1
|
Kwon YD, Hong KT, Lee J, Sunwoo Y, Kim Y, Cho SI, Park HJ, Kim BK, Lee JS, Choi JY, Seong MW, Kang HJ. Clinical usefulness of next-generation sequencing-based target gene sequencing in diagnosis of inherited bone marrow failure syndrome. Ann Hematol 2025:10.1007/s00277-025-06392-0. [PMID: 40358701 DOI: 10.1007/s00277-025-06392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Inherited bone marrow failure syndromes are genetic hematologic disorders with increased cancer risk. Accurate diagnosis is crucial for appropriate management. This study assessed the clinical usefulness of next-generation sequencing (NGS)-based target gene sequencing in pediatric and AYA (adolescent and young adult) patients with hematologic abnormalities. From December 2019 to June 2023, 93 patients with suspected congenital hematologic diseases at a single institution underwent NGS-based testing. Medical records were retrospectively reviewed. The median age at diagnosis was 9.3 years (range 0.2-31.4), with 59.1% males. Indications for testing included specific medical histories (28 patients), persistent cytopenia or recurrent neutropenic fever (22 patients), changes in cytopenia patterns (11 patients), and other reasons (32 patients). Pathogenic variants were identified in 9/28 (32.1%), 3/22 (13.6%), 4/11 (36.4%), and 0/32 (0%). Overall, 16 patients (17.2%) had pathogenic variants, including FANCA, BRCA2, PMS2, ELANE, G6PC3 and VPS13B in patients with idiopathic neutropenia, and GATA2 in patients with suspected myelodysplastic syndrome. Genetic findings led to diagnostic revisions in 12 patients (12.9%), including reclassification of aplastic anemia (AA) as Fanconi anemia, Diamond-Blackfan anemia, or Shwachman-Diamond syndrome, prompting hematopoietic stem cell transplantation and altering cancer surveillance. Pathogenic variants were more frequently observed in patients with a specific medical history or changes in cytopenia, and in those with additional clinical features (cytogenetic abnormalities or non-severe AA). This study demonstrated the diagnostic usefulness of NGS-based target gene sequencing for pediatric and AYA patients with suspected genetic hematologic disorders, supporting the need for multicenter studies and standardized guideline development.
Collapse
Affiliation(s)
- Young Dai Kwon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea.
| | - Juyeon Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yoon Sunwoo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yeseul Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Im Cho
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Bo Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Wide River Institute of Immunology, Hongcheon, Republic of Korea
| |
Collapse
|
2
|
Sahoo SS, Erlacher M, Wlodarski MW. Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: from variant interpretation to patient management. Blood 2025; 145:475-485. [PMID: 39475954 PMCID: PMC11826520 DOI: 10.1182/blood.2022017717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/18/2024] [Indexed: 01/31/2025] Open
Abstract
ABSTRACT Sterile alpha motif domain-containing protein 9 (SAMD9) and SAMD9-like (SAMD9L) are paralogous genes encoding antiviral proteins that negatively regulate cell proliferation. Heterozygous germ line gain-of-function (GoF) SAMD9/9L variants cause multisystem syndromes with variable manifestations. The unifying features are cytopenia, immunodeficiency, infections, bone marrow failure, myelodysplasia, and monosomy 7. Nonhematopoietic presentations can affect almost every organ system. Growth impairment and adrenal insufficiency are typical in SAMD9, whereas progressive neurologic deficits characterize SAMD9L. Most patients (>90%) carry germ line missense GoF variants. A subgroup of patients presenting with SAMD9L-associated inflammatory disease carry frameshift-truncating variants that are also GoF. Somatic genetic rescue occurs in two-third of patients or more and involves monosomy 7, which may spontaneously disappear (transient monosomy 7) or progress to myelodysplastic syndrome (MDS)/leukemia, and adaptive clones with somatic SAMD9/9L compensatory mutations or uniparental disomy 7q (UPD7q), both associated with remission. This manuscript examines the clinical and genetic spectrum, therapies, and outcome based on 243 published patients compiled in our registry, with additional genetic information on 62 unpublished cases. We consolidate the diverse clinical manifestations and diagnostic challenges of SAMD9/9L syndromes to enhance recognition and improve patient care. We highlight the knowledge gaps in pathomechanisms and emphasize the importance of genetic surveillance assessing disease remission vs disease progression. Insights are provided into variant curation and the necessity of testing for somatic SAMD9/9L mutations and UPD7q. Multidisciplinary care in specialized centers is critical to manage these complex disorders. Future natural history studies, especially in patients with monosomy 7, will help formulate evidence-based surveillance protocols and optimize transplant timing and outcomes.
Collapse
Affiliation(s)
- Sushree S. Sahoo
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
3
|
Lee JM, Kim HS, Yoo J, Lee J, Ahn A, Cho H, Han EH, Jung J, Yoo JW, Kim S, Lee JW, Cho B, Chung NG, Kim M, Kim Y. Genomic insights into inherited bone marrow failure syndromes in a Korean population. Br J Haematol 2024; 205:1581-1589. [PMID: 38735735 DOI: 10.1111/bjh.19509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Inherited bone marrow failure syndromes (IBMFS) pose significant diagnostic challenges due to overlapping symptoms and variable expressivity, despite evolving genomic insights. The study aimed to elucidate the genomic landscape among 130 Korean patients with IBMFS. We conducted targeted next-generation sequencing (NGS) and clinical exome sequencing (CES) across the cohort, complemented by whole genome sequencing (WGS) and chromosomal microarray (CMA) in 12 and 47 cases, respectively, with negative initial results. Notably, 50% (n = 65) of our cohort achieved a genomic diagnosis. Among these, 35 patients exhibited mutations associated with classic IBMFSs (n = 33) and the recently defined IBMFS, aplastic anaemia, mental retardation and dwarfism syndrome (AmeDS, n = 2). Classic IBMFSs were predominantly detected via targeted NGS (85%, n = 28) and CES (88%, n = 29), whereas AMeDS was exclusively identified through CES. Both CMA and WGS aided in identifying copy number variations (n = 2) and mutations in previously unexplored regions (n = 2). Additionally, 30 patients were diagnosed with other congenital diseases, encompassing 13 distinct entities including inherited thrombocytopenia (n = 12), myeloid neoplasms with germline predisposition (n = 8), congenital immune disorders (n = 7) and miscellaneous genomic conditions (n = 3). CES was particularly effective in revealing these diverse diagnoses. Our findings underscore the significance of comprehensive genomic analysis in IBMFS, highlighting the need for ongoing exploration in this complex field.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hoon Seok Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanwool Cho
- Department of Laboratory Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Hee Han
- Department of Laboratory Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Jung
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Won Yoo
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongkoo Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Wook Lee
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bin Cho
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Blombery P, Fox L, Ryland GL, Thompson ER, Lickiss J, McBean M, Yerneni S, Trainer A, Hughes D, Greenway A, Mechinaud F, Wood EM, Lieschke GJ, Szer J, Barbaro P, Roy J, Wight J, Lynch E, Martyn M, Gaff C, Ritchie D. Erratum to: Utility of clinical comprehensive genomic characterization for diagnostic categorization in patients presenting with hypocellular bone marrow failure syndromes. Haematologica 2024; 109:1311. [PMID: 38562077 PMCID: PMC10985447 DOI: 10.3324/haematol.2023.284760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/27/2023] [Indexed: 04/04/2024] Open
Affiliation(s)
| | - Lucy Fox
- Clinical Haematology, Peter MacCallum Cancer Centre
| | | | | | | | | | | | - Alison Trainer
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne; University of Melbourne, Peter MacCallum Cancer Centre
| | | | | | | | | | - Graham J Lieschke
- Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital
| | - Jeff Szer
- Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital
| | - Pasquale Barbaro
- Children Health Queensland and University of Queensland, South Brisbane
| | - John Roy
- Children Health Queensland and University of Queensland, South Brisbane
| | - Joel Wight
- Department of Haematology, Austin Health
| | - Elly Lynch
- Melbourne Genomics Health Alliance, Parkville
| | | | - Clara Gaff
- Melbourne Genomics Health Alliance, Parkville
| | - David Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
5
|
Prior D, Sowa A, Pashankar F. Normal Erythroid Precursors in Diamond-Blackfan Anemia: A Rare Case Highlighting Challenges That Remain. J Pediatr Hematol Oncol 2024; 46:e195-e198. [PMID: 38277626 DOI: 10.1097/mph.0000000000002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Diamond-Blackfan anemia (DBA) is a rare, inherited bone marrow failure syndrome that is both genetically and clinically heterogeneous. The diagnosis of DBA has changed over time, with advancements in our understanding of the varied genetic etiologies and phenotypic manifestations of the disease. We present a rare case of a patient who never developed erythroid precursor hypoplasia, adding to the understanding of atypical manifestations of DBA. Our patient had spontaneous remission followed by subsequent relapse, both atypical and poorly understood processes in DBA. We highlight important considerations in diagnostically challenging cases and review major outstanding questions surrounding DBA.
Collapse
Affiliation(s)
- Daniel Prior
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | | | | |
Collapse
|
6
|
Blombery P, Pazhakh V, Albuquerque AS, Maimaris J, Tu L, Briones Miranda B, Evans F, Thompson ER, Carpenter B, Proctor I, Curtin JA, Lambert J, Burns SO, Lieschke GJ. Biallelic deleterious germline SH2B3 variants cause a novel syndrome of myeloproliferation and multi-organ autoimmunity. EJHAEM 2023; 4:463-469. [PMID: 37206266 PMCID: PMC10188477 DOI: 10.1002/jha2.698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
SH2B3 is a negative regulator of multiple cytokine receptor signalling pathways in haematopoietic tissue. To date, a single kindred has been described with germline biallelic loss-of-function SH2B3 variants characterized by early onset developmental delay, hepatosplenomegaly and autoimmune thyroiditis/hepatitis. Herein, we described two further unrelated kindreds with germline biallelic loss-of-function SH2B3 variants that show striking phenotypic similarity to each other as well as to the previous kindred of myeloproliferation and multi-organ autoimmunity. One proband also suffered severe thrombotic complications. CRISPR-Cas9 gene editing of zebrafish sh2b3 created assorted deleterious variants in F0 crispants, which manifest significantly increased number of macrophages and thrombocytes, partially replicating the human phenotype. Treatment of the sh2b3 crispant fish with ruxolitinib intercepted this myeloproliferative phenotype. Skin-derived fibroblasts from one patient demonstrated increased phosphorylation of JAK2 and STAT5 after stimulation with IL-3, GH, GM-CSF and EPO compared to healthy controls. In conclusion, these additional probands and functional data in combination with the previous kindred provide sufficient evidence for biallelic homozygous deleterious variants in SH2B3 to be considered a valid gene-disease association for a clinical syndrome of bone marrow myeloproliferation and multi-organ autoimmune manifestations.
Collapse
Affiliation(s)
- Piers Blombery
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Vahid Pazhakh
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Jesmeen Maimaris
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Lingge Tu
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Florence Evans
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Ella R. Thompson
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Ben Carpenter
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Ian Proctor
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Julie A. Curtin
- Haematology DepartmentChildren's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Jonathan Lambert
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of HaematologyUCL Cancer InstituteUniversity College LondonLondonUK
| | - Siobhan O. Burns
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Graham J. Lieschke
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
7
|
Feurstein S. Emerging bone marrow failure syndromes- new pieces to an unsolved puzzle. Front Oncol 2023; 13:1128533. [PMID: 37091189 PMCID: PMC10119586 DOI: 10.3389/fonc.2023.1128533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Inherited bone marrow failure (BMF) syndromes are genetically diverse - more than 100 genes have been associated with those syndromes and the list is rapidly expanding. Risk assessment and genetic counseling of patients with recently discovered BMF syndromes is inherently difficult as disease mechanisms, penetrance, genotype-phenotype associations, phenotypic heterogeneity, risk of hematologic malignancies and clonal markers of disease progression are unknown or unclear. This review aims to shed light on recently described BMF syndromes with sparse concise data and with an emphasis on those associated with germline variants in ADH5/ALDH2, DNAJC21, ERCC6L2 and MECOM. This will provide important data that may help to individualize and improve care for these patients.
Collapse
|
8
|
Chen J, Qin TJ, Qu SQ, Pan LJ, Zhang PH, Li B, Xiao ZJ, Xu ZF. [Sternal bone marrow cell morphology evaluation utility for diagnostic categorization in patients with acquired hypocellular bone marrow failure syndromes]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:928-933. [PMID: 36709184 PMCID: PMC9808869 DOI: 10.3760/cma.j.issn.0253-2727.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 01/30/2023]
Abstract
Objective: Diagnostic value assessment of sternal bone marrow cell morphology in patients with acquired hypocellular bone marrow failure syndromes (BMFS) characterized by normal cytogenetics. Methods: A total of 194 eligible patients with an acquired hypocellular BMFS pre-sternum diagnosis in Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College from June 2014 to January 2019 were reviewed. Sternal bone marrow evaluation was performed, and a post-sternum diagnosis was made. Clinical characteristics and overall survival (OS) were then compared among patients with different post-sternum diagnosis. Binary logistic regression was used to develop a predictive scoring system. Results: In 152 patients with pre-sternum AA diagnosis, 29 patients with a pre-sternum idiopathic cytopenia of undetermined significance (ICUS) diagnosis, and 13 patients with a pre-sternum clonal cytopenia of undetermined significance (CCUS) diagnosis, sternal bone marrow evaluation resulted in a change of diagnosis to hypocellular myelodysplastic syndrome (hypo-MDS) in 42.8% (65/152) , 24.1% (7/29) , and 30.8% (4/13) , respectively. Patients with a post-sternum hypo-MDS diagnosis showed a significant difference in OS compared with patients with a post-sternum AA diagnosis (P=0.005) . Patients with ICUS/CCUS showed no difference in OS compared with AA and hypo-MDS (P=0.095 and P=0.480, respectively) . A 4-item predictive scoring system to identify hypocellular BMFS patients that need sternal bone marrow evaluation was developed, including age > 60 years old (OR=6.647, 95% CI 1.954-22.611, P=0.002, 2 points) , neutrophil alkaline phosphatase score ≤ 160 (OR=2.654, 95% CI 1.214-5.804, P=0.014, 1 point) , abnormal erythroid markers evaluated by flow cytometry on iliac bone marrow (OR=6.200, 95% CI 1.165-32.988, P=0.032, 2 points) , and DAT (DNMT3A, ASXL1, TET2) genes mutation (OR=4.809, 95% CI 1.587-14.572, P=0.005, 1 point) . The Akaike information criterin (AIC) was 186.1. Conclusion: Patients with a pre-sternum acquired hypocellular BMFS diagnosis characterized by normal cytogenetics may not reach accurate diagnostic categorization without sternal bone marrow cell morphology evaluation, which could be considered a diagnostic tool for this patient population. A predictive scoring system was developed, and when the total score is ≥ 2 points, sternal bone marrow evaluation should be performed for accurate diagnostic categorization that is critical to optimal patient care.
Collapse
Affiliation(s)
- J Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - T J Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - S Q Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - L J Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - P H Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - B Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z F Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
9
|
Gilad O, Dgany O, Noy-Lotan S, Krasnov T, Yacobovich J, Rabinowicz R, Goldberg T, Kuperman AA, Abu-Quider A, Miskin H, Kapelushnik N, Mandel-Shorer N, Shimony S, Harlev D, Ben-Ami T, Adam E, Levin C, Aviner S, Elhasid R, Berger-Achituv S, Chaitman-Yerushalmi L, Kodman Y, Oniashvilli N, Hameiri-Grosman M, Izraeli S, Tamary H, Steinberg-Shemer O. Syndromes predisposing to leukemia are a major cause of inherited cytopenias in children. Haematologica 2022; 107:2081-2095. [PMID: 35295078 PMCID: PMC9425329 DOI: 10.3324/haematol.2021.280116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Prolonged cytopenias are a non-specific sign with a wide differential diagnosis. Among inherited disorders, cytopenias predisposing to leukemia require a timely and accurate diagnosis to ensure appropriate medical management, including adequate monitoring and stem cell transplantation prior to the development of leukemia. We aimed to define the types and prevalences of the genetic causes leading to persistent cytopenias in children. The study comprises children with persistent cytopenias, myelodysplastic syndrome, aplastic anemia, or suspected inherited bone marrow failure syndromes, who were referred for genetic evaluation from all pediatric hematology centers in Israel during 2016-2019. For variant detection, we used Sanger sequencing of commonly mutated genes and a custom-made targeted next-generation sequencing panel covering 226 genes known to be mutated in inherited cytopenias; the minority subsequently underwent whole exome sequencing. In total, 189 children with persistent cytopenias underwent a genetic evaluation. Pathogenic and likely pathogenic variants were identified in 59 patients (31.2%), including 47 with leukemia predisposing syndromes. Most of the latter (32, 68.1%) had inherited bone marrow failure syndromes, nine (19.1%) had inherited thrombocytopenia predisposing to leukemia, and three each (6.4%) had predisposition to myelodysplastic syndrome or congenital neutropenia. Twelve patients had cytopenias with no known leukemia predisposition, including nine children with inherited thrombocytopenia and three with congenital neutropenia. In summary, almost one third of 189 children referred with persistent cytopenias had an underlying inherited disorder; 79.7% of whom had a germline predisposition to leukemia. Precise diagnosis of children with cytopenias should direct follow-up and management programs and may positively impact disease outcome.
Collapse
Affiliation(s)
- Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Ron Rabinowicz
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Tracie Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Amir A Kuperman
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Abed Abu-Quider
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva
| | - Hagit Miskin
- Pediatric Hematology Unit, Shaare Zedek Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University, Jerusalem
| | - Noa Kapelushnik
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Goldschleger Eye Institute, Sheba Medical Center, Hashomer
| | - Noa Mandel-Shorer
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus; Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa
| | - Shai Shimony
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Rabin Medical Center, Institute of Hematology, Davidoff Cancer Centre, Beilinson Hospital, Petach-Tikva, Israel; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Dan Harlev
- Pediatric Hematology-Oncology Department, Hadassah University Medical Center, Jerusalem
| | - Tal Ben-Ami
- Pediatric Hematology Unit, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hebrew University of Jerusalem
| | - Etai Adam
- Pediatric Hematology-Oncology Department, Sheba Medical Center, Hashomer
| | - Carina Levin
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel; Pediatric Hematology Unit and Research Laboratory, Emek Medical Center, Afula
| | - Shraga Aviner
- Department of Pediatrics, Barzilai University Medical Center, Ashkelon, affiliated to Ben Gurion University, Beer-Sheva
| | - Ronit Elhasid
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Department of Pediatric Hemato-Oncology, Aviv Medical Center
| | - Sivan Berger-Achituv
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Department of Pediatric Hemato-Oncology, Aviv Medical Center
| | | | - Yona Kodman
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Nino Oniashvilli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Michal Hameiri-Grosman
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva.
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| |
Collapse
|
10
|
Functional interaction between compound heterozygous TERT mutations causes severe telomere biology disorder. Blood Adv 2022; 6:3779-3791. [PMID: 35477117 DOI: 10.1182/bloodadvances.2022007029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Telomere biology disorders (TBDs) are a spectrum of multisystem inherited disorders characterized by bone marrow failure, resulting from mutations in genes encoding telomerase or other proteins involved in maintaining telomere length and integrity. Pathogenicity of variants in these genes can be hard to evaluate, since TBD mutations show highly variable penetrance and genetic anticipation due to inheritance of shorter telomeres with each generation. Thus, detailed functional analysis of newly identified variants is often essential. Here we describe a patient with compound heterozygous variants in the TERT gene, which encodes the catalytic subunit of telomerase, hTERT; this patient has the extremely severe Hoyeraal-Hreidarsson form of TBD, although his heterozygous parents are clinically unaffected. Molecular dynamic modeling and detailed biochemical analyses demonstrate that 1 allele (L557P) affects association of hTERT with its cognate RNA component hTR, while the other (K1050E) affects the binding of telomerase to its DNA substrate and enzyme processivity. Unexpectedly, the data demonstrate a functional interaction between the proteins encoded by the 2 alleles, with WT hTERT able to rescue the effect of K1050E on processivity, whereas L557P hTERT cannot. These data contribute to the mechanistic understanding of telomerase, indicating that RNA binding in 1 hTERT molecule affects the processivity of telomere addition by the other molecule. This work emphasizes the importance of functional characterization of TERT variants to reach a definitive molecular diagnosis for TBD patients, and in particular it illustrates the importance of analyzing the effects of compound heterozygous variants in combination to reveal interallelic effects.
Collapse
|
11
|
Gómez-Flores-Ramos L, Barraza-Arellano AL, Mohar A, Trujillo-Martínez M, Grimaldo L, Ortiz-Lopez R, Treviño V. Germline Variants in Cancer Genes from Young Breast Cancer Mexican Patients. Cancers (Basel) 2022; 14:cancers14071647. [PMID: 35406420 PMCID: PMC8997148 DOI: 10.3390/cancers14071647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is one of the most frequent cancer types in women worldwide. About 7% is diagnosed in young women (YBC) less than 40 years old. In Mexico, however, YBC reaches 15% suggesting a higher genetic susceptibility. There have been some reports of germline variants in YBC across the world. However, there is only one report from a Mexican population, which is not restricted by age and limited to a panel of 143 genes resulting in 15% of patients carrying putatively pathogenic variants. Nevertheless, expanding the analysis to whole exome involves using more complex tools to determine which genes and variants could be pathogenic. We used germline whole exome sequencing combined with the PeCanPie tool to analyze exome variants in 115 YBC patients. Our results showed that we were able to identify 49 high likely pathogenic variants involving 40 genes on 34% of patients. We noted many genes already reported in BC and YBC worldwide, such as BRCA1, BRCA2, ATM, CHEK2, PALB2, and POLQ, but also others not commonly reported in YBC in Latin America, such as CLTCL1, DDX3X, ERCC6, FANCE, and NFKBIE. We show further supporting and controversial evidence for some of these genes. We conclude that exome sequencing combined with robust annotation tools and further analysis, can identify more genes and more patients affected by germline mutations in cancer.
Collapse
Affiliation(s)
- Liliana Gómez-Flores-Ramos
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Angélica Leticia Barraza-Arellano
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
| | - Alejandro Mohar
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Dirección de Investigación, Instituto Nacional de Cancerología, Av. San Fernando #22, Col. Sección XVI, Delegación Tlalpan, Mexico City 14080, Mexico;
| | - Miguel Trujillo-Martínez
- Instituto Mexicano del Seguro Social, Hospital General de Zona con Medicina Familiar No. 7, Cuautla 62780, Morelos, Mexico;
| | - Lizbeth Grimaldo
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Rocío Ortiz-Lopez
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
| | - Víctor Treviño
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|
12
|
Lim YJ, Arbiv OA, Kalbfleisch ME, Klaassen RJ, Fernandez C, Rayar M, Steele M, Lipton JH, Cuvelier G, Pastore YD, Silva M, Brossard J, Michon B, Abish S, Sinha R, Corriveau-Bourque C, Breakey VR, Tole S, Goodyear L, Sung L, Zlateska B, Cada M, Dror Y. Poor Outcome After Hematopoietic Stem Cell Transplantation Of Patients With Unclassified Inherited Bone Marrow Failure Syndromes. Eur J Haematol 2021; 108:278-287. [PMID: 34897809 DOI: 10.1111/ejh.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Classification of inherited bone marrow failure syndromes (IBMFSs) according to clinical and genetic diagnoses enables proper adjustment of treatment. Unfortunately, 30% of patients enrolled in the Canadian Inherited Marrow Failure Registry (CIMFR) with features suggesting hereditability could not be classified with a specific syndromic diagnosis. We analyzed the outcome of hematopoietic stem cell transplantation (HSCT) in unclassified IBMFSs (uIBMFSs) and the factors associated with outcome. Twenty-two patients with uIBMFSs and 70 patients with classified IBMFSs underwent HSCT. Five-year overall survival of uIBMFS patients after HSCT was inferior to that of patients with classified IBMFSs (56% vs 76.5%). The outcome of patients with uIBMFS who received cord blood was significantly lower than that of patients who received other stem cell sources (14.8% vs 90.9%). Engraftment failure was higher among patients with uIBMFS who received cord blood than those who received bone marrow. None of the following factors was significantly associated with poor survival: transfusion load, transplant indication, the intensity of conditioning regimen, human leukocyte antigen-identical sibling/alternative donor. We suggest that identifying the genetic diagnosis is essential to modulate the transplant procedure including conditioning agents and stem cell sources for better outcome and the standard CBT should be avoided in uIBMFS.
Collapse
Affiliation(s)
- Yeon Jung Lim
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Current Affiliation, Department of Pediatrics, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Omri A Arbiv
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melanie E Kalbfleisch
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Meera Rayar
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | - Josee Brossard
- Centre U Sante de l'Estrie-Fleur, Sherbrooke, Québec, Canada
| | - Bruno Michon
- Centre Hospital University Quebec-Pav CHUL, Sainte-Foy, Québec, Canada
| | - Sharon Abish
- Montreal Children's Hospital, Montreal, Québec, Canada
| | - Roona Sinha
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Vicky R Breakey
- McMaster Children's Hospital/McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - Soumitra Tole
- Children's Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Lisa Goodyear
- Janeway Child Health Centre, St. John's, Newfoundland, Canada
| | - Lillian Sung
- Child Health and Evaluative Sciences, .The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bozana Zlateska
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michaela Cada
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto
| | - Yigal Dror
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Schneider KW, Suttman A, McKinney C, Giller R, Dollerschell K, Nakano TA. Incorporating genetic counseling into the evaluation of pediatric bone marrow failure. J Genet Couns 2021; 31:433-446. [PMID: 34570941 DOI: 10.1002/jgc4.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022]
Abstract
The timely identification of germline genetic causes of pediatric bone marrow failure (BMF) impacts medical screening practices, family counseling, therapeutic decision-making, and risk of progression to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). At diagnosis, treatment decisions need to be made quickly to mitigate risks associated with profound cytopenias. As genetic testing options are rapidly evolving, an efficient multi-disciplinary approach and algorithm, including early involvement of a genetics team, is needed to expedite diagnosis and therapeutic decision-making. This process aids in the identification of appropriate candidates for molecular genetic testing. We present our single center experience reviewing the implementation of genetic counseling and a diagnostic and therapeutic algorithm used to guide genetic evaluation of pediatric BMF. Disease-specific next-generation sequencing (NGS) panels were most often pursued in patients who presented with a clinical phenotype consistent with a known inherited BMF syndrome and when trying to reduce incidental or uninformative results. Broader BMF NGS panels were most often utilized when unable to narrow the suspected etiology to a single disorder. Whole exome sequencing helped with optimizing treatment decision-making in higher risk children with BMF who required expedited hematopoietic stem cell transplantation. The experience has led to improvements to our process for evaluating patients with BMF.
Collapse
Affiliation(s)
- Kami Wolfe Schneider
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Alexandra Suttman
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Christopher McKinney
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Roger Giller
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Kaylee Dollerschell
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Taizo A Nakano
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| |
Collapse
|
14
|
The predictive value of PNH clones, 6p CN-LOH, and clonal TCR gene rearrangement for aplastic anemia diagnosis. Blood Adv 2021; 5:3216-3226. [PMID: 34427585 DOI: 10.1182/bloodadvances.2021004201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Acquired aplastic anemia (AA) is a life-threatening bone marrow aplasia caused by the autoimmune destruction of hematopoietic stem and progenitor cells. There are no existing diagnostic tests that definitively establish AA, and diagnosis is currently made via systematic exclusion of various alternative etiologies, including inherited bone marrow failure syndromes (IBMFSs). The exclusion of IBMFSs, which requires syndrome-specific functional and genetic testing, can substantially delay treatment. AA and IBMFSs can have mimicking clinical presentations, and their distinction has significant implications for treatment and family planning, making accurate and prompt diagnosis imperative to optimal patient outcomes. We hypothesized that AA could be distinguished from IBMFSs using 3 laboratory findings specific to the autoimmune pathogenesis of AA: paroxysmal nocturnal hemoglobinuria (PNH) clones, copy-number-neutral loss of heterozygosity in chromosome arm 6p (6p CN-LOH), and clonal T-cell receptor (TCR) γ gene (TRG) rearrangement. To test our hypothesis, we determined the prevalence of PNH, acquired 6p CN-LOH, and clonal TRG rearrangement in 454 consecutive pediatric and adult patients diagnosed with AA, IBMFSs, and other hematologic diseases. Our results indicated that PNH and acquired 6p CN-LOH clones encompassing HLA genes have ∽100% positive predictive value for AA, and they can facilitate diagnosis in approximately one-half of AA patients. In contrast, clonal TRG rearrangement is not specific for AA. Our analysis demonstrates that PNH and 6p CN-LOH clones effectively distinguish AA from IBMFSs, and both measures should be incorporated early in the diagnostic evaluation of suspected AA using the included Bayesian nomogram to inform clinical application.
Collapse
|
15
|
Feurstein S, Drazer M, Godley LA. Germline predisposition to haematopoietic malignancies. Hum Mol Genet 2021; 30:R225-R235. [PMID: 34100074 DOI: 10.1093/hmg/ddab141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Once thought to be exceedingly rare, the advent of next-generation sequencing has revealed a plethora of germline predisposition disorders that confer risk for haematopoietic malignancies (HMs). These syndromes are now recognized to be much more common than previously thought. The recognition of a germline susceptibility risk allele in an individual impacts the clinical management and health surveillance strategies in the index patient and relatives who share the causative DNA variant. Challenges to accurate clinical testing include a lack of familiarity in many health care providers, the requirement for DNA samples that reasonably approximate the germline state, and a lack of standardization among diagnostic platforms as to which genes are sequenced and their capabilities in detecting the full range of variant types that confer risk. Current knowledge gaps include a comprehensive understanding of all predisposition genes; whether scenarios exist in which an allogeneic stem cell transplant using donor haematopoietic stem cells with deleterious variants is permissive; and effective means of delivering genetic counseling and results disclosure for these conditions. We are hopeful that comprehensive germline genetic testing, universal germline testing for all patients with an HM, universal germline testing for allogeneic haematopoietic stem cell donors, and the development of preventive strategies to delay or even prevent malignancies will be available in the near future. These factors will likely contribute to improved health outcomes for at-risk individuals and their family members.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Michael Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
16
|
Next-generation Sequencing in Bone Marrow Failure Syndromes and Isolated Cytopenias: Experience of the Spanish Network on Bone Marrow Failure Syndromes. Hemasphere 2021; 5:e539. [PMID: 33718801 PMCID: PMC7951136 DOI: 10.1097/hs9.0000000000000539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a group of congenital rare diseases characterized by bone marrow failure, congenital anomalies, high genetic heterogeneity, and predisposition to cancer. Appropriate treatment and cancer surveillance ideally depend on the identification of the mutated gene. A next-generation sequencing (NGS) panel of genes could be 1 initial genetic screening test to be carried out in a comprehensive study of IBMFSs, allowing molecular detection in affected patients. We designed 2 NGS panels of IBMFS genes: version 1 included 129 genes and version 2 involved 145 genes. The cohort included a total of 204 patients with suspected IBMFSs without molecular diagnosis. Capture-based targeted sequencing covered > 99% of the target regions of 145 genes, with more than 20 independent reads. No differences were seen between the 2 versions of the panel. The NGS tool allowed a total of 91 patients to be diagnosed, with an overall molecular diagnostic rate of 44%. Among the 167 patients with classified IBMFSs, 81 patients (48%) were diagnosed. Unclassified IBMFSs involved a total of 37 patients, of whom 9 patients (24%) were diagnosed. The preexisting diagnosis of 6 clinically classified patients (6%) was amended, implying a change of therapy for some of them. Our NGS IBMFS gene panel assay is a useful tool in the molecular diagnosis of IBMFSs and a reasonable option as the first tier genetic test in these disorders.
Collapse
|
17
|
Hypoplastic Myelodysplastic Syndromes: Just an Overlap Syndrome? Cancers (Basel) 2021; 13:cancers13010132. [PMID: 33401595 PMCID: PMC7795441 DOI: 10.3390/cancers13010132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Hypoplastic myelodysplastic syndromes (hMDS) represent a diagnostic conundrum. They share morphologic and clinical features of both MDS (dysplasia, genetic lesions and cytopenias) and aplastic anemia (AA; i.e., hypocellularity and autoimmunity) and are not comprised in the last WHO classification. In this review we recapitulate the main clinical, pathogenic and therapeutic aspects of hypo-MDS and discuss why they deserve to be distinguished from normo/hypercellular MDS and AA. We conclude that hMDS may present in two phenotypes: one more proinflammatory and autoimmune, more similar to AA, responding to immunosuppression; and one MDS-like dominated by genetic lesions, suppression of immune surveillance, and tumor escape, more prone to leukemic evolution. Abstract Myelodysplasias with hypocellular bone marrow (hMDS) represent about 10–15% of MDS and are defined by reduced bone marrow cellularity (i.e., <25% or an inappropriately reduced cellularity for their age in young patients). Their diagnosis is still an object of debate and has not been clearly established in the recent WHO classification. Clinical and morphological overlaps with both normo/hypercellular MDS and aplastic anemia include cytopenias, the presence of marrow hypocellularity and dysplasia, and cytogenetic and molecular alterations. Activation of the immune system against the hematopoietic precursors, typical of aplastic anemia, is reckoned even in hMDS and may account for the response to immunosuppressive treatment. Finally, the hMDS outcome seems more favorable than that of normo/hypercellular MDS patients. In this review, we analyze the available literature on hMDS, focusing on clinical, immunological, and molecular features. We show that hMDS pathogenesis and clinical presentation are peculiar, albeit in-between aplastic anemia (AA) and normo/hypercellular MDS. Two different hMDS phenotypes may be encountered: one featured by inflammation and immune activation, with increased cytotoxic T cells, increased T and B regulatory cells, and better response to immunosuppression; and the other, resembling MDS, where T and B regulatory/suppressor cells prevail, leading to genetic clonal selection and an increased risk of leukemic evolution. The identification of the prevailing hMDS phenotype might assist treatment choice, inform prognosis, and suggest personalized monitoring.
Collapse
|
18
|
Affiliation(s)
- Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA and Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg.
| |
Collapse
|
19
|
Fox LC, Tan M, Brown AL, Arts P, Thompson E, Ryland GL, Lickiss J, Scott HS, Poplawski NK, Phillips K, Came NA, James P, Ting SB, Ritchie DS, Szer J, Hahn CN, Schwarer A, Blombery P. A synonymous GATA2 variant underlying familial myeloid malignancy with striking intrafamilial phenotypic variability. Br J Haematol 2020; 190:e297-e301. [PMID: 32488879 DOI: 10.1111/bjh.16819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Lucy C Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | | | - Anna L Brown
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Ella Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jennifer Lickiss
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Hamish S Scott
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Genomics Facility, Australian Cancer Research Foundation, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - Nicola K Poplawski
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Kerry Phillips
- Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Neil A Came
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Paul James
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia.,Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - David S Ritchie
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Jeff Szer
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | | | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|