including venetoclax-based therapy. We conducted in vivo and in vitro CRISPR-Cas9 library screenings using a mouse monocytic AML model and identified SETDB1 and its binding partners (ATF7IP and TRIM33) as crucial tumor promoters in vivo. The growth-inhibitory effect of Setdb1 depletion in vivo is dependent mainly on natural killer (NK) cell-mediated cytotoxicity. Mechanistically, SETDB1 depletion upregulates interferon-stimulated genes and NKG2D ligands through the demethylation of histone H3 Lys9 at the enhancer regions, thereby enhancing their immunogenicity to NK cells and intrinsic apoptosis. Importantly, these effects are not observed in non-monocytic leukemia cells. We also identified the expression of myeloid cell nuclear differentiation antigen (MNDA) and its murine counterpart Ifi203 as biomarkers to predict the sensitivity of AML to SETDB1 depletion. Our study highlights the critical and selective role of SETDB1 in AML with granulo-monocytic differentiation and underscores its potential as a therapeutic target for current unmet needs.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Animals
- Cell Differentiation
- Mice
- Histone-Lysine N-Methyltransferase/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Mice, Inbred C57BL
- Cell Line, Tumor
- Immunologic Surveillance
- Monocytes/metabolism
- Monocytes/immunology
- Apoptosis
Collapse
Affiliation(s)
- Yu-Hsuan Chang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan; Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takeshi Fujino
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Emi Sugimoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomohiro Yabushita
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ken Suzaki
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | | | - Barbara A Weir
- Janssen Research and Development, Cambridge, MA 02141, USA
| | | | - Glenn S Cowley
- Janssen Research and Development, Spring House, PA 19002, USA
| | - Ricardo Attar
- Janssen Research and Development, Spring House, PA 19002, USA
| | | | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Mizukawa
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yutaka Enomoto
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshio Kitamura
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan; Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
14
|
Zhang L, Zhou X, Aryal S, Veasey V, Zhang P, Li FJ, Luan Y, Bhatia R, Zhou Y, Lu R. CRISPR screen of venetoclax response-associated genes identifies transcription factor ZNF740 as a key functional regulator. Cell Death Dis 2024; 15:627. [PMID: 39191721 DOI: 10.1038/s41419-024-06995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BCL-2 inhibitors such as venetoclax offer therapeutic promise in acute myeloid leukemia (AML) and other cancers, but drug resistance poses a significant challenge. It is crucial to understand the mechanisms that regulate venetoclax response. While correlative studies have identified numerous genes linked to venetoclax sensitivity, their direct impact on the drug response remains unclear. In this study, we targeted around 1400 genes upregulated in venetoclax-sensitive primary AML samples and carried out a CRISPR knockout screen to evaluate their direct effects on venetoclax response. Our screen identified the transcription factor ZNF740 as a critical regulator, with its expression consistently predicting venetoclax sensitivity across subtypes of the FAB classification. ZNF740 depletion leads to increased resistance to ventoclax, while its overexpression enhances sensitivity to the drug. Mechanistically, our integrative transcriptomic and genomic analysis identifies NOXA as a direct target of ZNF740, which negatively regulates MCL-1 protein stability. Loss of ZNF740 downregulates NOXA and increases the steady state protein levels of MCL-1 in AML cells. Restoring NOXA expression in ZNF740-depleted cells re-sensitizes AML cells to venetoclax treatment. Furthermore, we demonstrated that dual targeting of MCL-1 and BCL-2 effectively treats ZNF740-deficient AML in vivo. Together, our work systematically elucidates the causal relationship between venetoclax response signature genes and establishes ZNF740 as a novel transcription factor regulating venetoclax sensitivity.
Collapse
MESH Headings
- Sulfonamides/pharmacology
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Cell Line, Tumor
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Mice
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yu Luan
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
15
|
Satomaa T, Pynnönen H, Aitio O, Hiltunen JO, Pitkänen V, Lähteenmäki T, Kotiranta T, Heiskanen A, Hänninen AL, Niemelä R, Helin J, Kuusanmäki H, Vänttinen I, Rathod R, Nieminen AI, Yatkin E, Heckman CA, Kontro M, Saarinen J. Targeting CD33+ Acute Myeloid Leukemia with GLK-33, a Lintuzumab-Auristatin Conjugate with a Wide Therapeutic Window. Mol Cancer Ther 2024; 23:1073-1083. [PMID: 38561023 DOI: 10.1158/1535-7163.mct-23-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of acute myeloid leukemia (AML) blasts, making it an attractive target for therapy of AML. Although previous CD33-targeting antibody-drug conjugates (ADC) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novelADCwith improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linkerpayloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated antitumor activity at single dose as low as 300 mg/kg in mice, while maintaining tolerability at single dose of 20 to 30 mg/kg in rats. In contrast with both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
| | - Ida Vänttinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Ramji Rathod
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Mika Kontro
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | |
Collapse
|
16
|
Zhang S, Lou S, Bian W, Liu J, Wang R, Wang Y, Zhao Y, Zou X, Jin D, Liang Y, Sun J, Liu L. Selective eradication of venetoclax-resistant monocytic acute myeloid leukemia with iron oxide nanozymes. Biochem Biophys Res Commun 2024; 719:150117. [PMID: 38761635 DOI: 10.1016/j.bbrc.2024.150117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The clinical treatment of human acute myeloid leukemia (AML) is rapidly progressing from chemotherapy to targeted therapies led by the BCL-2 inhibitor venetoclax (VEN). Despite its unprecedented success, VEN still encounters clinical resistance. Thus, uncovering the biological vulnerability of VEN-resistant AML disease and identifying effective therapies to treat them are urgently needed. We have previously demonstrated that iron oxide nanozymes (IONE) are capable of overcoming chemoresistance in AML. The current study reports a new activity of IONE in overcoming VEN resistance. Specifically, we revealed an aberrant redox balance with excessive intracellular reactive oxygen species (ROS) in VEN-resistant monocytic AML. Treatment with IONE potently induced ROS-dependent cell death in monocytic AML in both cell lines and primary AML models. In primary AML with developmental heterogeneity containing primitive and monocytic subpopulations, IONE selectively eradicated the VEN-resistant ROS-high monocytic subpopulation, successfully resolving the challenge of developmental heterogeneity faced by VEN. Overall, our study revealed an aberrant redox balance as a therapeutic target for monocytic AML and identified a candidate IONE that could selectively and potently eradicate VEN-resistant monocytic disease.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Reactive Oxygen Species/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Leukemia, Monocytic, Acute/drug therapy
- Leukemia, Monocytic, Acute/metabolism
- Leukemia, Monocytic, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Ferric Compounds/pharmacology
Collapse
Affiliation(s)
- Shaoqi Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Shang Lou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Wei Bian
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Jun Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Rong Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Yanan Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Yin Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Xiaoqing Zou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Diange Jin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Yue Liang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Lina Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China.
| |
Collapse
|
17
|
Jin D, He J, Chen H, Wu W, Han X, Le J, Shu W, Yang Q, Pei S, Cai Z, He D. Impact of monocytic differentiation on acute myeloid leukemia patients treated with venetoclax and hypomethylating agents. Cancer Med 2024; 13:e7378. [PMID: 39031026 PMCID: PMC11258555 DOI: 10.1002/cam4.7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Although the combination of venetoclax (VEN) and hypomethylating agents (HMAs) results in impressive efficacy in acute myeloid leukemia (AML), there is still a subset of patients who are refractory. We investigated the outcomes of AML patients with monocytic differentiation who were treated with frontline VEN/HMA. METHODS A total of 155 patients with newly diagnosed AML treated with frontline VEN/HMA were enrolled in the study. Monocyte-like AML was identified by flow cytometry with typical expression of monocytic markers, and M5 was identified according to French, American, and British category. We compared the outcomes of patients with different characteristics. RESULTS The rate of complete remission (CR) and CR with incomplete recovery of blood counts (CRi), progression-free survival (PFS), and overall survival (OS) in monocyte-like AML were inferior to those in nonmonocyte-like AML (CR/CRi rates, 26.7% vs. 80.0%, p < 0.001; median PFS, 2.1 vs. 8.8 months, p < 0.001; median OS, 9.2 vs. 19 months, p = 0.013). CR/CRi rate in M5 was lower than that in non-M5 (60.7% vs. 75.5%, p = 0.049). Multivariate analyses showed that monocyte-like AML was associated with lower odds of CR/CRi and higher risk of progression. CONCLUSION Our study suggested that newly diagnosed AML with a monocytic immunophenotype had a poor prognosis with VEN/HMA treatment.
Collapse
Affiliation(s)
- Dian Jin
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Haoguang Chen
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Jing Le
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Wenxiu Shu
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Qianqian Yang
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Shanshan Pei
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
18
|
Qin G, Dai J, Chien S, Martins TJ, Loera B, Nguyen QH, Oakes ML, Tercan B, Aguilar B, Hagen L, McCune J, Gelinas R, Monnat RJ, Shmulevich I, Becker PS. Mutation Patterns Predict Drug Sensitivity in Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:2659-2671. [PMID: 38619278 PMCID: PMC11176916 DOI: 10.1158/1078-0432.ccr-23-1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 12/08/2023] [Indexed: 04/16/2024]
Abstract
PURPOSE The inherent genetic heterogeneity of acute myeloid leukemia (AML) has challenged the development of precise and effective therapies. The objective of this study was to elucidate the genomic basis of drug resistance or sensitivity, identify signatures for drug response prediction, and provide resources to the research community. EXPERIMENTAL DESIGN We performed targeted sequencing, high-throughput drug screening, and single-cell genomic profiling on leukemia cell samples derived from patients with AML. Statistical approaches and machine learning models were applied to identify signatures for drug response prediction. We also integrated large public datasets to understand the co-occurring mutation patterns and further investigated the mutation profiles in the single cells. The features revealed in the co-occurring or mutual exclusivity pattern were further subjected to machine learning models. RESULTS We detected genetic signatures associated with sensitivity or resistance to specific agents, and identified five co-occurring mutation groups. The application of single-cell genomic sequencing unveiled the co-occurrence of variants at the individual cell level, highlighting the presence of distinct subclones within patients with AML. Using the mutation pattern for drug response prediction demonstrates high accuracy in predicting sensitivity to some drug classes, such as MEK inhibitors for RAS-mutated leukemia. CONCLUSIONS Our study highlights the importance of considering the gene mutation patterns for the prediction of drug response in AML. It provides a framework for categorizing patients with AML by mutations that enable drug sensitivity prediction.
Collapse
Affiliation(s)
| | - Jin Dai
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Sylvia Chien
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Timothy J. Martins
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Brenda Loera
- City of Hope National Medical Center, Duarte, California
| | - Quy H. Nguyen
- University of California, Irvine, Irvine, California
| | | | - Bahar Tercan
- Institute for Systems Biology, Seattle, Washington
| | | | - Lauren Hagen
- Institute for Systems Biology, Seattle, Washington
| | | | | | - Raymond J. Monnat
- Lab Medicine|Pathology and Genome Sciences, University of Washington, Seattle, Washington
| | | | - Pamela S. Becker
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- City of Hope National Medical Center, Duarte, California
| |
Collapse
|
19
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
20
|
Luo Q, Raulston EG, Prado MA, Wu X, Gritsman K, Whalen KS, Yan K, Booth CAG, Xu R, van Galen P, Doench JG, Shimony S, Long HW, Neuberg DS, Paulo JA, Lane AA. Targetable leukaemia dependency on noncanonical PI3Kγ signalling. Nature 2024; 630:198-205. [PMID: 38720074 DOI: 10.1038/s41586-024-07410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.
Collapse
Affiliation(s)
- Qingyu Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Evangeline G Raulston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kira Gritsman
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karley S Whalen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kezhi Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christopher A G Booth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ran Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Peter van Galen
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Rabin Medical Center, Tel Aviv Faculty of Medicine, Tel Aviv, Israel
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Adnan Awad S, Dufva O, Klievink J, Karjalainen E, Ianevski A, Pietarinen P, Kim D, Potdar S, Wolf M, Lotfi K, Aittokallio T, Wennerberg K, Porkka K, Mustjoki S. Integrated drug profiling and CRISPR screening identify BCR::ABL1-independent vulnerabilities in chronic myeloid leukemia. Cell Rep Med 2024; 5:101521. [PMID: 38653245 PMCID: PMC11148568 DOI: 10.1016/j.xcrm.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here, we perform ex vivo drug screening of CML CD34+ leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1, MDM2, and BCL2 inhibitors. These agents effectively inhibit primitive CD34+CD38- CML cells and demonstrate potent synergies when combined with TKIs. Flow-cytometry-based drug screening identifies mepacrine to induce differentiation of CD34+CD38- cells. We employ genome-wide CRISPR-Cas9 screening for six drugs, and mediator complex, apoptosis, and erythroid-lineage-related genes are identified as key resistance hits for TKIs, whereas the Wee1 inhibitor AZD1775 and mepacrine exhibit distinct resistance profiles. KCTD5, a consistent TKI-resistance-conferring gene, is found to mediate TKI-induced BCR::ABL1 ubiquitination. In summary, we delineate potential mechanisms for primary TKI resistance and non-BCR::ABL1-targeting drugs, offering insights for optimizing CML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Protein Kinase Inhibitors/pharmacology
- CRISPR-Cas Systems/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Cell Line, Tumor
Collapse
Affiliation(s)
- Shady Adnan Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; Clinical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Ella Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Paavo Pietarinen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
| | - Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kourosh Lotfi
- Department of Medical and Health Sciences, Faculty of Medicine and Health, Linköping University, 58183 Linköping, Sweden
| | - Tero Aittokallio
- Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland.
| |
Collapse
|
22
|
Karakaslar EO, Severens JF, Sánchez-López E, van Veelen PA, Zlei M, van Dongen JJM, Otte AM, Halkes CJM, van Balen P, Veelken H, Reinders MJT, Griffioen M, van den Akker EB. A transcriptomic based deconvolution framework for assessing differentiation stages and drug responses of AML. NPJ Precis Oncol 2024; 8:105. [PMID: 38762545 PMCID: PMC11102519 DOI: 10.1038/s41698-024-00596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
The diagnostic spectrum for AML patients is increasingly based on genetic abnormalities due to their prognostic and predictive value. However, information on the AML blast phenotype regarding their maturational arrest has started to regain importance due to its predictive power for drug responses. Here, we deconvolute 1350 bulk RNA-seq samples from five independent AML cohorts on a single-cell healthy BM reference and demonstrate that the morphological differentiation stages (FAB) could be faithfully reconstituted using estimated cell compositions (ECCs). Moreover, we show that the ECCs reliably predict ex-vivo drug resistances as demonstrated for Venetoclax, a BCL-2 inhibitor, resistance specifically in AML with CD14+ monocyte phenotype. We validate these predictions using LUMC proteomics data by showing that BCL-2 protein abundance is split into two distinct clusters for NPM1-mutated AML at the extremes of CD14+ monocyte percentages, which could be crucial for the Venetoclax dosing patients. Our results suggest that Venetoclax resistance predictions can also be extended to AML without recurrent genetic abnormalities and possibly to MDS-related and secondary AML. Lastly, we show that CD14+ monocytic dominated Ven/Aza treated patients have significantly lower overall survival. Collectively, we propose a framework for allowing a joint mutation and maturation stage modeling that could be used as a blueprint for testing sensitivity for new agents across the various subtypes of AML.
Collapse
Affiliation(s)
- E Onur Karakaslar
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeppe F Severens
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mihaela Zlei
- Department of Flow Cytometry, Medical Laboratory, Regional Institute of Oncology, Iasi, Romania
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Annemarie M Otte
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik Veelken
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik B van den Akker
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
23
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Monocytic Differentiation of Human Acute Myeloid Leukemia Cells: A Proteomic and Phosphoproteomic Comparison of FAB-M4/M5 Patients with and without Nucleophosmin 1 Mutations. Int J Mol Sci 2024; 25:5080. [PMID: 38791118 PMCID: PMC11121526 DOI: 10.3390/ijms25105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased responsiveness) and possibly also bromodomain inhibition (increased responsiveness). FAB-M4/M5 patients are heterogeneous with regard to genetic abnormalities, even though monocytic differentiation is common for patients with Nucleophosmin 1 (NPM1) insertions/mutations; to further study the heterogeneity of FAB-M4/M5 patients we did a proteomic and phosphoproteomic comparison of FAB-M4/M5 patients with (n = 13) and without (n = 12) NPM1 mutations. The proteomic profile of NPM1-mutated FAB-M4/M5 patients was characterized by increased levels of proteins involved in the regulation of endocytosis/vesicle trafficking/organellar communication. In contrast, AML cells without NPM1 mutations were characterized by increased levels of several proteins involved in the regulation of cytoplasmic translation, including a large number of ribosomal proteins. The phosphoproteomic differences between the two groups were less extensive but reflected similar differences. To conclude, even though FAB classification/monocytic differentiation are associated with differences in responsiveness to new targeted therapies (e.g., Bcl-2 inhibition), our results shows that FAB-M4/M5 patients are heterogeneous with regard to important biological characteristics of the leukemic cells.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
24
|
Eldfors S, Saad J, Ikonen N, Malani D, Vähä-Koskela M, Gjertsen BT, Kontro M, Porkka K, Heckman CA. Monosomy 7/del(7q) cause sensitivity to inhibitors of nicotinamide phosphoribosyltransferase in acute myeloid leukemia. Blood Adv 2024; 8:1621-1633. [PMID: 38197948 PMCID: PMC10987804 DOI: 10.1182/bloodadvances.2023010435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Monosomy 7 and del(7q) (-7/-7q) are frequent chromosomal abnormalities detected in up to 10% of patients with acute myeloid leukemia (AML). Despite unfavorable treatment outcomes, no approved targeted therapies exist for patients with -7/-7q. Therefore, we aimed to identify novel vulnerabilities. Through an analysis of data from ex vivo drug screens of 114 primary AML samples, we discovered that -7/-7q AML cells are highly sensitive to the inhibition of nicotinamide phosphoribosyltransferase (NAMPT). NAMPT is the rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Mechanistically, the NAMPT gene is located at 7q22.3, and deletion of 1 copy due to -7/-7q results in NAMPT haploinsufficiency, leading to reduced expression and a therapeutically targetable vulnerability to the inhibition of NAMPT. Our results show that in -7/-7q AML, differentiated CD34+CD38+ myeloblasts are more sensitive to the inhibition of NAMPT than less differentiated CD34+CD38- myeloblasts. Furthermore, the combination of the BCL2 inhibitor venetoclax and the NAMPT inhibitor KPT-9274 resulted in the death of significantly more leukemic blasts in AML samples with -7/-7q than the NAMPT inhibitor alone. In conclusion, our findings demonstrate that AML with -7/-7q is highly sensitive to NAMPT inhibition, suggesting that NAMPT inhibitors have the potential to be an effective targeted therapy for patients with monosomy 7 or del(7q).
Collapse
Affiliation(s)
- Samuli Eldfors
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Internal Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Joseph Saad
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Nemo Ikonen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Bjørn T. Gjertsen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Mika Kontro
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Kimmo Porkka
- Department of Internal Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
25
|
Huang X, Li Y, Zhang J, Yan L, Zhao H, Ding L, Bhatara S, Yang X, Yoshimura S, Yang W, Karol SE, Inaba H, Mullighan C, Litzow M, Zhu X, Zhang Y, Stock W, Jain N, Jabbour E, Kornblau SM, Konopleva M, Pui CH, Paietta E, Evans W, Yu J, Yang JJ. Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia. Cancer Cell 2024; 42:552-567.e6. [PMID: 38593781 PMCID: PMC11008188 DOI: 10.1016/j.ccell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.
Collapse
Affiliation(s)
- Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230601, China
| | - Yizhen Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, China
| | - Jingliao Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lei Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huanbin Zhao
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Satoshi Yoshimura
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenjian Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaofan Zhu
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingchi Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wendy Stock
- Department of Medicine Section of Hematology-Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Nitin Jain
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elias Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth Paietta
- Cancer Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William Evans
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jun J Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
26
|
Nachmias B, Aumann S, Haran A, Schimmer AD. Venetoclax resistance in acute myeloid leukaemia-Clinical and biological insights. Br J Haematol 2024; 204:1146-1158. [PMID: 38296617 DOI: 10.1111/bjh.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 04/11/2024]
Abstract
Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.
Collapse
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomzion Aumann
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Jessop SJ, Fuentos‐Bolanos N, Mayoh C, Dolman MEM, Tax G, Wong‐Erasmus M, Ajuyah P, Tyrell V, Marshall GM, Ziegler DS, Lau LMS. High throughput screening aids clinical decision-making in refractory acute myeloid leukaemia. Cancer Rep (Hoboken) 2024; 7:e2061. [PMID: 38662349 PMCID: PMC11044912 DOI: 10.1002/cnr2.2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Despite advances in therapeutics for adverse-risk acute myeloid leukaemia (AML), overall survival remains poor, especially in refractory disease. Comprehensive tumour profiling and pre-clinical drug testing can identify effective personalised therapies. CASE We describe a case of ETV6-MECOM fusion-positive refractory AML, where molecular analysis and in vitro high throughput drug screening identified a tolerable, novel targeted therapy and provided rationale for avoiding what could have been a toxic treatment regimen. Ruxolitinib combined with hydroxyurea led to disease control and enhanced quality-of-life in a patient unsuitable for intensified chemotherapy or allogeneic stem cell transplantation. CONCLUSION This case report demonstrates the feasibility and role of combination pre-clinical high throughput screening to aid decision making in high-risk leukaemia. It also demonstrates the role a JAK1/2 inhibitor can have in the palliative setting in select patients with AML.
Collapse
Affiliation(s)
- S. J. Jessop
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- Department for Haematology/OncologyWomen's and Children's HospitalSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideSouth AustraliaAustralia
| | - N. Fuentos‐Bolanos
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalNew South WalesAustralia
| | - C. Mayoh
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneyKensingtonNew South WalesAustralia
| | - M. E. M. Dolman
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneyKensingtonNew South WalesAustralia
| | - G. Tax
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneyKensingtonNew South WalesAustralia
| | - M. Wong‐Erasmus
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
| | - P. Ajuyah
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
| | - V. Tyrell
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
| | - G. M. Marshall
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalNew South WalesAustralia
| | - D. S. Ziegler
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneyKensingtonNew South WalesAustralia
| | - L. M. S. Lau
- Children's Cancer InstituteLowy Cancer Research Centre, UNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalNew South WalesAustralia
| |
Collapse
|
28
|
Zhao L, Yang J, Chen M, Xiang X, Ma H, Niu T, Gong Y, Chen X, Liu J, Wu Y. Myelomonocytic and monocytic acute myeloid leukemia demonstrate comparable poor outcomes with venetoclax-based treatment: a monocentric real-world study. Ann Hematol 2024; 103:1197-1209. [PMID: 38329487 DOI: 10.1007/s00277-024-05646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Venetoclax (VEN), a BCL-2 inhibitor, has transformed treatment strategies for elderly and unfit acute myeloid leukemia (AML) patients by significantly improving response rates and survival. However, the predictive factors for VEN efficacy differ from traditional chemotherapy. The clinical relevance of the FAB (French-American-British) monocytic subtype, including M4 and M5, has been debated as a marker for VEN resistance. This real-world study examined 162 newly diagnosed (ND) and 85 relapsed/refractory (R/R) AML patients who received VEN-based therapy at West China Hospital, Sichuan University, from January 2019 to January 2023. We retrospectively collected clinical and treatment data from electronic medical records. The median age of the cohort was 55.5 years (range: 16.5-83.5). The composite complete remission (cCR) rate in the entire cohort was 60.7%. Specifically, among newly diagnosed (ND) patients, FAB monocytic subtypes exhibited lower cCR compared to non-monocytic subtypes (55.1% vs. 76.3%, P = 0.007). Additionally, there were no significant differences observed between M4 and M5 subtypes, both in the ND group (61.7% vs. 40.9%, p = 0.17) and the R/R group (38.2% vs. 40%, p > 0.9). Furthermore, the median follow-up was 238 (range: 7-1120) days. ND patients with monocytic subtypes had shorter overall survival compared to non-monocytic subtypes (295 days vs. not reached, p = 0.0017). Conversely, R/R patients showed no such difference (204 vs. 266 days, p = 0.72). In summary, our study suggests that the FAB monocytic subtype can predict VEN resistance and shorter survival in ND AML patients. Moreover, there is no significant distinction between M4 and M5 subtypes.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mengran Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xinrong Xiang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xinchuan Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiazhuo Liu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Wu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
29
|
Mirzaie M, Gholizadeh E, Miettinen JJ, Ianevski F, Ruokoranta T, Saarela J, Manninen M, Miettinen S, Heckman CA, Jafari M. Designing patient-oriented combination therapies for acute myeloid leukemia based on efficacy/toxicity integration and bipartite network modeling. Oncogenesis 2024; 13:11. [PMID: 38429288 PMCID: PMC10907624 DOI: 10.1038/s41389-024-00510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs' protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells. These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug combinations that can be used alongside standard first-line AML treatment.
Collapse
Affiliation(s)
- Mehdi Mirzaie
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Elham Gholizadeh
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Juho J Miettinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Filipp Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tanja Ruokoranta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| | - Mohieddin Jafari
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Ali KA, Shah RD, Dhar A, Myers NM, Nguyen C, Paul A, Mancuso JE, Scott Patterson A, Brody JP, Heiser D. Ex vivo discovery of synergistic drug combinations for hematologic malignancies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100129. [PMID: 38101570 DOI: 10.1016/j.slasd.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Combination therapies have improved outcomes for patients with acute myeloid leukemia (AML). However, these patients still have poor overall survival. Although many combination therapies are identified with high-throughput screening (HTS), these approaches are constrained to disease models that can be grown in large volumes (e.g., immortalized cell lines), which have limited translational utility. To identify more effective and personalized treatments, we need better strategies for screening and exploring potential combination therapies. Our objective was to develop an HTS platform for identifying effective combination therapies with highly translatable ex vivo disease models that use size-limited, primary samples from patients with leukemia (AML and myelodysplastic syndrome). We developed a system, ComboFlow, that comprises three main components: MiniFlow, ComboPooler, and AutoGater. MiniFlow conducts ex vivo drug screening with a miniaturized flow-cytometry assay that uses minimal amounts of patient sample to maximize throughput. ComboPooler incorporates computational methods to design efficient screens of pooled drug combinations. AutoGater is an automated gating classifier for flow cytometry that uses machine learning to rapidly analyze the large datasets generated by the assay. We used ComboFlow to efficiently screen more than 3000 drug combinations across 20 patient samples using only 6 million cells per patient sample. In this screen, ComboFlow identified the known synergistic combination of bortezomib and panobinostat. ComboFlow also identified a novel drug combination, dactinomycin and fludarabine, that synergistically killed leukemic cells in 35 % of AML samples. This combination also had limited effects in normal, hematopoietic progenitors. In conclusion, ComboFlow enables exploration of massive landscapes of drug combinations that were previously inaccessible in ex vivo models. We envision that ComboFlow can be used to discover more effective and personalized combination therapies for cancers amenable to ex vivo models.
Collapse
Affiliation(s)
- Kamran A Ali
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA; Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA.
| | - Reecha D Shah
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Anukriti Dhar
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Nina M Myers
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | - Arisa Paul
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | | | - James P Brody
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Diane Heiser
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| |
Collapse
|
31
|
Chandra DJ, Lachowiez CA, Loghavi S. Practical considerations in clinical application of WHO 5th and ICC classification schemes for acute myeloid leukemia. Blood Rev 2024; 64:101156. [PMID: 38040614 DOI: 10.1016/j.blre.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
The updated WHO 5th edition and ICC 2022 classification systems for AML aim to refine our diagnostic criteria and definitions of AML with deeper incorporation of cytogenetic and molecular aberrations. The two classification systems diverge, however, in numerous AML defining criteria and subclassifications, including the incorporation of blast enumeration and the integration of specific genomic mutations. These differences often create challenges for clinicians in not only establishing a diagnosis of AML, but also in determining the best treatment plan for patients. In this review, we highlight the literature surrounding the contrasting areas between the WHO and ICC guidelines and offer guidance in the clinical application of these guidelines in the management of patients with AML.
Collapse
Affiliation(s)
- Daniel J Chandra
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Curtis A Lachowiez
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Jin D, Chen H, He J, Li Y, Zheng G, Yang Y, Zhao Y, Le J, Shu W, He D, Cai Z. Impact of AML1/ETO Fusion on the Efficacy of Venetoclax Plus Hypomethylating Agents in Newly Diagnosed Acute Myeloid Leukemia. Target Oncol 2024; 19:237-249. [PMID: 38466536 DOI: 10.1007/s11523-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AML1/ETO fusion confers favorable prognosis in acute myeloid leukemia (AML) treated with intensive chemotherapy (IC). However, the impact of AML1/ETO fusion on the efficacy of venetoclax in the treatment of AML is unclear. OBJECTIVE The aim of this study was to evaluate the efficacy of venetoclax plus hypomethylating agents (VEN/HMAs) in patients with AML1/ETO-positive AML. PATIENTS AND METHODS Patients with newly diagnosed AML in two centers were reviewed and divided into three cohorts: AML1/ETO-positive AML treated with frontline VEN/HMA (Cohort A), AML1/ETO-negative AML treated with frontline VEN/HMA (Cohort B), or AML1/ETO-positive AML treated with frontline IC (Cohort C). The response and survival were compared between the cohorts. RESULTS A total of 260 patients were included in the study. Patients in Cohort A had a significantly lower overall response rate (ORR) than patients in Cohort B (40.9% vs 71.2%, p = 0.005). The median event-free survival (EFS) in Cohort A and Cohort B was 2.7 months and 7.7 months, respectively, with no significant difference. The ORR and median EFS in Cohort C were 80.8% and 14.9 months, respectively, which were significantly superior to those in Cohort A, and the advantages remained significant after propensity score matching. ORR and EFS in KIT-mutated patients with AML1/ETO-positive AML receiving VEN/HMA were much inferior to those in KIT wild-type patients (ORR 0.0% vs 81.8%, p = 0.001; EFS 1.2 months vs not reached, p < 0.001). CONCLUSIONS Newly diagnosed AML patients with AML1/ETO fusion had a poor response to frontline VEN/HMA treatment. When determining induction therapy for patients with AML1/ETO-positive AML, IC should be preferred over VEN/HM.
Collapse
Affiliation(s)
- Dian Jin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Department of Hematology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315000, China
| | - Haoguang Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yang Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jing Le
- Department of Hematology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315000, China
| | - Wenxiu Shu
- Department of Hematology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315000, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
33
|
Shirato S, Iyama S, Fujimi A, Takahashi S, Kobune M. Successful Treatment With Venetoclax Plus Azacytidine Combined With Radiation Therapy and Donor Lymphocyte Infusion in a Patient With Extramedullary Relapse of Acute Myeloid Leukemia After Stem Cell Transplantation. Cureus 2024; 16:e53655. [PMID: 38449958 PMCID: PMC10917489 DOI: 10.7759/cureus.53655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Extramedullary (EM) relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia (AML) is rare and causes systemic relapse. Consequently, the prognosis is very poor because limited treatment is feasible in post-transplant patients. The efficacy and safety of venetoclax (VEN), a newly developed oral inhibitor of B-cell leukemia/lymphoma-2, plus azacytidine (AZA) in patients newly diagnosed with AML who are ineligible for intensive chemotherapy have been reported. We report a case in which VEN + AZA salvage treatment following radiation therapy and donor lymphocyte infusion afforded promising results in a patient with AML who showed post-allo-HSCT EM relapse.
Collapse
Affiliation(s)
- Shotaro Shirato
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, JPN
| | - Satoshi Iyama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, JPN
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, JPN
| | - Akihito Fujimi
- Department of Hematology, Sapporo Kiyota Hospital, Sapporo, JPN
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, JPN
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, JPN
| | - Masayoshi Kobune
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, JPN
| |
Collapse
|
34
|
Mohanty V, Baran N, Huang Y, Ramage CL, Cooper LM, He S, Iqbal R, Daher M, Tyner JW, Mills GB, Konopleva M, Chen K. Transcriptional and phenotypic heterogeneity underpinning venetoclax resistance in AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577579. [PMID: 38352538 PMCID: PMC10862759 DOI: 10.1101/2024.01.27.577579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The venetoclax BCL2 inhibitor in combination with hypomethylating agents represents a cornerstone of induction therapy for older AML patients, unfit for intensive chemotherapy. Like other targeted therapies, venetoclax-based therapies suffer from innate and acquired resistance. While several mechanisms of resistance have been identified, the heterogeneity of resistance mechanism across patient populations is poorly understood. Here we utilized integrative analysis of transcriptomic and ex-vivo drug response data in AML patients to identify four transcriptionally distinct VEN resistant clusters (VR_C1-4), with distinct phenotypic, genetic and drug response patterns. VR_C1 was characterized by enrichment for differentiated monocytic- and cDC-like blasts, transcriptional activation of PI3K-AKT-mTOR signaling axis, and energy metabolism pathways. They showed sensitivity to mTOR and CDK inhibition. VR_C2 was enriched for NRAS mutations and associated with distinctive transcriptional suppression of HOX expression. VR_C3 was characterized by enrichment for TP53 mutations and higher infiltration by cytotoxic T cells. This cluster showed transcriptional expression of erythroid markers, suggesting tumor cells mimicking erythroid differentiation, activation of JAK-STAT signaling, and sensitivity to JAK inhibition, which in a subset of cases synergized with venetoclax. VR_C4 shared transcriptional similarities with venetoclax-sensitive patients, with modest over-expression of interferon signaling. They were also characterized by high rates of DNMT3A mutations. Finally, we projected venetoclax-resistance states onto single cells profiled from a patient who relapsed under venetoclax therapy capturing multiple resistance states in the tumor and shifts in their abundance under venetoclax selection, suggesting that single tumors may consist of cells mimicking multiple VR_Cs contributing to intra-tumor heterogeneity. Taken together, our results provide a strategy to evaluate inter- and intra-tumor heterogeneity of venetoclax resistance mechanisms and provide insights into approaches to navigate further management of patients who failed therapy with BCL2 inhibitors.
Collapse
Affiliation(s)
- Vakul Mohanty
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Yuefan Huang
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - Cassandra L Ramage
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Laurie M Cooper
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Shan He
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - Ramiz Iqbal
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University
| | - Marina Konopleva
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine
| | - Ken Chen
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
35
|
Rahmé R, Braun T. Venetoclax Combined with Intensive Chemotherapy: A New Hope for Refractory and/or Relapsed Acute Myeloid Leukemia? J Clin Med 2024; 13:549. [PMID: 38256681 PMCID: PMC10816428 DOI: 10.3390/jcm13020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background. Primary resistance of acute myeloid leukemia (AML) to the conventional 3 + 7 intensive chemotherapy and relapses after first-line chemotherapy are two highly challenging clinical scenarios. In these cases, when allogeneic stem cell transplantation is feasible, patients are usually retreated with other chemotherapeutic regimens, as transplantation is still considered, nowadays, the only curative option. Methods. We discuss the mechanisms behind resistance to chemotherapy and offer a comprehensive review on current treatments of refractory/relapsed AML with a focus on novel approaches incorporating the BCL-2 inhibitor venetoclax. Results. Alas, complete remission rates after salvage chemotherapy remain relatively low, between 30 and 60% at best. More recently, the BCL-2 inhibitor venetoclax was combined either with hypomethylating agents or chemotherapy in refractory/relapsed patients. In particular, its combination with chemotherapy offered promising results by achieving higher rates of remission and bridging a substantial number of patients to transplantation. Conclusions. Venetoclax-based approaches might become, in the near future, the new standard of care for refractory/relapsed AML.
Collapse
Affiliation(s)
- Ramy Rahmé
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| | - Thorsten Braun
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| |
Collapse
|
36
|
Gress V, Roussy M, Boulianne L, Bilodeau M, Cardin S, El-Hachem N, Lisi V, Khakipoor B, Rouette A, Farah A, Théret L, Aubert L, Fatima F, Audemard É, Thibault P, Bonneil É, Chagraoui J, Laramée L, Gendron P, Jouan L, Jammali S, Paré B, Simpson SM, Tran TH, Duval M, Teira P, Bittencourt H, Santiago R, Barabé F, Sauvageau G, Smith MA, Hébert J, Roux PP, Gruber TA, Lavallée VP, Wilhelm BT, Cellot S. CBFA2T3::GLIS2 pediatric acute megakaryoblastic leukemia is sensitive to BCL-XL inhibition by navitoclax and DT2216. Blood Adv 2024; 8:112-129. [PMID: 37729615 PMCID: PMC10787250 DOI: 10.1182/bloodadvances.2022008899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
ABSTRACT Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.
Collapse
Affiliation(s)
- Verena Gress
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roussy
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Luc Boulianne
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Sophie Cardin
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Nehme El-Hachem
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Véronique Lisi
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Banafsheh Khakipoor
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alexandre Rouette
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Azer Farah
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Louis Théret
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Furat Fatima
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
| | - Louise Laramée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Loubna Jouan
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Safa Jammali
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Bastien Paré
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Shawn M Simpson
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Thai Hoa Tran
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Michel Duval
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Teira
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Henrique Bittencourt
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Raoul Santiago
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
| | - Frédéric Barabé
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Guy Sauvageau
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
| | - Martin A Smith
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Philippe P Roux
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Vincent-Philippe Lavallée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sonia Cellot
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Chen Y, He L, Ianevski A, Ayuda-Durán P, Potdar S, Saarela J, Miettinen JJ, Kytölä S, Miettinen S, Manninen M, Heckman CA, Enserink JM, Wennerberg K, Aittokallio T. Robust scoring of selective drug responses for patient-tailored therapy selection. Nat Protoc 2024; 19:60-82. [PMID: 37996540 DOI: 10.1038/s41596-023-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/10/2023] [Indexed: 11/25/2023]
Abstract
Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.
Collapse
Affiliation(s)
- Yingjia Chen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Liye He
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juho J Miettinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sari Kytölä
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | | | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
38
|
Cerella C, Gajulapalli SR, Lorant A, Gerard D, Muller F, Lee Y, Kim KR, Han BW, Christov C, Récher C, Sarry JE, Dicato M, Diederich M. ATP1A1/BCL2L1 predicts the response of myelomonocytic and monocytic acute myeloid leukemia to cardiac glycosides. Leukemia 2024; 38:67-81. [PMID: 37904054 PMCID: PMC10776384 DOI: 10.1038/s41375-023-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Myelomonocytic and monocytic acute myeloid leukemia (AML) subtypes are intrinsically resistant to venetoclax-based regimens. Identifying targetable vulnerabilities would limit resistance and relapse. We previously documented the synergism of venetoclax and cardiac glycoside (CG) combination in AML. Despite preclinical evidence, the repurposing of cardiac glycosides (CGs) in cancer therapy remained unsuccessful due to a lack of predictive biomarkers. We report that the ex vivo response of AML patient blasts and the in vitro sensitivity of established cell lines to the hemi-synthetic CG UNBS1450 correlates with the ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1)/BCL2 like 1 (BCL2L1) expression ratio. Publicly available AML datasets identify myelomonocytic/monocytic differentiation as the most robust prognostic feature, along with core-binding factor subunit beta (CBFB), lysine methyltransferase 2A (KMT2A) rearrangements, and missense Fms-related receptor tyrosine kinase 3 (FLT3) mutations. Mechanistically, BCL2L1 protects from cell death commitment induced by the CG-mediated stepwise triggering of ionic perturbation, protein synthesis inhibition, and MCL1 downregulation. In vivo, CGs showed an overall tolerable profile while impacting tumor growth with an effect ranging from tumor growth inhibition to regression. These findings suggest a predictive marker for CG repurposing in specific AML subtypes.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Sruthi Reddy Gajulapalli
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Deborah Gerard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Yejin Lee
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Christo Christov
- University of Lorraine, Service Commun de Microscopie, Nancy, France
| | - Christian Récher
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, 2 avenue Hubert Curien, Oncopôle, 31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, 2 avenue Hubert Curien, Oncopôle, 31037, Toulouse, France
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
Shiomi I, Nakako S, Nakane T, Ogawa Y, Araki T, Fujitani Y, Yamamura R, Hino M, Nakamae H. Effectiveness of venetoclax and azacytidine against myeloid/natural killer cell precursor acute leukemia. Int J Hematol 2024; 119:88-92. [PMID: 38010569 DOI: 10.1007/s12185-023-03678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) is a rare leukemia subtype that possibly originates from precursor NK cells. The disease has a poor prognosis, and information on its treatment is lacking. We herein report the first case of a 46-year-old woman with MNKPL who was refractory to two lines of acute myeloid leukemia (AML)-type intensive chemotherapy but was successfully treated with venetoclax and azacytidine (VEN/AZA). She was diagnosed with MNKPL based on the conformations of immature lymphoblastoid morphology without myeloperoxidase reactivity that showed a CD7/CD33/CD34/CD56/HLA-DR positive phenotype and extramedullary regions. The disease was refractory to induction therapy with daunorubicin and cytarabine (DNR/Ara-C) and to reinduction therapy with mitoxantrone, etoposide, and cytarabine (MEC). After two lines of induction chemotherapy, massive pericardial and pleural effusion was found, and was suspected to be extramedullary lesions. The patient developed cardiac tamponade and required pericardiocentesis. Thus, VEN/AZA was administered as third-line therapy. After two cycles of VEN/AZA, the pericardial and pleural effusion disappeared, and complete remission was achieved. The patient received post-transplant cyclophosphamide-based haploidentical transplantation and has stayed relapse-free as of her last follow-up examination 2 years after diagnosis.
Collapse
Affiliation(s)
- Ichiro Shiomi
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, 2-10-39, Shibata, Kita-Ku, Osaka, 530-0012, Japan
| | - Soichiro Nakako
- Department of Hematology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, 2-10-39, Shibata, Kita-Ku, Osaka, 530-0012, Japan.
| | - Yumi Ogawa
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, 2-10-39, Shibata, Kita-Ku, Osaka, 530-0012, Japan
| | - Taku Araki
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, 2-10-39, Shibata, Kita-Ku, Osaka, 530-0012, Japan
| | - Yotaro Fujitani
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, 2-10-39, Shibata, Kita-Ku, Osaka, 530-0012, Japan
| | - Ryosuke Yamamura
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, 2-10-39, Shibata, Kita-Ku, Osaka, 530-0012, Japan
| | - Masayuki Hino
- Department of Hematology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| |
Collapse
|
40
|
Yang L, Wei X, Gong Y. Prognosis and risk factors for ASXL1 mutations in patients with newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Cancer Med 2024; 13:e6871. [PMID: 38146893 PMCID: PMC10807681 DOI: 10.1002/cam4.6871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE The objective of the study was to determine the prognosis and risk factors for additional sex combs like 1 (ASXL1) mutations in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). POPULATION AND METHODS This retrospective study enrolled 219 adult patients with newly diagnosed AML and MDS, who were treated in West China Hospital from October 2018 to January 2022. The primary clinical outcome was evaluated by overall survival (OS) followed up to January 2023. Kaplan-Meier analysis and Cox multivariate regression analysis were performed to identify potential prognostic parameters in patients with ASXL1 mutations (mt). RESULTS A total of 34 (15.53%) ASXL1mt were detected, which occurred more frequently in the elderly and MDS cohorts (p < 0.001). Significantly lower blasts% (p < 0.001) and higher frequencies of mutant RUNX1, SRSF2, STAG2, EZH2, and SETBP1 (p < 0.02) were observed in the ASXL1mt cohort. Patients with ASXL1mt manifested with a worse complete remission rate (p = 0.011), and an inferior OS was shown in subgroups with MDS, co-mutations of RUNX1, SRSF2, or NRAS, as well as mutations in G646W (p < 0.05). Multivariate analysis considering age, diagnosis, co-mutations, and mutation site confirmed an independently adverse prognosis of mutations in G646W (HR = 4.302, 95% CI: 1.150-16.097) or RUNX1 co-mutations (HR = 4.620, 95% CI: 1.385-15.414) in the ASXL1mt cohort. CONCLUSION Our study indicated that mutations in G646W or RUNX1 co-mutations are closely associated with a dismal clinical outcome in patients with AML and MDS harboring ASXL1mt. Considering the poor prognosis and risk factors in patients with ASXL1mt, more available treatments should be pursued.
Collapse
Affiliation(s)
- Liqing Yang
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
- Department of HematologyFujian Medical University Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Xiaoyu Wei
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yuping Gong
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
41
|
Zimmerman JAO, Fang M, Pufall MA. PI3Kδ Inhibition Potentiates Glucocorticoids in B-lymphoblastic Leukemia by Decreasing Receptor Phosphorylation and Enhancing Gene Regulation. Cancers (Basel) 2023; 16:143. [PMID: 38201570 PMCID: PMC10778422 DOI: 10.3390/cancers16010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Glucocorticoids are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency should improve treatment. We previously showed that inhibition of the lymphoid-restricted PI3Kδ with idelalisib enhances glucocorticoid activity in B-ALL cells. Here, we show that idelalisib enhances glucocorticoid potency in 90% of primary B-ALL specimens and is most pronounced at sub-saturating doses of glucocorticoids near the EC50. Potentiation is associated with enhanced regulation of all glucocorticoid-regulated genes, including genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at PI3Kδ/MAPK1 (ERK2) targets S203 and S226. Ablation of these phospho-acceptor sites enhances sensitivity to glucocorticoids with ablation of S226 in particular reducing synergy. We also show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro. We propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. This mechanism and the response of patient specimens suggest that idelalisib will benefit most patients with B-ALL, but particularly patients with less responsive, including high-risk, disease. This combination is also promising for the development of less toxic glucocorticoid-sparing therapies.
Collapse
Affiliation(s)
- Jessica A. O. Zimmerman
- Division of Pediatric Hematology/Oncology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
| | - Mimi Fang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Miles A. Pufall
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
42
|
Selheim F, Aasebø E, Bruserud Ø, Hernandez-Valladares M. High Mitochondrial Protein Expression as a Potential Predictor of Relapse Risk in Acute Myeloid Leukemia Patients with the Monocytic FAB Subtypes M4 and M5. Cancers (Basel) 2023; 16:8. [PMID: 38201437 PMCID: PMC10778527 DOI: 10.3390/cancers16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic data from 26 FAB-M4/M5 patients. The patients achieved complete hematological remission after induction therapy. Twelve of them later developed chemoresistant relapse (RELAPSE), and 14 patients were relapse-free (REL_FREE) long-term survivors. We considered not only the RELAPSE and REL_FREE characteristics but also integrated the French-American-British (FAB) classification, along with considering the presence of nucleophosmin 1 (NPM1) mutation and cytogenetically normal AML. We found a significant number of differentially enriched proteins (911) and phosphoproteins (257) between the various FAB subtypes in RELAPSE patients. Patients with the myeloblastic M1/M2 subtype showed higher levels of RNA processing-related routes and lower levels of signaling related to terms like translation and degranulation when compared with the M4/M5 subtype. Moreover, we found that a high abundance of proteins associated with mitochondrial translation and oxidative phosphorylation, particularly observed in the RELAPSE M4/M5 NPM1 mutated subgroup, distinguishes relapsing from non-relapsing AML patient cells with the FAB subtype M4/M5. Thus, the discovery of subtype-specific biomarkers through proteomic profiling may complement the existing classification system for AML and potentially aid in selecting personalized treatment strategies for individual patients.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (Ø.B.)
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, Institute of Biotechnology, Excellence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
43
|
Chan O, Walker AR. Novel therapies upon failure of HMA plus venetoclax. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:702-708. [PMID: 38066883 PMCID: PMC10727075 DOI: 10.1182/hematology.2023000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The efficacy and tolerability of the combination of hypomethylating agents with venetoclax (HMA-VEN) in patients with newly diagnosed acute myeloid leukemia has been a practice-changing milestone in the field. However, treatment failure and relapse remain major barriers to prolonged survival. TP53 mutation is a predictor of primary induction failure and portends especially poor outcomes. Prelinical data suggest that VEN resistance stems from these genetic changes, which lead to increases in antiapoptotic proteins such as MCL-1 and BCLXL. For patients who discontinue HMA-VEN for reasons other than disease progression, such as post allotransplantation, infection, and personal preference, rechallenge with HMA-VEN at the time of relapse may be considered. For those who progress on HMA-VEN, clinical trials with novel agents or rational drug combinations are preferred if available. If no trial option is available, fit patients may benefit from intensive chemotherapy. Emerging therapies aim to overcome venetoclax resistance, target interactions that promote leukemogenesis, and harness the immune system to irradicate leukemic blasts and stem cells.
Collapse
Affiliation(s)
- Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Alison R Walker
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
44
|
Stein EM, de Botton S, Cluzeau T, Pigneux A, Liesveld JL, Cook RJ, Rousselot P, Rizzieri DA, Braun T, Roboz GJ, Lebon D, Heiblig M, Baker K, Volkert A, Paul S, Rajagopal N, Roth DA, Kelly M, Peterlin P. Use of tamibarotene, a potent and selective RARα agonist, in combination with azacitidine in patients with relapsed and refractory AML with RARA gene overexpression. Leuk Lymphoma 2023; 64:1992-2001. [PMID: 37571998 DOI: 10.1080/10428194.2023.2243356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Tamibarotene-based therapy is a novel targeted approach for the treatment of relapsed/refractory (R/R) acute myeloid leukemia (AML) with retinoic acid receptor alpha (RARA) gene overexpression. Approximately, 50% of higher-risk myelodysplastic syndrome (MDS) patients and approximately 30% of AML patients are positive for RARA overexpression using a blood-based biomarker test that measures RARA expression in peripheral blasts. A phase 2 study investigating the activity of tamibarotene in patients with RARA overexpression was conducted in patients with AML and MDS (NCT02807558). In 28 patients with R/R AML and RARA overexpression treated with tamibarotene in combination with azacitidine, the median overall survival was 5.9 months. In 21 response-evaluable patients, the complete remission/complete remission with incomplete hematologic recovery (CR/CRi) rate was 19%, and median time to initial CR/CRi was 1.2 months. The favorable safety profile and preliminary clinical activity support the development of combination therapies with tamibarotene in myeloid malignancies with RARA overexpression.
Collapse
Affiliation(s)
- Eytan M Stein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Thomas Cluzeau
- Côte d'Azur University, CHU de Nice Hôpital, Nice, France
| | - Arnaud Pigneux
- Hematology Clinic, Bordeaux University Hospital, Bordeaux University, Bordeaux, France
| | | | - Rachel J Cook
- Division of Hematology/Medical Oncology, Oregon Health and Science University, Portland, OR
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, Université Paris-Saclay, Versailles, France
| | | | - Thorsten Braun
- Centre Hospitalier Universitiaire Hôpital Avicenne, Bobigny, France
| | - Gail J Roboz
- Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY, USA
| | | | - Mael Heiblig
- Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | | | | | - Sofia Paul
- Syros Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
45
|
Ayuda-Durán P, Hermansen JU, Giliberto M, Yin Y, Hanes R, Gordon S, Kuusanmäki H, Brodersen AM, Andersen AN, Taskén K, Wennerberg K, Enserink JM, Skånland SS. Standardized assays to monitor drug sensitivity in hematologic cancers. Cell Death Discov 2023; 9:435. [PMID: 38040674 PMCID: PMC10692209 DOI: 10.1038/s41420-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
The principle of drug sensitivity testing is to expose cancer cells to a library of different drugs and measure its effects on cell viability. Recent technological advances, continuous approval of targeted therapies, and improved cell culture protocols have enhanced the precision and clinical relevance of such screens. Indeed, drug sensitivity testing has proven diagnostically valuable for patients with advanced hematologic cancers. However, different cell types behave differently in culture and therefore require optimized drug screening protocols to ensure that their ex vivo drug sensitivity accurately reflects in vivo drug responses. For example, primary chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) cells require unique microenvironmental stimuli to survive in culture, while this is less the case for acute myeloid leukemia (AML) cells. Here, we present our optimized and validated protocols for culturing and drug screening of primary cells from AML, CLL, and MM patients, and a generic protocol for cell line models. We also discuss drug library designs, reproducibility, and quality controls. We envision that these protocols may serve as community guidelines for the use and interpretation of assays to monitor drug sensitivity in hematologic cancers and thus contribute to standardization. The read-outs may provide insight into tumor biology, identify or confirm treatment resistance and sensitivity in real time, and ultimately guide clinical decision-making.
Collapse
Affiliation(s)
- Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Johanne U Hermansen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yanping Yin
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Robert Hanes
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sandra Gordon
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Heikki Kuusanmäki
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrea M Brodersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Aram N Andersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
46
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
47
|
Popescu B, Stahlhut C, Tarver TC, Wishner S, Lee BJ, Peretz CAC, Luck C, Phojanakong P, Camara Serrano JA, Hongo H, Rivera JM, Xirenayi S, Chukinas JA, Steri V, Tasian SK, Stieglitz E, Smith CC. Allosteric SHP2 inhibition increases apoptotic dependency on BCL2 and synergizes with venetoclax in FLT3- and KIT-mutant AML. Cell Rep Med 2023; 4:101290. [PMID: 37992684 PMCID: PMC10694768 DOI: 10.1016/j.xcrm.2023.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Mutations in the receptor tyrosine kinases (RTKs) FLT3 and KIT are frequent and associated with poor outcomes in acute myeloid leukemia (AML). Although selective FLT3 inhibitors (FLT3i) are clinically effective, remissions are short-lived due to secondary resistance characterized by acquired mutations constitutively activating the RAS/MAPK pathway. Hereby, we report the pre-clinical efficacy of co-targeting SHP2, a critical node in MAPK signaling, and BCL2 in RTK-driven AML. The allosteric SHP2 inhibitor RMC-4550 suppresses proliferation of AML cell lines with FLT3 and KIT mutations, including cell lines with acquired resistance to FLT3i. We demonstrate that pharmacologic SHP2 inhibition unveils an Achilles' heel of RTK-driven AML, increasing apoptotic dependency on BCL2 via MAPK-dependent mechanisms, including upregulation of BMF and downregulation of MCL1. Consequently, RMC-4550 and venetoclax are synergistically lethal in AML cell lines and in clinically relevant xenograft models. Our results provide mechanistic rationale and pre-clinical evidence for co-targeting SHP2 and BCL2 in RTK-driven AML.
Collapse
Affiliation(s)
- Bogdan Popescu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Theodore C Tarver
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney Wishner
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Bianca J Lee
- Revolution Medicines, Inc., Redwood City, CA, USA
| | - Cheryl A C Peretz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cuyler Luck
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Phojanakong
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Juan Antonio Camara Serrano
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Hongo
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jose M Rivera
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Simayijiang Xirenayi
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - John A Chukinas
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronica Steri
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah K Tasian
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine C Smith
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Eide CA, Kurtz SE, Kaempf A, Long N, Joshi SK, Nechiporuk T, Huang A, Dibb CA, Taylor A, Bottomly D, McWeeney SK, Minnier J, Lachowiez CA, Saultz JN, Swords RT, Agarwal A, Chang BH, Druker BJ, Tyner JW. Clinical Correlates of Venetoclax-Based Combination Sensitivities to Augment Acute Myeloid Leukemia Therapy. Blood Cancer Discov 2023; 4:452-467. [PMID: 37698624 PMCID: PMC10618724 DOI: 10.1158/2643-3230.bcd-23-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The BCL2 inhibitor venetoclax combined with the hypomethylating agent azacytidine shows significant clinical benefit in a subset of patients with acute myeloid leukemia (AML); however, resistance limits response and durability. We prospectively profiled the ex vivo activity of 25 venetoclax-inclusive combinations on primary AML patient samples to identify those with improved potency and synergy compared with venetoclax + azacytidine (Ven + azacytidine). Combination sensitivities correlated with tumor cell state to discern three patterns: primitive selectivity resembling Ven + azacytidine, monocytic selectivity, and broad efficacy independent of cell state. Incorporation of immunophenotype, mutation, and cytogenetic features further stratified combination sensitivity for distinct patient subtypes. We dissect the biology underlying the broad, cell state-independent efficacy for the combination of venetoclax plus the JAK1/2 inhibitor ruxolitinib. Together, these findings support opportunities for expanding the impact of venetoclax-based drug combinations in AML by leveraging clinical and molecular biomarkers associated with ex vivo responses. SIGNIFICANCE By mapping drug sensitivity data to clinical features and tumor cell state, we identify novel venetoclax combinations targeting patient subtypes who lack sensitivity to Ven + azacytidine. This provides a framework for a taxonomy of AML informed by readily available sets of clinical and genetic features obtained as part of standard care. See related commentary by Becker, p. 437 . This article is featured in Selected Articles from This Issue, p. 419.
Collapse
Affiliation(s)
- Christopher A. Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Stephen E. Kurtz
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Andy Kaempf
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Nicola Long
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Sunil Kumar Joshi
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Tamilla Nechiporuk
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Ariane Huang
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Charles A. Dibb
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Akosha Taylor
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biomedicine, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biomedicine, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jessica Minnier
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Curtis A. Lachowiez
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jennifer N. Saultz
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Ronan T. Swords
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Bill H. Chang
- Division of Pediatric Hematology and Oncology, Knight Cancer Institute, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, Oregon
| | - Brian J. Druker
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jeffrey W. Tyner
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
49
|
Becker PS. Potent Personalized Venetoclax Partners for Acute Myeloid Leukemia Identified by Ex Vivo Drug Screening. Blood Cancer Discov 2023; 4:437-439. [PMID: 37824763 PMCID: PMC10625347 DOI: 10.1158/2643-3230.bcd-23-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
SUMMARY High-throughput screens (HTS) have been utilized to assess the efficacy of single drugs against patient tumor samples with the purpose of optimizing precision therapy, but testing the synergy of drug combinations can identify the ideal second drug to add. With novel sophisticated HTS, effective venetoclax combinations can be revealed that provide the cell state, phenotype, and molecular features of the susceptible and resistant cell populations. See related article by Eide, Kurtz et al., p. 452 (14) .
Collapse
Affiliation(s)
- Pamela S. Becker
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
- Department of Hematologic Malignancies Translational Science, City of Hope Beckman Research Institute, Duarte, California
| |
Collapse
|
50
|
Aldughayfiq B, Ashfaq F, Jhanjhi NZ, Humayun M. YOLOv5-FPN: A Robust Framework for Multi-Sized Cell Counting in Fluorescence Images. Diagnostics (Basel) 2023; 13:2280. [PMID: 37443674 DOI: 10.3390/diagnostics13132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Cell counting in fluorescence microscopy is an essential task in biomedical research for analyzing cellular dynamics and studying disease progression. Traditional methods for cell counting involve manual counting or threshold-based segmentation, which are time-consuming and prone to human error. Recently, deep learning-based object detection methods have shown promising results in automating cell counting tasks. However, the existing methods mainly focus on segmentation-based techniques that require a large amount of labeled data and extensive computational resources. In this paper, we propose a novel approach to detect and count multiple-size cells in a fluorescence image slide using You Only Look Once version 5 (YOLOv5) with a feature pyramid network (FPN). Our proposed method can efficiently detect multiple cells with different sizes in a single image, eliminating the need for pixel-level segmentation. We show that our method outperforms state-of-the-art segmentation-based approaches in terms of accuracy and computational efficiency. The experimental results on publicly available datasets demonstrate that our proposed approach achieves an average precision of 0.8 and a processing time of 43.9 ms per image. Our approach addresses the research gap in the literature by providing a more efficient and accurate method for cell counting in fluorescence microscopy that requires less computational resources and labeled data.
Collapse
Affiliation(s)
- Bader Aldughayfiq
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Farzeen Ashfaq
- School of Computer Science (SCS), Taylor's University, Subang Jaya 47500, Malaysia
| | - N Z Jhanjhi
- School of Computer Science (SCS), Taylor's University, Subang Jaya 47500, Malaysia
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|