1
|
Cunha CMC, Abreu VHP, Estato V, Soares GMV, Moraes BPT, Oliveira GP, Silva JD, Silva PL, Immler R, Rocco PR, Sperandio M, Silva AR, Bozza PT, Castro-Faria-Neto HC, Gonçalves-de-Albuquerque CF. Bosutinib mitigates inflammation in experimental sepsis. Eur J Clin Invest 2025:e70055. [PMID: 40292988 DOI: 10.1111/eci.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Sepsis, a leading cause of death globally, lacks targeted and effective treatment. Its pathophysiology involves unbalanced inflammation, marked by a high release of inflammatory mediators, leukocyte recruitment, vascular changes and dysfunction of the nervous and respiratory systems. Src family tyrosine kinases (SFK) play a critical role in immune responses, and their inhibition can modulate excessive inflammation. This study investigates the potential of bosutinib, an SFK inhibitor, as a treatment for sepsis. METHODS Clinical signs, survival rates, systemic and neuronal inflammatory responses, cell recruitment, lung function and cerebral microcirculation were analysed in mice treated with bosutinib (3 mg/kg) or DMSO/saline followed by cecal ligation and puncture (CLP)-induced sepsis. RESULTS Bosutinib treatment reduced the severity of sepsis, improved survival rates and reduced the levels of pro-inflammatory cytokines and chemokines in peritoneal lavage, plasma and brain tissue. It also reduced cellular infiltration and bacterial growth at the infection site and protected lung function by reducing diffuse alveolar damage. Using intravital microscopy and laser speckle techniques, bosutinib improved capillary density and blood perfusion and reduced leukocyte recruitment and adhesion in the cerebral microcirculation of septic animals. CONCLUSIONS Bosutinib pretreatment attenuated dysregulated inflammatory responses and neurovascular changes in experimental sepsis.
Collapse
Affiliation(s)
- C M C Cunha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - V H P Abreu
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - V Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - G M V Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - B P T Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G P Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Immler
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - P R Rocco
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - M Sperandio
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - A R Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - P T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - H C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - C F Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Napoli M, Immler R, Rohwedder I, Lupperger V, Pfabe J, Gonzalez Pisfil M, Yevtushenko A, Vogl T, Roth J, Salvermoser M, Dietzel S, Slak Rupnik M, Marr C, Walzog B, Sperandio M, Pruenster M. Cytosolic S100A8/A9 promotes Ca 2+ supply at LFA-1 adhesion clusters during neutrophil recruitment. eLife 2024; 13:RP96810. [PMID: 39699020 DOI: 10.7554/elife.96810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions. Mechanistically, genetic deletion of S100A9 in mice caused dysregulated Ca2+ signatures in activated neutrophils resulting in reduced Ca2+ availability at the formed LFA-1/F-actin clusters with defective β2 integrin outside-in signaling during post-arrest modifications. Consequently, we observed impaired cytoskeletal rearrangement, cell polarization, and spreading, as well as cell protrusion formation in S100a9-/- compared to wildtype (WT) neutrophils, making S100a9-/- cells more susceptible to detach under flow, thereby preventing efficient neutrophil recruitment and extravasation into inflamed tissue.
Collapse
Affiliation(s)
- Matteo Napoli
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Roland Immler
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Ina Rohwedder
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Valerio Lupperger
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Pfabe
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mariano Gonzalez Pisfil
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Anna Yevtushenko
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Melanie Salvermoser
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Steffen Dietzel
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Walzog
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Monika Pruenster
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| |
Collapse
|
3
|
Deng M, Chen S, Wu J, Su L, Xu Z, Jiang C, Sheng L, Yang X, Zeng L, Wang J, Dai W. Exploring the anti-inflammatory and immune regulatory effects of Taohe Chengqi decoction in sepsis-induced lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118404. [PMID: 38824977 DOI: 10.1016/j.jep.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood. AIM OF THE STUDY This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury. MATERIALS AND METHODS The study began with validating THCQ's anti-inflammatory effects through in vitro and in vivo experiments. Network pharmacology was employed for mechanistic exploration, incorporating GO, KEGG, and PPI analyses of targets. Hub gene-immune cell correlations were assessed using CIBERSORT, with further scrutiny at clinical and single-cell levels. Molecular docking explored THCQ's drug-gene interactions, culminating in qPCR and WB validations of hub gene expressions in sepsis and post-THCQ treatment scenarios. RESULTS THCQ demonstrated efficacy in modulating inflammatory responses in sepsis, identified through network pharmacology. Key genes like MAPK14, MAPK3, MMP9, STAT3, LYN, AKT1, PTPN11, and HSP90AA1 emerged as central targets. Molecular docking revealed interactions between these genes and THCQ components. qPCR results showed significant modulation of these genes, indicating THCQ's potential in reducing inflammation and regulating immune responses in sepsis. CONCLUSION This study sheds light on THCQ's anti-inflammatory and immune regulatory mechanisms in sepsis, providing a foundation for further research and potential clinical application.
Collapse
Affiliation(s)
- Mingtao Deng
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Siqi Chen
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Jian Wu
- Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Liling Su
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Zijin Xu
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Changrun Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Lei Sheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Xinyi Yang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Dong Lake District, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Long Zeng
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Jingwei Wang
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Wei Dai
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Clinical Medicine, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China.
| |
Collapse
|
4
|
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, Erpenbeck L, Jablonska J, Immler R, Hasenberg A, Mueller TT, Herrero-Cervera A, Aranda-Pardos I, Flora K, Zarbock A, Brandau S, Schulz C, Soehnlein O, Steiger S. Neutrophils-biology and diversity. Nephrol Dial Transplant 2024; 39:1551-1564. [PMID: 38115607 PMCID: PMC11427074 DOI: 10.1093/ndt/gfad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 12/21/2023] Open
Abstract
Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Luisa Klotz
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | | | - Kailey Flora
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
5
|
Tang X, Liu Y, Zhao J, Fu C, Yang W. Subtyping of gastric cancer based on basement membrane genes that stratifies the prognosis, immune infiltration and therapeutic response. Discov Oncol 2024; 15:362. [PMID: 39164593 PMCID: PMC11336019 DOI: 10.1007/s12672-024-01238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Gastric cancer (GC) is highly heterogeneous and prone to metastasis, which are obstacles to the effectiveness of treatment. The basement membrane (BM) acts as a barrier to tumor cell invasion and metastasis. It is critical to investigate the relationship between BM status, metastasis, and patient prognosis. In several large cohorts, we investigated BM gene expression-based molecular classification and risk-prognosis models for GC, examined tumor microenvironment (TME) differences among different molecular subtypes, and developed risk models in predicting prognosis, immunotherapy effectiveness, and chemotherapy resistance. Three GC subtypes (BMclusterA/B/C) based on BM gene expression status were discovered. Each of the three GC subtypes has unique immune infiltration and activated oncogenic signals. Moreover, a 6-gene score (BMscore) predictive model was developed. The low BMscore group had a high tumor mutation burden, high immunogenicity, and low RHOJ expression levels, implying that individuals with GC in this category may be more susceptible to immunotherapy and treatment. The EMT subtype showed a considerably higher BMscore than the other subtypes in the Asian Organization for Research on Cancer (ACRG) molecular classification. Endothelial cells, smooth muscle cells, and fibroblasts may be engaged in regulating BM reorganization in GC progression, according to single-cell transcriptome analyses. In conclusion, we defined a novel molecular classification of GC based on BM genes, developed a prognostic risk model, and elucidated the cell subpopulations involved in BM remodeling at the single-cell level. This study has deepened the understanding of the relationship between GC metastasis and BM alterations, achieved prognostic stratification, and guided therapy.
Collapse
Affiliation(s)
- Xin Tang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushanhu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, China
| | - Yu Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushanhu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, China
| | - Jiarong Zhao
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Changfang Fu
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, Anhui, China.
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushanhu Road, Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Hou Y, Tang Y, Cai S. Advances in the study of microparticles in diabetic retinopathy. Postgrad Med J 2024; 100:626-634. [PMID: 38572927 DOI: 10.1093/postmj/qgae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Diabetic retinopathy (DR) is one of the common diabetic microangiopathies, which severely impairs vision in diabetic population. The underlying mechanisms regarding the development of DR are not fully understood, and there is a lack of biomarkers to guide clinical, assessment of disease progression. Recently researchers have found that microparticles (MP) and its bioactive molecules are involved in the development of DR. MP is widely distributed in the circulation and can exert autocrine and paracrine benefits in intercellular signalling, provide a catalytic platform for the thrombospondin complex to promote coagulation, and promote the accumulation of reactive oxygen species to cause endothelial damage. MP interacts with advanced glycosylation end products (AGE) and AGE receptor (RAGE) to activate inflammatory pathways. MP carries a variety of miRNAs that regulate the vascular endothelial growth factor generation pathway. MP has also been applied to the exploration of mesenchymal stromal cell replacement therapy to treat DR. In a word, MP provides new ideas for the study of DR. MP has emerged as a marker to assess the progression of DR. As a potential therapeutic target, MP also has considerable research value.
Collapse
Affiliation(s)
- Yifeng Hou
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yun Tang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Shanjun Cai
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
7
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
8
|
Cheng Y, Chen H, Duan P, Zhang H, Yu Y, Yu J, Yu Z, Zheng L, Ye X, Pan Z. Early depletion of M1 macrophages retards the progression of glucocorticoid-associated osteonecrosis of the femoral head. Int Immunopharmacol 2023; 122:110639. [PMID: 37481850 DOI: 10.1016/j.intimp.2023.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Inflammation stands as a pivotal factor in the pathogenesis of glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). However, the vital role played by M1 macrophages, the principal constituents of the inflammatory process, remains largely underexplored. In this study, we employed reverse transcription-quantitative polymerase chain Reaction (RT-PCR), western blot, and flow cytometry to assess the impact of M1-conditioned medium on cultures of mouse bone marrow-derived mesenchymal stem cells (BMSCs) and Murine Long bone Osteocyte-Y4 (MLO-Y4) in vitro. Moreover, we quantified the levels of inflammatory cytokines in the M1-conditioned medium through the employment of an enzyme-linked immunosorbent assay (ELISA). For in vivo analysis, we examined M1 macrophages and investigated the NF-kB signaling pathway in specimens obtained from the femoral heads of animals and humans. We found that the number of M1 macrophages in the femoral head of GA-ONFH patients grew significantly, and in the mice remarkably increase, maintaining high levels in the intramedullary. In vitro, the M1 macrophage-conditioned medium elicited apoptosis in BMSCs and MLO-Y4 cells, shedding light on the intricate interplay between macrophages and these cell types. The presence of TNF-α within the M1-conditioned medium activated the NF-κB pathway, providing mechanistic insight into the apoptotic induction. Moreover, employing a robust rat macrophage clearance model and GA-ONFH model, we demonstrated a remarkable attenuation in TNF-α expression and NF-kB signaling subsequent to macrophage clearance. This pronounced reduction engenders diminished cellular apoptosis and engenders a decelerated trajectory of GA-ONFH progression. In conclusion, our study reveals the crucial involvement of M1 macrophages in the pathogenesis of GA-ONFH, highlighting their indispensable role in disease progression. Furthermore, early clearance emerges as a promising strategy for impeding the development of GA-ONFH.
Collapse
Affiliation(s)
- Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jiadong Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zirui Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Lin Zheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xin Ye
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
9
|
Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, Lee SW, Dai Y, Anandakrishnan N, Azeloglu EU, Lee K, Zhang W, Das B, He JC, Wei C. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun 2023; 14:4297. [PMID: 37463911 PMCID: PMC10354075 DOI: 10.1038/s41467-023-40086-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.
Collapse
Affiliation(s)
- Man Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Madhav C Menon
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Wenlin Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sui-Wan Lee
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Dai
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J. Peters VAMC, Bronx, NY, USA.
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Volkov DV, Stepanova VM, Rubtsov YP, Stepanov AV, Gabibov AG. Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy. Acta Naturae 2023; 15:17-26. [PMID: 37908772 PMCID: PMC10615191 DOI: 10.32607/actanaturae.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Collapse
Affiliation(s)
- D. V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. M. Stepanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Y. P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
11
|
Luo S, Du S, Tao M, Cao J, Cheng P. Insights on hematopoietic cell kinase: An oncogenic player in human cancer. Biomed Pharmacother 2023; 160:114339. [PMID: 36736283 DOI: 10.1016/j.biopha.2023.114339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src family and is expressed in hematopoietic cells. By regulating multiple signaling pathways, HCK can interact with multiple receptors to regulate signaling events involved in cell adhesion, proliferation, migration, invasion, apoptosis, and angiogenesis. However, aberrant expression of Hck in various hematopoietic cells and solid tumors plays a crucial role in tumor-related properties, including cell proliferation and epithelial-mesenchymal transition. In addition, Hck signaling regulates the function of immune cells such as macrophages, contributing to an immunosuppressive tumor microenvironment. The clinical success of various kinase inhibitors targeting the Src kinase family has validated the efficacy of targeting Src, and therapies with highly selective Hck kinase inhibitors are in clinical trials. This article reviews Hck inhibition as an emerging cancer treatment strategy, focusing on the expressions and functions of Hck in tumors and its impact on the tumor microenvironment. It also explores preclinical and clinical pharmacological strategies for Hck targeting to shed light on Hck-targeted tumor therapy.
Collapse
Affiliation(s)
- Shuyan Luo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shaonan Du
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Jingyuan Cao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
12
|
Zhang Q, Sun W, Li T, Liu F. Polarization Behavior of Bone Macrophage as Well as Associated Osteoimmunity in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. J Inflamm Res 2023; 16:879-894. [PMID: 36891172 PMCID: PMC9986469 DOI: 10.2147/jir.s401968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a disabling disease with high mortality in China but the detailed molecular and cellular mechanisms remain to be investigated. Macrophages are considered the key cells in osteoimmunology, and the cross-talk between bone macrophages and other cells in the microenvironment is involved in maintaining bone homeostasis. M1 polarized macrophages launch a chronic inflammatory response and secrete a broad spectrum of cytokines (eg, TNF-α, IL-6 and IL-1β) and chemokines to initiate a chronic inflammatory state in GIONFH. M2 macrophage is the alternatively activated anti-inflammatory type distributed mainly in the perivascular area of the necrotic femoral head. In the development of GIONFH, injured bone vascular endothelial cells and necrotic bone activate the TLR4/NF-κB signal pathway, promote dimerization of PKM2 and subsequently enhance the production of HIF-1, inducing metabolic transformation of macrophage to the M1 phenotype. Considering these findings, putative interventions by local chemokine regulation to correct the imbalance between M1/M2 polarized macrophages by switching macrophages to an M2 phenotype, or inhibiting the adoption of an M1 phenotype appear to be plausible regimens for preventing or intervening GIONFH in the early stage. However, these results were mainly obtained by in vitro tissue or experimental animal model. Further studies to completely elucidate the alterations of the M1/M2 macrophage polarization and functions of macrophages in glucocorticoid-induced osteonecrosis of the femoral head are imperative.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Wei Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Tengqi Li
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, People’s Republic of China
- Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
13
|
Thom SR, Bhopale VM, Arya AK, Ruhela D, Bhat AR, Mitra N, Hoffstad O, Malay DS, Mirza ZK, Lantis JC, Lev-Tov HA, Kirsner RS, Hsia RC, Levinson SL, DiNubile MJ, Margolis DJ. Blood-Borne Microparticles Are an Inflammatory Stimulus in Type 2 Diabetes Mellitus. Immunohorizons 2023; 7:71-80. [PMID: 36645851 PMCID: PMC10563440 DOI: 10.4049/immunohorizons.2200099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
The proinflammatory state associated with diabetes mellitus (DM) remains poorly understood. We found patients with DM have 3- to 14-fold elevations of blood-borne microparticles (MPs) that bind phalloidin (Ph; Ph positive [+] MPs), indicating the presence of F-actin on their surface. We hypothesized that F-actin-coated MPs were an unrecognized cause for DM-associated proinflammatory status. Ph+MPs, but not Ph-negative MPs, activate human and murine (Mus musculus) neutrophils through biophysical attributes of F-actin and membrane expression of phosphatidylserine (PS). Neutrophils respond to Ph+MPs via a linked membrane array, including the receptor for advanced glycation end products and CD36, PS-binding membrane receptors. These proteins in conjunction with TLR4 are coupled to NO synthase 1 adaptor protein (NOS1AP). Neutrophil activation occurs because of Ph+MPs causing elevations of NF-κB and Src kinase (SrcK) via a concurrent increased association of NO synthase 2 and SrcK with NOS1AP, resulting in SrcK S-nitrosylation. We conclude that NOS1AP links PS-binding receptors with intracellular regulatory proteins. Ph+MPs are alarmins present in normal human plasma and are increased in those with DM and especially those with DM and a lower-extremity ulcer.
Collapse
Affiliation(s)
- Stephen R. Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Veena M. Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Awadhesh K. Arya
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Deepa Ruhela
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Abid R. Bhat
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ole Hoffstad
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - D. Scot Malay
- Department of Surgery, Penn Presbyterian Medical Center, Philadelphia, PA
| | | | - John C. Lantis
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL
| | - Ru-Ching Hsia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD; and
| | | | | | - David J. Margolis
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
14
|
Immler R, Nadolni W, Bertsch A, Morikis V, Rohwedder I, Masgrau-Alsina S, Schroll T, Yevtushenko A, Soehnlein O, Moser M, Gudermann T, Barnea ER, Rehberg M, Simon SI, Zierler S, Pruenster M, Sperandio M. The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. Cardiovasc Res 2022; 118:1289-1302. [PMID: 33881519 PMCID: PMC8953450 DOI: 10.1093/cvr/cvab133] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Neutrophil trafficking within the vasculature strongly relies on intracellular calcium signalling. Sustained Ca2+ influx into the cell requires a compensatory efflux of potassium to maintain membrane potential. Here, we aimed to investigate whether the voltage-gated potassium channel KV1.3 regulates neutrophil function during the acute inflammatory process by affecting sustained Ca2+ signalling. METHODS AND RESULTS Using in vitro assays and electrophysiological techniques, we show that KV1.3 is functionally expressed in human neutrophils regulating sustained store-operated Ca2+ entry through membrane potential stabilizing K+ efflux. Inhibition of KV1.3 on neutrophils by the specific inhibitor 5-(4-Phenoxybutoxy)psoralen (PAP-1) impaired intracellular Ca2+ signalling, thereby preventing cellular spreading, adhesion strengthening, and appropriate crawling under flow conditions in vitro. Using intravital microscopy, we show that pharmacological blockade or genetic deletion of KV1.3 in mice decreased neutrophil adhesion in a blood flow dependent fashion in inflamed cremaster muscle venules. Furthermore, we identified KV1.3 as a critical component for neutrophil extravasation into the inflamed peritoneal cavity. Finally, we also revealed impaired phagocytosis of Escherichia coli particles by neutrophils in the absence of KV1.3. CONCLUSION We show that the voltage-gated potassium channel KV1.3 is critical for Ca2+ signalling and neutrophil trafficking during acute inflammatory processes. Our findings do not only provide evidence for a role of KV1.3 for sustained calcium signalling in neutrophils affecting key functions of these cells, they also open up new therapeutic approaches to treat inflammatory disorders characterized by overwhelming neutrophil infiltration.
Collapse
Affiliation(s)
- Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Wiebke Nadolni
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Annika Bertsch
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Vasilios Morikis
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Anna Yevtushenko
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Pettenkofer Straße 8a, 80336 Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Solnavägen 1, 17177 Stockholm, Sweden
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Enmarch-Straße 56, 48149 Münster, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Einsteinstraße 25, 81675 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Eytan R Barnea
- BioIncept LLC, New York, 140 East 40th Street #11E, NY 10016, USA
| | - Markus Rehberg
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Scott I Simon
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. J Mol Biol 2022; 434:167400. [PMID: 34902430 PMCID: PMC8752512 DOI: 10.1016/j.jmb.2021.167400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023]
Abstract
Arrestins regulate a wide range of signaling events, most notably when bound to active G protein-coupled receptors (GPCRs). Among the known effectors recruited by GPCR-bound arrestins are Src family kinases, which regulate cellular growth and proliferation. Here, we focus on arrestin-3 interactions with Fgr kinase, a member of the Src family. Previous reports demonstrated that Fgr exhibits high constitutive activity, but can be further activated by both arrestin-dependent and arrestin-independent pathways. We report that arrestin-3 modulates Fgr activity with a hallmark bell-shaped concentration-dependence, consistent with a role as a signaling scaffold. We further demonstrate using NMR spectroscopy that a polyproline motif within arrestin-3 interacts directly with the SH3 domain of Fgr. To provide a framework for this interaction, we determined the crystal structure of the Fgr SH3 domain at 1.9 Å resolution and developed a model for the GPCR-arrestin-3-Fgr complex that is supported by mutagenesis. This model suggests that Fgr interacts with arrestin-3 at multiple sites and is consistent with the locations of disease-associated Fgr mutations. Collectively, these studies provide a structural framework for arrestin-dependent activation of Fgr.
Collapse
Affiliation(s)
- Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Manuel A Castro
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | | | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - T M Iverson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Nashville, TN 37232-0146, USA.
| |
Collapse
|
16
|
Belchamber KBR, Hughes MJ, Spittle DA, Walker EM, Sapey E. New Pharmacological Tools to Target Leukocyte Trafficking in Lung Disease. Front Immunol 2021; 12:704173. [PMID: 34367163 PMCID: PMC8334730 DOI: 10.3389/fimmu.2021.704173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
Infection and inflammation of the lung results in the recruitment of non-resident immune cells, including neutrophils, eosinophils and monocytes. This swift response should ensure clearance of the threat and resolution of stimuli which drive inflammation. However, once the threat is subdued this influx of immune cells should be followed by clearance of recruited cells through apoptosis and subsequent efferocytosis, expectoration or retrograde migration back into the circulation. This cycle of cell recruitment, containment of threat and then clearance of immune cells and repair is held in exquisite balance to limit host damage. Advanced age is often associated with detrimental changes to the balance described above. Cellular functions are altered including a reduced ability to traffic accurately towards inflammation, a reduced ability to clear pathogens and sustained inflammation. These changes, seen with age, are heightened in lung disease, and most chronic and acute lung diseases are associated with an exaggerated influx of immune cells, such as neutrophils, to the airways as well as considerable inflammation. Indeed, across many lung diseases, pathogenesis and progression has been associated with the sustained presence of trafficking cells, with examples including chronic diseases such as Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis and acute infections such as Pneumonia and Pneumonitis. In these instances, there is evidence that dysfunctional and sustained recruitment of cells to the airways not only increases host damage but impairs the hosts ability to effectively respond to microbial invasion. Targeting leukocyte migration in these instances, to normalise cellular responses, has therapeutic promise. In this review we discuss the current evidence to support the trafficking cell as an immunotherapeutic target in lung disease, and which potential mechanisms or pathways have shown promise in early drug trials, with a focus on the neutrophil, as the quintessential trafficking immune cell.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Daniella A. Spittle
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Eloise M. Walker
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Clinical Research Facility Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
17
|
Kao TI, Chen PJ, Wang YH, Tseng HH, Chang SH, Wu TS, Yang SH, Lee YT, Hwang TL. Bletinib ameliorates neutrophilic inflammation and lung injury by inhibiting Src family kinase phosphorylation and activity. Br J Pharmacol 2021; 178:4069-4084. [PMID: 34131920 PMCID: PMC8518616 DOI: 10.1111/bph.15597] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil overactivation is crucial in the pathogenesis of acute lung injury (ALI). Bletinib (3,3'-dihydroxy-2',6'-bis(p-hydroxybenzyl)-5-methoxybibenzyl), a natural bibenzyl, extracted from the Bletilla plant, exhibits anti-inflammatory, antibacterial, and antimitotic effects. In this study, we evaluated the therapeutic effects of bletinib in human neutrophilic inflammation and LPS-mediated ALI in mice. EXPERIMENTAL APPROACH In human neutrophils activated with the formyl peptide (fMLP), we assessed integrin expression, superoxide anion production, degranulation, neutrophil extracellular trap (NET) formation, and adhesion through flow cytometry, spectrophotometry, and immunofluorescence microscopy. Immunoblotting was used to measure phosphorylation of Src family kinases (SFKs) and downstream proteins. Finally, a LPS-induced ALI model in male BALB/c mice was used to investigate the potential therapeutic effects of bletinib treatment. KEY RESULTS In activated human neutrophils, bletinib reduced degranulation, respiratory burst, NET formation, adhesion, migration, and integrin expression; suppressed the enzymic activity of SFKs, including Src, Lyn, Fgr, and Hck; and inhibited the phosphorylation of SFKs as well as Vav and Bruton's tyrosine kinase (Btk). In mice with ALI, the pulmonary sections demonstrated considerable amelioration of prominent inflammatory changes, such as haemorrhage, pulmonary oedema, and neutrophil infiltration, after bletinib treatment. CONCLUSION AND IMPLICATIONS Bletinib regulates neutrophilic inflammation by inhibiting the SFK-Btk-Vav pathway. Bletinib ameliorates LPS-induced ALI in mice. Further biochemical optimisation of bletinib may be a promising strategy for the development of novel therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Ting-I Kao
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hui Tseng
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yen-Tung Lee
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
18
|
Wolk K, Brembach T, Šimaitė D, Bartnik E, Cucinotta S, Pokrywka A, Irmer M, Triebus J, Witte‐Händel E, Salinas G, Leeuw T, Volk H, Ghoreschi K, Sabat R. Activity and components of the granulocyte colony‐stimulating factor pathway in hidradenitis suppurativa*. Br J Dermatol 2021; 185:164-176. [DOI: 10.1111/bjd.19795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Affiliation(s)
- K. Wolk
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
- Inflammation and Regeneration of Skin BIH Center for Regenerative Therapies Charité – Universitätsmedizin Berlin Berlin Germany
| | - T.‐C. Brembach
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
- University of PotsdamInstitute of Nutritional ScienceDepartment of Food Chemistry Potsdam Germany
| | - D. Šimaitė
- Data and Data Sciences Sanofi‐Aventis Deutschland GmbH FrankfurtGermany
| | - E. Bartnik
- Immunology and Inflammation Research Sanofi‐Aventis Deutschland GmbH Frankfurt Germany
| | - S. Cucinotta
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - A. Pokrywka
- Department of Dermatology, Venereology and Allergology Charité – Universitätsmedizin Berlin Germany
| | - M.L. Irmer
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - J. Triebus
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - E. Witte‐Händel
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - G. Salinas
- Transcriptome and Genome Core Unit University Medical Center Göttingen Göttingen Germany
| | - T. Leeuw
- Immunology and Inflammation Research Sanofi‐Aventis Deutschland GmbH Frankfurt Germany
| | - H.‐D. Volk
- BIH Center for Regenerative Therapies Charité – Universitätsmedizin Berlin Berlin Germany
- Institute of Medical Immunology Charité – Universitätsmedizin Berlin Germany
| | - K. Ghoreschi
- Department of Dermatology, Venereology and Allergology Charité – Universitätsmedizin Berlin Germany
| | - R. Sabat
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
- Interdisciplinary group Molecular Immunopathology Dermatology/Medical Immunology Charité – Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
19
|
Luvanda MK, Posch W, Vosper J, Zaderer V, Noureen A, Lass-Flörl C, Wilflingseder D. Dexamethasone Promotes Aspergillus fumigatus Growth in Macrophages by Triggering M2 Repolarization via Targeting PKM2. J Fungi (Basel) 2021; 7:70. [PMID: 33498318 PMCID: PMC7909285 DOI: 10.3390/jof7020070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Since long-term corticosteroid treatment is associated with emerging opportunistic fungal infections causing high morbidity and mortality in immune-suppressed individuals, here we characterized the impact of dexamethasone (Dex) treatment on Aspergillus fumigatus-related immune modulation. We found by high content screening and flow cytometric analyses that during monocyte-to-macrophage differentiation, as little as 0.1 µg/mL Dex resulted in a shift in macrophage polarization from M1 to M2-like macrophages. This macrophage repolarization mediated via Dex was characterized by significant upregulation of the M2 marker CD163 and downmodulation of M1 markers CD40 and CD86 as well as changes in phenotypic properties and adherence. These Dex-mediated phenotypic alterations were furthermore associated with a metabolic switch in macrophages orchestrated via PKM2. Such treated macrophages lost their ability to prevent Aspergillus fumigatus germination, which was correlated with accelerated fungal growth, destruction of macrophages, and induction of an anti-inflammatory cytokine profile. Taken together, repolarization of macrophages following corticosteroid treatment and concomitant switch to an anti-inflammatory phenotype might play a prominent role in triggering invasive aspergillosis (IA) due to suppression of innate immunological responses necessary to combat extensive fungal outgrowth.
Collapse
Affiliation(s)
- Maureen K. Luvanda
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Jonathan Vosper
- Institute of Medical Biochemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Asma Noureen
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| |
Collapse
|