1
|
Janssen LLG, van Leeuwen-Kerkhoff N, Westers TM, de Gruijl TD, van de Loosdrecht AA. The immunoregulatory role of monocytes and thrombomodulin in myelodysplastic neoplasms. Front Oncol 2024; 14:1414102. [PMID: 39132505 PMCID: PMC11310157 DOI: 10.3389/fonc.2024.1414102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are clonal disorders of the myeloid lineage leading to peripheral blood cytopenias. Dysregulation of innate immunity is hypothesized to be a potent driver of MDS. A recent study revealed increased thrombomodulin (TM) expression on classical monocytes in MDS, which was associated with prolonged survival. TM is a receptor with immunoregulatory capacities, however, its exact role in MDS development remains to be elucidated. In this review we focus on normal monocyte biology and report on the involvement of monocytes in myeloid disease entities with a special focus on MDS. Furthermore, we delve into the current knowledge on TM and its function in monocytes in health and disease and explore the role of TM-expressing monocytes as driver, supporter or epiphenomenon in the MDS bone marrow environment.
Collapse
Affiliation(s)
- Luca L. G. Janssen
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Nathalie van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Theresia M. Westers
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam, Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
2
|
Winter S, Schneider M, Oelschlaegel U, Maggioni G, Riva E, Raddi MG, Bencini S, Peruzzi B, Choy D, Antunes Dos Reis R, Güse E, Lischer C, Vera J, Timms JA, Sompairac N, Sockel K, Poloni A, Tunger A, Della Porta MG, Santini V, Schmitz M, Platzbecker U, Kordasti S. Mutations in the splicing factor SF3B1 are linked to frequent emergence of HLA-DR low/neg monocytes in lower-risk myelodysplastic neoplasms. Leukemia 2024; 38:1427-1431. [PMID: 38632316 PMCID: PMC11147767 DOI: 10.1038/s41375-024-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marie Schneider
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany
| | - Uta Oelschlaegel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Giulia Maggioni
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elena Riva
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Gabriele Raddi
- MDS Unit, Hematology, AOU Careggi - Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sara Bencini
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Benedetta Peruzzi
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Desmond Choy
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Rita Antunes Dos Reis
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Esther Güse
- Laboratory of Systems Tumor Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christopher Lischer
- Laboratory of Systems Tumor Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Jessica A Timms
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Nicolas Sompairac
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Katja Sockel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Antonella Poloni
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT); German Cancer Research Center (DKFZ); Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Valeria Santini
- MDS Unit, Hematology, AOU Careggi - Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT); German Cancer Research Center (DKFZ); Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
| | - Shahram Kordasti
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
- Haematology Department, Guy's Hospital, London, UK.
| |
Collapse
|
3
|
Li W, Wang W. Unraveling the genetic associations between PD-1/PD-L1 and 13 circulating biomarkers linked to physiological and pathological processes. Clin Transl Oncol 2024; 26:1157-1169. [PMID: 37971626 DOI: 10.1007/s12094-023-03333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Evidence of the genetic interconnectedness between PD-1/PD-L1 and circulating biomarkers related to physiological and pathological processes is largely unclear. Understanding these genetic links is crucial for gaining insights into the underlying mechanisms and potential implications in cancer immunotherapy. METHODS To shed light on potential roles of 90 circulating biomarkers in PD-1/PD-L1, we conducted a comprehensive Mendelian randomization (MR) analysis, leveraging genetic data from large-scale genome-wide association studies. RESULTS Our results revealed negative associations between EN-RAGE and TRAIL-R2 with PD-1 levels. Additionally, we observed that PD-1 levels were positively associated with TRAIL, VEGF, and ANPEP, indicating their potential role in PD-1 upregulation. Furthermore, our analysis revealed causal associations between several circulating proteins and PD-L1 levels. Thrombomodulin, PSGL-1, TNFSF14, renin, follistatin, β-NGF, KLK6, and MMP-7 demonstrated significant effects on PD-L1 regulation, suggesting their potential inhibitory role in immune checkpoint regulation. Eventually, we confirmed the potential roles of key genes involved in above circulating proteins in influencing the response to immunotherapy. CONCLUSIONS Our findings provide valuable evidence of the genetic interconnectedness between PD-1/PD-L1 and circulating proteins related to physiological and pathological processes, shedding light on their potential roles in disease progression and therapeutic interventions.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Tentori CA, Zhao LP, Tinterri B, Strange KE, Zoldan K, Dimopoulos K, Feng X, Riva E, Lim B, Simoni Y, Murthy V, Hayes MJ, Poloni A, Padron E, Cardoso BA, Cross M, Winter S, Santaolalla A, Patel BA, Groarke EM, Wiseman DH, Jones K, Jamieson L, Manogaran C, Daver N, Gallur L, Ingram W, Ferrell PB, Sockel K, Dulphy N, Chapuis N, Kubasch AS, Olsnes AM, Kulasekararaj A, De Lavellade H, Kern W, Van Hemelrijck M, Bonnet D, Westers TM, Freeman S, Oelschlaegel U, Valcarcel D, Raddi MG, Grønbæk K, Fontenay M, Loghavi S, Santini V, Almeida AM, Irish JM, Sallman DA, Young NS, van de Loosdrecht AA, Adès L, Della Porta MG, Cargo C, Platzbecker U, Kordasti S. Immune-monitoring of myelodysplastic neoplasms: Recommendations from the i4MDS consortium. Hemasphere 2024; 8:e64. [PMID: 38756352 PMCID: PMC11096644 DOI: 10.1002/hem3.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/03/2024] [Indexed: 05/18/2024] Open
Abstract
Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution. Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing "immune classes" among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical laboratories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both immune fitness and identifying potential immune "risk factors." By amalgamating this immunological characterization data and molecular data, we aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems immunology tools and innovative immunotherapies.
Collapse
Affiliation(s)
- Cristina A. Tentori
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Comprehensive Cancer Centre, King's CollegeLondonUK
| | - Lin P. Zhao
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
| | - Benedetta Tinterri
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | - Kathryn E. Strange
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Research Group of Molecular ImmunologyFrancis Crick InstituteLondonUK
| | - Katharina Zoldan
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Konstantinos Dimopoulos
- Department of Clinical BiochemistryBispebjerg and Frederiksberg HospitalCopenhagenDenmark
- Department of Pathology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Elena Riva
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Yannick Simoni
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Vidhya Murthy
- Centre for Clinical Haematology, University Hospitals of BirminghamBirminghamUK
| | - Madeline J. Hayes
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Antonella Poloni
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
| | - Eric Padron
- Moffitt Cancer Center, Malignant Hematology DepartmentTampaUSA
| | - Bruno A. Cardoso
- Universidade Católica PortuguesaFaculdade de MedicinaPortugal
- Universidade Católica Portuguesa, Centro de Investigação Interdisciplinar em SaúdePortugal
| | - Michael Cross
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Susann Winter
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | | | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Daniel H. Wiseman
- Division of Cancer SciencesThe University of ManchesterManchesterUK
- The Christie NHS Foundation TrustManchesterUK
| | - Katy Jones
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Lauren Jamieson
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Charles Manogaran
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Naval Daver
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Laura Gallur
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Wendy Ingram
- Department of HaematologyUniversity Hospital of WalesCardiffUK
| | - P. Brent Ferrell
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Katja Sockel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - Nicolas Dulphy
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
- Laboratoire d'Immunologie et d‘Histocompatibilité, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Saint‐LouisParisFrance
- Institut Carnot OPALE, Institut de Recherche Saint‐Louis, Hôpital Saint‐LouisParisFrance
| | - Nicolas Chapuis
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Anne S. Kubasch
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Astrid M. Olsnes
- Section for Hematology, Department of MedicineHaukeland University HospitalBergenNorway
- Department of Clinical ScienceFaculty of Medicine, University of BergenBergenNorway
| | | | | | | | | | - Dominique Bonnet
- Hematopoietic Stem Cell LaboratoryFrancis Crick InstituteLondonUK
| | - Theresia M. Westers
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Sylvie Freeman
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Uta Oelschlaegel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - David Valcarcel
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Marco G. Raddi
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Kirsten Grønbæk
- Department of Hematology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Michaela Fontenay
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Sanam Loghavi
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Valeria Santini
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Antonio M. Almeida
- Hematology DepartmentHospital da Luz LisboaLisboaPortugal
- DeaneryFaculdade de Medicina, UCPLisboaPortugal
| | - Jonathan M. Irish
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Lionel Adès
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Matteo G. Della Porta
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Uwe Platzbecker
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Shahram Kordasti
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
- Haematology DepartmentGuy's and St Thomas NHS TrustLondonUK
| | | |
Collapse
|
5
|
Rodriguez-Sevilla JJ, Colla S. T-cell dysfunctions in myelodysplastic syndromes. Blood 2024; 143:1329-1343. [PMID: 38237139 DOI: 10.1182/blood.2023023166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell- and antibody-based adoptive therapies that hold promise to improve the outcome of patients with MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Wahlund CJ, Çaglayan S, Czarnewski P, Hansen JB, Snir O. Sustained and intermittent hypoxia differentially modulate primary monocyte immunothrombotic responses to IL-1β stimulation. Front Immunol 2023; 14:1240597. [PMID: 37753073 PMCID: PMC10518394 DOI: 10.3389/fimmu.2023.1240597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of preventable deaths in hospitals, and its incidence is not decreasing despite extensive efforts in clinical and laboratory research. Venous thrombi are primarily formed in the valve pockets of deep veins, where activated monocytes play a crucial role in bridging innate immune activation and hemostatic pathways through the production of inflammatory cytokines, chemokines, and tissue factor (TF) - a principal initiator of coagulation. In the valve pocket inflammation and hypoxia (sustained/intermittent) coexist, however their combined effects on immunothrombotic processes are poorly understood. Inflammation is strongly associated with VTE, while the additional contribution of hypoxia remains largely unexplored. To investigate this, we modelled the intricate conditions of the venous valve pocket using a state-of-the-art hypoxia chamber with software-controlled oxygen cycling. We comprehensively studied the effects of sustained and intermittent hypoxia alone, and in combination with VTE-associated inflammatory stimuli on primary monocytes. TF expression and activity was measured in monocytes subjected to sustained and intermittent hypoxia alone, or in combination with IL-1β. Monocyte responses were further analyzed in detailed by RNA sequencing and validated by ELISA. Stimulation with IL-1β alone promoted both transcription and activity of TF. Interestingly, the stimulatory effect of IL-1β on TF was attenuated by sustained hypoxia, but not by intermittent hypoxia. Our transcriptome analysis further confirmed that sustained hypoxia limited the pro-inflammatory response induced by IL-1β, and triggered a metabolic shift in monocytes. Intermittent hypoxia alone had a modest effect on monocyte transcript. However, in combination with IL-1β intermittent hypoxia significantly altered the expression of 2207 genes and enhanced the IL-1β-stimulatory effects on several chemokine and interleukin genes (e.g., IL-19, IL-24, IL-32, MIF), as well as genes involved in coagulation (thrombomodulin) and fibrinolysis (VEGFA, MMP9, MMP14 and PAI-1). Increased production of CCL2, IL-6 and TNF following stimulation with intermittent hypoxia and IL-1β was confirmed by ELISA. Our findings provide valuable insights into how the different hypoxic profiles shape the immunothrombotic response of monocytes and shed new light on the early events in the pathogenesis of venous thrombosis.
Collapse
Affiliation(s)
- Casper J.E. Wahlund
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Safak Çaglayan
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | - John-Bjarne Hansen
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
7
|
Lasho T, Finke C, Timm M, Tefferi A, Mangaonkar A, Olteanu H, Reichard K, Ketterling R, Gangat N, Xie Z, Fernandez J, Chia N, Gaspar-Maia A, Binder M, Patnaik MM. Single cell proteogenomic analysis of aberrant monocytosis in TET2 mutant premalignant and malignant hematopoiesis. Leukemia 2023:10.1038/s41375-023-01887-z. [PMID: 36966263 DOI: 10.1038/s41375-023-01887-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Affiliation(s)
- Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy Finke
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael Timm
- Department of Laboratory Medicine and Pathology, Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Abhishek Mangaonkar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Horatiu Olteanu
- Department of Laboratory Medicine and Pathology, Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Kaaren Reichard
- Department of Laboratory Medicine and Pathology, Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett Ketterling
- Department of Laboratory Medicine and Pathology, Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Naseema Gangat
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jenna Fernandez
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Department of Laboratory Medicine and Pathology, Surgical Research, Mayo Clinic, Rochester, MN, USA
| | - Alexandre Gaspar-Maia
- Department of Laboratory Medicine and Pathology, Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Moritz Binder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Robinson ML, Glass DR, Duran V, Agudelo Rojas OL, Sanz AM, Consuegra M, Sahoo MK, Hartmann FJ, Bosse M, Gelvez RM, Bueno N, Pinsky BA, Montoya JG, Maecker H, Estupiñan Cardenas MI, Villar Centeno LA, Garrido EMR, Rosso F, Bendall SC, Einav S. Magnitude and kinetics of the human immune cell response associated with severe dengue progression by single-cell proteomics. SCIENCE ADVANCES 2023; 9:eade7702. [PMID: 36961888 PMCID: PMC10038348 DOI: 10.1126/sciadv.ade7702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 06/17/2023]
Abstract
Approximately 5 million dengue virus-infected patients progress to a potentially life-threatening severe dengue (SD) infection annually. To identify the immune features and temporal dynamics underlying SD progression, we performed deep immune profiling by mass cytometry of PBMCs collected longitudinally from SD progressors (SDp) and uncomplicated dengue (D) patients. While D is characterized by early activation of innate immune responses, in SDp there is rapid expansion and activation of IgG-secreting plasma cells and memory and regulatory T cells. Concurrently, SDp, particularly children, demonstrate increased proinflammatory NK cells, inadequate expansion of CD16+ monocytes, and high expression of the FcγR CD64 on myeloid cells, yet a signature of diminished antigen presentation. Syndrome-specific determinants include suppressed dendritic cell abundance in shock/hemorrhage versus enriched plasma cell expansion in organ impairment. This study reveals uncoordinated immune responses in SDp and provides insights into SD pathogenesis in humans with potential implications for prediction and treatment.
Collapse
Affiliation(s)
- Makeda L. Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David R. Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
| | | | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Monika Consuegra
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Felix J. Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Margarita Gelvez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Benjamin A. Pinsky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Dr. Jack S. Remington Laboratory for Specialty Diagnostics, Palo Alto, CA, USA
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Luis Angel Villar Centeno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Elsa Marina Rojas Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Sean C. Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
van de Loosdrecht AA, Kern W, Porwit A, Valent P, Kordasti S, Cremers E, Alhan C, Duetz C, Dunlop A, Hobo W, Preijers F, Wagner-Ballon O, Chapuis N, Fontenay M, Bettelheim P, Eidenschink-Brodersen L, Font P, Johansson U, Loken MR, Te Marvelde JG, Matarraz S, Ogata K, Oelschlaegel U, Orfao A, Psarra K, Subirá D, Wells DA, Béné MC, Della Porta MG, Burbury K, Bellos F, van der Velden VHJ, Westers TM, Saft L, Ireland R. Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European LeukemiaNet International MDS-Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:77-86. [PMID: 34897979 DOI: 10.1002/cyto.b.22044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
This article discusses the rationale for inclusion of flow cytometry (FCM) in the diagnostic investigation and evaluation of cytopenias of uncertain origin and suspected myelodysplastic syndromes (MDS) by the European LeukemiaNet international MDS Flow Working Group (ELN iMDS Flow WG). The WHO 2016 classification recognizes that FCM contributes to the diagnosis of MDS and may be useful for prognostication, prediction, and evaluation of response to therapy and follow-up of MDS patients.
Collapse
Affiliation(s)
- Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Anna Porwit
- Department of Clinical Sciences, Division of Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Eline Cremers
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Université Paris-Est Créteil, Inserm U955, Créteil, France
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon - IiSGM, Madrid, Spain
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Jeroen G Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus TU Dresden, Dresden, Germany
| | - Alberto Orfao
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Dolores Subirá
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | | - Marie C Béné
- Hematology Biology, Nantes University Hospital and CRCINA, Nantes, France
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne, Australia
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Leonie Saft
- Department of Clinical Pathology, Division of Hematopathology, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Li L, Yu S, Hu X, Liu Z, Tian X, Ren X, Guo X, Fu R. Immunophenotypic changes of monocytes in myelodysplastic syndrome and clinical significance. Clin Exp Med 2022:10.1007/s10238-022-00856-7. [PMID: 35916958 PMCID: PMC9344451 DOI: 10.1007/s10238-022-00856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Background Myelodysplastic syndrome (MDS) is a type of heterogeneous myeloid clonal disorder usually diagnosed based on a combination of multiple laboratory examinations, including analysis of peripheral blood cells, bone marrow cell morphology and cytogenetics. However, there is a certain difficulty in cases with no distinct changes in hematology and marrow cell morphology. Methods We adopt flow cytometry to quantitatively analyze the immunophenotypic changes of marrow monocytes according to the surface antigens and their combinations at different differentiation stages, so as to study the changes of monocytes during differentiation in patients with bone marrow failure. In the meantime, the relationship between the immunophenotypic changes of marrow monocytes and IPSS-R score and prognosis of MDS patients was analyzed. Results Our results demonstrated disorders of maturation and differentiation of monocytes in patients with MDS and clonal cytopenias of undetermined significance as compared to those with aplastic anemia and healthy individuals. In addition, the differentiation abnormality gradually increased with the disease progression. Furthermore, CD300e expression was found to show significant associations with the clinical stage and disease progression of MDS, and the progression-free survival and AML-free survival were much longer in MDS patients highly expressing CD300e on monocytes. Conclusions CCUS and MDS patients have disorders of differentiation and maturation of monocytes, which tends to be more critical with MDS progression or transforms to AML. Moreover, high CD300e expression has the potential to be a favorable prognostic marker for MDS. This study provides important insights to the role of monocyte immunotyping in the diagnosis, differentiation and prognosis of MDS. Supplementary Information The online version contains supplementary material available at 10.1007/s10238-022-00856-7.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Heping District 154 Anshan Road, Tianjin, 300052, China.
| | - Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District 154 Anshan Road, Tianjin, 300052, China
| | - Xian Hu
- Department of Hematology, Anqing Hospital, Anhui Medical University, Anqing, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District 154 Anshan Road, Tianjin, 300052, China
| | - Xiaoying Tian
- Department of Hematology, Tianjin Medical University General Hospital, Heping District 154 Anshan Road, Tianjin, 300052, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Heping District 154 Anshan Road, Tianjin, 300052, China
| | - Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Heping District 154 Anshan Road, Tianjin, 300052, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District 154 Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
11
|
Schønemann-Lund M, Itenov TS, Larsson JE, Lindegaard B, Johansson PI, Bestle MH. Endotheliopathy is associated with slower liberation from mechanical ventilation: a cohort study. Crit Care 2022; 26:33. [PMID: 35094711 PMCID: PMC8801241 DOI: 10.1186/s13054-021-03877-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Endotheliopathy is suggested as pivotal pathophysiology of sepsis and trauma-associated organ failure, but its role in acute respiratory failure is not yet determined. We investigated if endotheliopathy biomarkers at ICU admission are associated with illness severity and clinical outcomes in patients with acute respiratory failure requiring mechanical ventilation. Methods We conducted a prospective single-center cohort study including 459 mechanically ventilated adults at ICU admission. Plasma levels of three endotheliopathy biomarkers were measured at ICU admission: Syndecan-1, soluble Thrombomodulin (sTM), and Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1). The primary outcome was the rate of liberation from mechanical ventilation, which is presented together with the rate of the competing risk of death while still on mechanical ventilation. Secondary outcomes were PaO2/FiO2-ratios on admission and on last measurement in patients dying within five days, and 30-day all-cause mortality. The primary outcome and 30-day all-cause mortality were analyzed using Cox regression, controlled for gender, age, chronic obstructive pulmonary disease, septic shock, heart failure, PaO2/FiO2-ratio at admission, respiratory infection, acute kidney injury, and bilirubin. PaO2/FiO2-ratios were analyzed using linear regression, controlled for age, chronic obstructive pulmonary disease, respiratory infection, and shock. Results Patients with high sTM were liberated from mechanical ventilation at a lower rate (adjusted hazard ratio (HR) 0.71, for an increase from the 25th to the 75th percentile, 95% confidence interval (CI) 0.54–0.93, p = 0.01). Patients with high PECAM-1 were liberated from mechanical ventilation at a lower rate, but only during the first 5 days (adjusted HR 0.72, for an increase from the 25th to the 75th percentile, 95% CI 0.58–0.9, p < 0.01). High levels of Syndecan-1 and PECAM-1 were associated with a higher rate of death while still on mechanical ventilation. sTM and PECAM-1 were negatively associated with PaO2/FiO2-ratio at ICU admission and no biomarker was associated with last measured PaO2/FiO2-ratio. High levels of all biomarkers were associated with higher 30-day all-cause mortality. Conclusion In acute respiratory failure, endotheliopathy biomarkers are associated with lower rates of liberation from mechanical ventilation, hypoxemia at ICU admission, and 30-day all-cause mortality. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03877-y.
Collapse
|
12
|
Astle JM, Huang H. Mass Cytometry in Hematologic Malignancies: Research Highlights and Potential Clinical Applications. Front Oncol 2021; 11:704464. [PMID: 34858804 PMCID: PMC8630615 DOI: 10.3389/fonc.2021.704464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Recent advances in global gene sequencing technologies and the effect they have had on disease diagnosis, therapy, and research have fueled interest in technologies capable of more broadly profiling not only genes but proteins, metabolites, cells, and almost any other component of biological systems. Mass cytometry is one such technology, which enables simultaneous characterization of over 40 parameters per cell, significantly more than can be achieved by even the most state-of-the-art flow cytometers. This mini-review will focus on how mass cytometry has been utilized to help advance the field of neoplastic hematology. Common themes among published studies include better defining lineage sub-populations, improved characterization of tumor microenvironments, and profiling intracellular signaling across multiple pathways simultaneously in various cell types. Reviewed studies highlight potential applications for disease diagnosis, prognostication, response to therapy, measurable residual disease analysis, and identifying new therapies.
Collapse
Affiliation(s)
- John M Astle
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huiya Huang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Bauer M. The Role of GPR15 Function in Blood and Vasculature. Int J Mol Sci 2021; 22:ijms221910824. [PMID: 34639163 PMCID: PMC8509764 DOI: 10.3390/ijms221910824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/28/2023] Open
Abstract
Since the first prominent description of the orphan G protein-coupled receptor 15 (GPR15) on lymphocytes as a co-receptor for the human immunodeficiency virus (HIV) type 1 and 2 and the first report about the GPR15-triggered cytoprotective effect on vascular endothelial cells by recombinant human thrombomodulin, several decades passed before the GPR15 has been recently deorphanized. Because of new findings on GPR15, this review will summarize the consequences of GPR15 signaling considering the variety of GPR15-expressing cell types and of GPR15 ligands, with a focus on blood and vasculature.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
14
|
Mian SA, Bonnet D. Nature or Nurture? Role of the Bone Marrow Microenvironment in the Genesis and Maintenance of Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:4116. [PMID: 34439269 PMCID: PMC8394536 DOI: 10.3390/cancers13164116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Myelodysplastic syndrome (MDS) are clonal haematopoietic stem cell (HSC) disorders driven by a complex combination(s) of changes within the genome that result in heterogeneity in both clinical phenotype and disease outcomes. MDS is among the most common of the haematological cancers and its incidence markedly increases with age. Currently available treatments have limited success, with <5% of patients undergoing allogeneic HSC transplantation, a procedure that offers the only possible cure. Critical contributions of the bone marrow microenvironment to the MDS have recently been investigated. Although the better understanding of the underlying biology, particularly genetics of haematopoietic stem cells, has led to better disease and risk classification; however, the role that the bone marrow microenvironment plays in the development of MDS remains largely unclear. This review provides a comprehensive overview of the latest developments in understanding the aetiology of MDS, particularly focussing on understanding how HSCs and the surrounding immune/non-immune bone marrow niche interacts together.
Collapse
Affiliation(s)
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|