1
|
Tang LV, Tao Y, Feng Y, Ma J, Lin W, Zhang Y, Zhang Y, Wu T, Cai Y, Lu H, Wei J, Corral J, Hu Y. Gene editing of human iPSCs rescues thrombophilia in hereditary antithrombin deficiency in mice. Sci Transl Med 2022; 14:eabq3202. [PMID: 36449603 DOI: 10.1126/scitranslmed.abq3202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hereditary antithrombin deficiency is caused by SERPINC1 gene mutations and predisposes to recurrent venous thromboembolism that can be life-threatening. Therefore, lifelong anticoagulation is required, which has side effects and may not be effective. In this study, peripheral blood mononuclear cells from a patient with severe antithrombin deficiency were reprogrammed into induced pluripotent stem cells (iPSCs). The mutation was corrected using CRISPR-Cas9 and Cre/LoxP genome editing. iPSCs were differentiated into hepatocytes, which were injected into the spleen of antithrombin knockout mice to restore the activity of antithrombin and reduce the thrombophilic state. Human iPSC-differentiated hepatocytes colonized mice and secreted antithrombin stably, normalizing antithrombin in plasma (activity: from 46.8 ± 5.7% to 88.6 ± 7.6%, P < 0.0001; antigen: from 146.9 ± 19.5 nanograms per milliliter to 390.7 ± 16.1 nanograms per milliliter, P < 0.0001). In venous thrombosis model, the rate of thrombosis in mice treated with edited hepatocytes, parental hepatocytes, and wild-type mice were 60, 90, and 70%, respectively. The thrombus weight was much lighter in mice treated with edited hepatocytes compared with parental hepatocytes (7.25 ± 2.00 milligrams versus 15.32 ± 2.87 milligrams, P = 0.0025) and showed no notable difference compared with that in wild-type mice (10.41 ± 2.91 milligrams). The activity and concentration of antithrombin remained high for 3 weeks after injection. The liver and kidney function markers showed no obvious abnormality during the observation period. This study provides a proof of principle for correction of mutations in patient-derived iPSCs and potential therapeutic applications for hereditary thrombophilia.
Collapse
Affiliation(s)
- Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanyi Tao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanzheng Feng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiewen Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyi Lin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuyang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaohua Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Wei
- iRegene Therapeutics Co. Ltd., Wuhan 430070, PR China
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Ronda de Garay S/N, 30003 Murcia, Spain
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Mao J, Wang Y, Zhang W, Shen Y, Zhang G, Xi W, Wang Q, Ruan Z, Wang J, Xi X. Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain. Front Med 2022; 16:584-595. [PMID: 35038106 DOI: 10.1007/s11684-021-0844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/01/2022]
Abstract
Conventional therapies for hemophilia A (HA) are prophylactic or on-demand intravenous FVIII infusions. However, they are expensive and inconvenient to perform. Thus, better strategies for HA treatment must be developed. In this study, a recombinant FVIII cDNA encoding a human/rat hybrid FVIII with an enhanced procoagulant potential for adeno-associated virus (AAV)-delivered gene therapy was developed. Plasmids containing human FVIII heavy chain (hHC), human light chain (hLC), and rat light chain (rLC) were transfected into cells and hydrodynamically injected into HA mice. Purified AAV viruses were intravenously injected into HA mice at two doses. Results showed that the hHC + rLC protein had a higher activity than the hHC + hLC protein at comparable expression levels. The specific activity of hHC + rLC was about 4- to 8-fold higher than that of their counterparts. Hydrodynamic injection experiments obtained consistent results. Notably, the HA mice undergoing the AAV-delivered hHC + rLC treatment exhibited a visibly higher activity than those treated with hHC + hLC, and the therapeutic effects lasted for up to 40 weeks. In conclusion, the application of the hybrid FVIII (hHC + rLC) via an AAV-delivered gene therapy substantially improved the hemorrhagic diathesis of the HA mice. These data might be of help to the development of optimized FVIII expression cassette for HA gene therapy.
Collapse
Affiliation(s)
- Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guowei Zhang
- The School of Medicine, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wenda Xi
- Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Luo S, Li Z, Dai X, Zhang R, Liang Z, Li W, Zeng M, Su J, Wang J, Liang X, Wu Y, Liang D. CRISPR/Cas9-Mediated in vivo Genetic Correction in a Mouse Model of Hemophilia A. Front Cell Dev Biol 2021; 9:672564. [PMID: 34485274 PMCID: PMC8415270 DOI: 10.3389/fcell.2021.672564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
Hemophilia A (HA), a common bleeding disorder caused by a deficiency of coagulation factor VIII (FVIII), has long been considered an attractive target for gene therapy studies. However, full-length F8 cDNA cannot be packaged efficiently by adeno-associated virus (AAV) vectors. As the second most prevalent mutation causing severe HA, F8 intron 1 inversion (Inv1) is caused by an intrachromosomal recombination, leaving the majority of F8 (exons 2–26) untranscribed. In theory, the truncated gene could be rescued by integrating a promoter and the coding sequence of exon 1. To test this strategy in vivo, we generated an HA mouse model by deleting the promoter region and exon 1 of F8. Donor DNA and CRISPR/SaCas9 were packaged into AAV vectors and injected into HA mice intravenously. After treatment, F8 expression was restored and activated partial thromboplastin time (aPTT) was shortened. We also compared two liver-specific promoters and two types of integrating donor vectors. When an active promoter was used, all of the treated mice survived the tail-clip challenge. This is the first report of an in vivo gene repair strategy with the potential to treat a recurrent mutation in HA patients.
Collapse
Affiliation(s)
- Sanchuan Luo
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Zhongxiang Li
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xin Dai
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Rui Zhang
- Prenatal Diagnosis Unit, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Zhibing Liang
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Wenzhou Li
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Ming Zeng
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jinfeng Su
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jun Wang
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xia Liang
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yong Wu
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Desheng Liang
- Hunan Key Laboratory of Medical Genetic, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells 2021; 10:cells10092335. [PMID: 34571984 PMCID: PMC8465353 DOI: 10.3390/cells10092335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.
Collapse
|
5
|
Li B, Wu Z, Xu W, Han W, Liu J, Wang D, Zhang G. Treatment of a Hemophilia B Mouse Model with Platelet-Targeted Expression of Factor IX Padua. Hum Gene Ther 2021; 32:506-516. [PMID: 33764159 DOI: 10.1089/hum.2020.309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Targeting the coagulation factor IX (FIX) expression in platelets has been shown to be effective in ameliorating bleeding in hemophilia B (HB) mice. To improve the therapeutic effects and evaluate the safety of this gene therapy strategy, we generated a transgenic mouse model on an HB background with FIX Padua target expressed in platelets. The transgenic mice exhibited stable expression and storage of FIX Padua in platelets. The platelet-stored FIX Padua could be released with the activation of platelets, and the proportion of platelet-stored FIX Padua in whole blood was the same as that of platelet-stored wild-type human FIX. The platelet-derived FIX Padua showed substantially increased specific activity compared with wild-type FIX. Reduced bleeding volume in the FIX Padua transgenic mice demonstrated that bleeding in the mice was improved. Levels of thrombin-antithrombin complex, fibrinogen, D-Dimer, and blood cell counts were normal in the transgenic mice, suggesting that thrombotic risk was not increased in this mouse model. However, the leakage and failure to overcome the presence of inhibitor to wild-type FIX is also observed with FIX Padua, as expected. Taken together, our results support the conclusion that targeting FIX Padua expression in platelets may be an effective and safe gene therapy strategy for HB, and could provide an ideal model to evaluate the safety of platelet-targeted gene therapy for treating hemophilia.
Collapse
Affiliation(s)
- Binbin Li
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Zhihan Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Wenjue Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Wenwen Han
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jiayu Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Dawei Wang
- National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guowei Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wang D, Shao X, Wang Q, Pan X, Dai Y, Yao S, Yin T, Wang Z, Zhu J, Xi X, Chen Z, Chen S, Zhang G. Activated factor X targeted stored in platelets as an effective gene therapy strategy for both hemophilia A and B. Clin Transl Med 2021; 11:e375. [PMID: 33783994 PMCID: PMC7989710 DOI: 10.1002/ctm2.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Treatment of hemophiliacs with inhibitors remains challenging, and new treatments are in urgent need. Coagulation factor X plays a critical role in the downstream of blood coagulation cascade, which could serve as a bypassing agent for hemophilia therapy. Base on platelet-targeted gene therapy for hemophilia by our and other groups, we hypothesized that activated factor X (FXa) targeted stored in platelets might be effective in treating hemophilia A (HA) and B (HB) with or without inhibitors. METHODS To achieve the storage of FXa in platelets, we constructed a FXa precursor and used the integrin αIIb promoter to control the targeted expression of FXa precursor in platelets. The expression cassette (2bFXa) was carried by lentivirus and introduced into mouse hematopoietic stem and progenitor cells (HSPCs), which were then transplanted into HA and HB mice. FXa expression and storage in platelets was examined in vitro and in vivo. We evaluated the therapeutic efficacy of platelet-stored FXa by tail bleeding assays and the thrombelastography. In addition, thrombotic risk was assessed in the recipient mice and the lipopolysaccharide induced inflammation mice. RESULTS By transplanting 2bFXa lentivirus-transduced HSPCs into HA and HB mice, FXa was observed stably stored in platelet α-granules, the stored FXa is releasable and functional upon platelet activation. The platelet-stored FXa can significantly ameliorate bleeding phenotype in HA and HB mice as well as the mice with inhibitors. Meanwhile, no FXa leakage in plasma and no signs of increased risk of hypercoagulability were found in transplantation recipients and lipopolysaccharide induced septicemia recipients. CONCLUSIONS Our proof-of-principle data indicated that target expression of the FXa precursor to platelets can generate a storage pool of FXa in platelet α-granules, the platelet-stored FXa is effective in treating HA and HB with inhibitors, suggesting that this could be a novel choice for hemophilia patients with inhibitors.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
- National Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaohu Shao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
| | - Qiang Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
| | - Xiaohong Pan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
| | - Yujun Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
| | - Shuxian Yao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
| | - Tong Yin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
- National Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhugang Wang
- Shanghai Research Center for Model OrganismsShanghaiChina
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
- National Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
- National Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guowei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of MedicineKey Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Center for Systems BiomedicineSJTUShanghaiChina
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceDepartment of Basic Medical SciencesHangzhou Normal University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
7
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes. Cell Mol Life Sci 2021; 78:1207-1220. [PMID: 33011821 PMCID: PMC11072874 DOI: 10.1007/s00018-020-03653-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
A novel approach in gene therapy was introduced 20 years ago since artificial non-integrative chromosome-based vectors containing gene loci size inserts were engineered. To date, different human artificial chromosomes (HAC) were generated with the use of de novo construction or "top-down" engineering approaches. The HAC-based therapeutic approach includes ex vivo gene transferring and correction of pluripotent stem cells (PSCs) or highly proliferative modified stem cells. The current progress in the technology of induced PSCs, integrating with the HAC technology, resulted in a novel platform of stem cell-based tissue replacement therapy for the treatment of genetic disease. Nowadays, the sophisticated and laborious HAC technology has significantly improved and is now closer to clinical studies. In here, we reviewed the achievements in the technology of de novo synthesized HACs for a chromosome transfer for developing gene therapy tissue replacement models of monogenic human diseases.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
| | - Sergey V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
- Institute of Translational Biomedicine, St-Petersburg State University, 7-9, Universitetskaya Emb, St-Petersburg, 199034, Russia.
| |
Collapse
|
8
|
Zhou M, Hu Z, Zhang C, Wu L, Li Z, Liang D. Gene Therapy for Hemophilia A: Where We Stand. Curr Gene Ther 2020; 20:142-151. [PMID: 32767930 DOI: 10.2174/1566523220666200806110849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) is a hereditary hemorrhagic disease caused by a deficiency of coagulation factor VIII (FVIII) in blood plasma. Patients with HA usually suffer from spontaneous and recurrent bleeding in joints and muscles, or even intracerebral hemorrhage, which might lead to disability or death. Although the disease is currently manageable via delivery of plasma-derived or recombinant FVIII, this approach is costly, and neutralizing antibodies may be generated in a large portion of patients, which render the regimens ineffective and inaccessible. Given the monogenic nature of HA and that a slight increase in FVIII can remarkably alleviate the phenotypes, HA has been considered to be a suitable target disease for gene therapy. Consequently, the introduction of a functional F8 gene copy into the appropriate target cells via viral or nonviral delivery vectors, including gene correction through genome editing approaches, could ultimately provide an effective therapeutic method for HA patients. In this review, we discuss the recent progress of gene therapy for HA with viral and nonviral delivery vectors, including piggyBac, lentiviral and adeno-associated viral vectors, as well as new raising issues involving liver toxicity, pre-existing neutralizing antibodies of viral approach, and the selection of the target cell type for nonviral delivery.
Collapse
Affiliation(s)
- Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhiqing Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Chunhua Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
9
|
An overview of development in gene therapeutics in China. Gene Ther 2020; 27:338-348. [PMID: 32528163 PMCID: PMC7289074 DOI: 10.1038/s41434-020-0163-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
After setbacks related to serious adverse events 20 years ago, gene therapy is now coming back to the central stage worldwide. In the past few years, gene therapy has shown astonishing efficacy against genetic diseases and cancers. In history, China carried out the world's second gene therapy clinical trial in 1991 for hemophilia B and approved the world's first gene therapy product-Gendicine-in 2003. In recent years, numerous efforts have been made on gene editing. Here, we reviewed the past of gene therapy in China and highlighted recent advances. We also discussed the regulations and future perspectives of gene therapy in China.
Collapse
|