1
|
Obiorah IE, Kundu D, Adekunle F, Pramoonjago P, Calvo KR, Liu P, Goldfarb A. Megakaryocyte centrosomal and Golgi structural perturbations in patients with primary myelofibrosis and with RUNX1 germline mutation. Leuk Lymphoma 2025; 66:797-800. [PMID: 39654392 PMCID: PMC11952982 DOI: 10.1080/10428194.2024.2438801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 03/29/2025]
Affiliation(s)
| | - Debamita Kundu
- University of Virginia, Department of Biostatistics, Charlottesville, VA
| | - Folashade Adekunle
- University of Virginia Health, Department of Pathology, Charlottesville, VA
| | | | - Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD
| | - Paul Liu
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Adam Goldfarb
- University of Virginia Health, Department of Pathology, Charlottesville, VA
| |
Collapse
|
2
|
Xu B, Ye X, Wen Z, Chen J, Chen M, Shen M, Xu Y, Wang J, Chen S. Biphasic Effect of Thyroid Hormone on Megakaryopoiesis and Platelet Production. Thyroid 2025; 35:321-334. [PMID: 39692608 DOI: 10.1089/thy.2024.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Background: Abnormal platelet counts are frequently observed in patients with thyroid dysfunction; however, the direct impact of thyroid hormones on thrombopoiesis remains largely undefined. Methods: This study elucidates the dose-response effect of the thyroid hormone triiodothyronine (T3) on megakaryocyte (MK) development and thrombopoiesis using both a murine model of hyperthyroidism/hypothyroidism and in vitro cultures of human cord blood CD34+ cell-derived MKs. After the application of inhibitors to MKs, the examination of total and phosphorylated protein levels of the phosphoinositide 3-kinase (PI3K)/AKT pathway was utilized to assess the specific mechanisms of T3 action. The use of autophagy dual-staining lentivirus and transmission electron microscopy was employed to evaluate the impact of T3 on the autophagy flux in MKs. Mouse whole-body irradiation and bone marrow transplantation models are applied to assess the influence of T3 on the recovery of MKs/platelets in vivo. Results: We found that physiological or slightly elevated thyroid hormone levels are essential for sustaining MK development and thrombopoiesis, primarily through the TRα-PI3K/AKT signaling pathway. In contrast, supraphysiological thyroid hormone concentrations induce MK apoptosis via excessive autophagy, thereby reducing platelet production. Conclusions: Here, we present evidence that the thyroid hormone influences MK development and platelet production in a concentration-dependent manner, exhibiting a dualistic role. Our discoveries shed new light on the intricate relationship between thyroid hormones and platelet formation, offering novel perspectives on the pathophysiological consequences of thyroid disorders.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Italiano JE, Payne C, Bekendam RH. Looking Under the Hood at the Cytoskeletal Engine of Platelet Production. Arterioscler Thromb Vasc Biol 2025; 45:186-197. [PMID: 39665140 DOI: 10.1161/atvbaha.124.320392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Blood platelets are anucleate cells essential for normal blood hemostasis. To maintain a normal platelet count of 150 000 to 400 000 per μL of blood, 1011 platelets must be released each day from precursor cells called megakaryocytes. In this review, we aim to provide an overview of platelet production and evaluate the proposed mechanisms of platelet generation. We will discuss novel cytoskeletal mechanisms of platelet production, including microtubule and actin-based systems. We present new evidence that supports a cytoplasmic trigger for platelet production, discuss centrosome clustering as a new mechanism to trigger proplatelet production, and review new data supporting the bone marrow as the major location of platelet production.
Collapse
Affiliation(s)
- Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, MA (J.E.I., C.P., R.H.B.)
- Department of Surgery, Harvard Medical School, Boston, MA (J.E.I., C.P., R.H.B.)
| | - Clementine Payne
- Vascular Biology Program, Boston Children's Hospital, MA (J.E.I., C.P., R.H.B.)
- Department of Surgery, Harvard Medical School, Boston, MA (J.E.I., C.P., R.H.B.)
| | - Roelof H Bekendam
- Vascular Biology Program, Boston Children's Hospital, MA (J.E.I., C.P., R.H.B.)
- Department of Surgery, Harvard Medical School, Boston, MA (J.E.I., C.P., R.H.B.)
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, MA (R.H.B.)
| |
Collapse
|
4
|
Xu B, Ye X, Wen Z, Chen S, Wang J. Epigenetic regulation of megakaryopoiesis and platelet formation. Haematologica 2024; 109:3125-3137. [PMID: 38867584 PMCID: PMC11443398 DOI: 10.3324/haematol.2023.284951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/14/2024] Open
Abstract
Platelets, produced by megakaryocytes, play unique roles in physiological processes, such as hemostasis, coagulation, and immune regulation, while also contributing to various clinical diseases. During megakaryocyte differentiation, the morphology and function of cells undergo significant changes due to the programmed expression of a series of genes. Epigenetic changes modify gene expression without altering the DNA base sequence, effectively affecting the inner workings of the cell at different stages of growth, proliferation, differentiation, and apoptosis. These modifications also play important roles in megakaryocyte development and platelet biogenesis. However, the specific mechanisms underlying epigenetic processes and the vast epigenetic regulatory network formed by their interactions remain unclear. In this review, we systematically summarize the key roles played by epigenetics in megakaryocyte development and platelet formation, including DNA methylation, histone modification, and non-coding RNA regulation. We expect our review to provide a deeper understanding of the biological processes underlying megakaryocyte development and platelet formation and to inform the development of new clinical interventions aimed at addressing platelet-related diseases and improving patients' prognoses.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| |
Collapse
|
5
|
Guinard I, Brassard-Jollive N, Ruch L, Weber J, Eckly A, Boscher J, Léon C. Mechanical confinement prevents ectopic platelet release. Proc Natl Acad Sci U S A 2024; 121:e2407829121. [PMID: 39236232 PMCID: PMC11420179 DOI: 10.1073/pnas.2407829121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
Blood platelets are produced by megakaryocytes (MKs), their parent cells, which are in the bone marrow. Once mature, MK pierces through the sinusoid vessel, and the initial protrusion further elongates as proplatelet or buds to release platelets. The mechanisms controlling the decision to initiate proplatelet and platelet formation are unknown. Here, we show that the mechanical properties of the microenvironment prevent proplatelet and platelet release in the marrow stroma while allowing this process in the bloodstream. Loss of marrow confinement following myelosuppression led to inappropriate proplatelet and platelet release into the extravascular space. We further used an inert viscoelastic hydrogel to evaluate the impact of compressive stress. Transcriptional analysis showed that culture in three-dimensional gel induced upregulation of genes related to the Rho-GTPase pathway. We found higher Rho-GTPase activation, myosin light chain phosphorylation and F-actin under mechanical constraints while proplatelet formation was inhibited. The use of latrunculin-A to decrease F-actin promoted microtubule-dependent budding and proplatelet extension inside the gel. Additionally, ex vivo exposure of intact bone marrow to latrunculin-A triggered proplatelet extensions in the interstitial space. In vivo, this confinement-mediated high intracellular tension is responsible for the formation of the peripheral zone, a unique actin-rich structure. Cytoskeleton reorganization induces the disappearance of the peripheral zone upon reaching a liquid milieu to facilitate proplatelet and platelet formation. Hence, our data provide insight into the mechanisms preventing ectopic platelet release in the marrow stroma. Identifying such pathways is especially important for understanding pathologies altering marrow mechanics such as chemotherapy or myelofibrosis.
Collapse
Affiliation(s)
- Ines Guinard
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Noémie Brassard-Jollive
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Laurie Ruch
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Josiane Weber
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Anita Eckly
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Julie Boscher
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Catherine Léon
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| |
Collapse
|
6
|
Carminita E, Becker IC, Italiano JE. What It Takes To Be a Platelet: Evolving Concepts in Platelet Production. Circ Res 2024; 135:540-549. [PMID: 39088641 DOI: 10.1161/circresaha.124.323579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Platelets are among the most abundant cells within the circulation. Given that the platelet lifespan is 7 to 10 days in humans, a constant production of around 100 billion platelets per day is required. Platelet production from precursor cells called megakaryocytes is one of the most enigmatic processes in human biology. Although it has been studied for over a century, there is still controversy about the exact mechanisms leading to platelet release into circulation. The formation of proplatelet extensions from megakaryocytes into bone marrow sinusoids is the best-described mechanism explaining the origin of blood platelets. However, using powerful imaging techniques, several emerging studies have recently raised challenging questions in the field, suggesting that small platelet-sized structures called buds might also contribute to the circulating platelet pool. How and whether these structures differ from microvesicles or membrane blebs, which have previously been described to be released from megakaryocytes, is still a matter of discussion. In this review, we will summarize what the past and present have revealed about platelet production and whether mature blood platelets might emerge via different mechanisms.
Collapse
Affiliation(s)
- Estelle Carminita
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
- Harvard Medical School, Boston, MA (E.C., I.C.B.)
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
- Harvard Medical School, Boston, MA (E.C., I.C.B.)
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
| |
Collapse
|
7
|
Liu H, Welburn JPI. A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease. Open Biol 2024; 14:240041. [PMID: 38835242 DOI: 10.1098/rsob.240041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
Platelets are blood cells derived from megakaryocytes that play a central role in regulating haemostasis and vascular integrity. The microtubule cytoskeleton of megakaryocytes undergoes a critical dynamic reorganization during cycles of endomitosis and platelet biogenesis. Quiescent platelets have a discoid shape maintained by a marginal band composed of microtubule bundles, which undergoes remarkable remodelling during platelet activation, driving shape change and platelet function. Disrupting or enhancing this process can cause platelet dysfunction such as bleeding disorders or thrombosis. However, little is known about the molecular mechanisms underlying the reorganization of the cytoskeleton in the platelet lineage. Recent studies indicate that the emergence of a unique platelet tubulin code and specific pathogenic tubulin mutations cause platelet defects and bleeding disorders. Frequently, these mutations exhibit dominant negative effects, offering valuable insights into both platelet disease mechanisms and the functioning of tubulins. This review will highlight our current understanding of the role of the microtubule cytoskeleton in the life and death of platelets, along with its relevance to platelet disorders.
Collapse
Affiliation(s)
- Haonan Liu
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
8
|
Feely C, Kaushal N, D’Avino PP, Martin J. Modifying platelets at their birth: anti-thrombotic therapy without haemorrhage. Front Pharmacol 2024; 15:1343896. [PMID: 38562457 PMCID: PMC10982340 DOI: 10.3389/fphar.2024.1343896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular disease is a leading cause of death. The current approach to the prevention of arterial thrombosis in cardiovascular disease is dependent on the use of therapies which inhibit the activation of platelets. Predictably these are associated with an increased risk of haemorrhage which causes significant morbidity. The thrombotic potential of an activated platelet is modifiable; being determined before thrombopoiesis. Increased megakaryocyte ploidy is associated with larger and more active platelets carrying an increased risk of thrombosis. The reduction in the ploidy of megakaryocytes is therefore a novel area of therapeutic interest for reducing thrombosis. We propose a new therapeutic approach for the prevention and treatment of thrombosis by targeting the reduction in ploidy of megakaryocytes. We examine the role of a receptor mediated event causing megakaryocytes to increase ploidy, the potential for targeting the molecular mechanisms underpinning megakaryocyte endomitosis and the existence of two separate regulatory pathways to maintain haemostasis by altering the thrombotic potential of platelets as targets for novel therapeutic approaches producing haemostatically competent platelets which are not prothrombotic.
Collapse
Affiliation(s)
- Conor Feely
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Nitika Kaushal
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Martin
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
9
|
Ellis ML, Terreaux A, Alwis I, Smythe R, Perdomo J, Eckly A, Cranmer SL, Passam FH, Maclean J, Schoenwaelder SM, Ruggeri ZM, Lanza F, Taoudi S, Yuan Y, Jackson SP. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143:342-356. [PMID: 37922495 DOI: 10.1182/blood.2023021292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.
Collapse
Affiliation(s)
- Marc L Ellis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Antoine Terreaux
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Imala Alwis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Rhyll Smythe
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Anita Eckly
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Susan L Cranmer
- Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - Freda H Passam
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Maclean
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Simone M Schoenwaelder
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| | - Francois Lanza
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Samir Taoudi
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Yuping Yuan
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shaun P Jackson
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
10
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Thanasegaran S, Daimon E, Shibukawa Y, Yamazaki N, Okamoto N. Modelling Takenouchi-Kosaki syndrome using disease-specific iPSCs. Stem Cell Res 2023; 73:103221. [PMID: 37918315 DOI: 10.1016/j.scr.2023.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Takenouchi-Kosaki Syndrome (TKS) is a congenital multi-organ disorder caused by the de novo missense mutation c.191A > G p. Tyr64Cys (Y64C) in the CDC42 gene. We previously elucidated the functional abnormalities and thrombopoietic effects of Y64C using HEK293 and MEG01 cells. In the present study, we used iPSCs derived from TKS patients to model the disease and successfully recapitulated macrothrombocytopenia, a prominent TKS phenotype. The megakaryopoietic differentiation potential of TKS-iPSCs and platelet production capacity were examined using an efficient platelet production method redesigned from existing protocols. The results obtained showed that TKS-iPSCs produced fewer hematopoietic progenitor cells, exhibited defective megakaryopoiesis, and released platelets with an abnormally low count and giant morphology. We herein report the first analysis of TKS-iPSC-derived megakaryocytes and platelets, and currently utilize this model to perform drug evaluations for TKS. Therefore, our simple yet effective differentiation method, which mimics the disease in a dish, is a feasible strategy for studying hematopoiesis and related diseases.
Collapse
Affiliation(s)
- Suganya Thanasegaran
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Etsuko Daimon
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yukinao Shibukawa
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Natsuko Yamazaki
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
12
|
Guinard I, Nguyen T, Brassard-Jollive N, Weber J, Ruch L, Reininger L, Brouard N, Eckly A, Collin D, Lanza F, Léon C. Matrix stiffness controls megakaryocyte adhesion, fibronectin fibrillogenesis, and proplatelet formation through Itgβ3. Blood Adv 2023; 7:4003-4018. [PMID: 37171626 PMCID: PMC10410137 DOI: 10.1182/bloodadvances.2022008680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM). Once mature, they extend elongated projections named proplatelets through sinusoid vessels, emerging from the marrow stroma into the circulating blood. Not all signals from the microenvironment that regulate proplatelet formation are understood, particularly those from the BM biomechanics. We sought to investigate how MKs perceive and adapt to modifications of the stiffness of their environment. Although the BM is one of the softest tissue of the body, its rigidification results from excess fibronectin (FN), and other matrix protein deposition occur upon myelofibrosis. Here, we have shown that mouse MKs are able to detect the stiffness of a FN-coated substrate and adapt their morphology accordingly. Using a polydimethylsiloxane substrate with stiffness varying from physiological to pathological marrow, we found that a stiff matrix favors spreading, intracellular contractility, and FN fibrils assembly at the expense of proplatelet formation. Itgb3, but not Itgb1, is required for stiffness sensing, whereas both integrins are involved in fibrils assembly. In contrast, soft substrates promote proplatelet formation in an Itgb3-dependent manner, consistent with the ex vivo decrease in proplatelet formation and the in vivo decrease in platelet number in Itgb3-deficient mice. Our findings demonstrate the importance of environmental stiffness for MK functions with potential pathophysiological implications during pathologies that deregulate FN deposition and modulate stiffness in the marrow.
Collapse
Affiliation(s)
- Ines Guinard
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Thao Nguyen
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Noémie Brassard-Jollive
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Josiane Weber
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laurie Ruch
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laura Reininger
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Nathalie Brouard
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Anita Eckly
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - François Lanza
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Catherine Léon
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Yan C, Wu H, Fang X, He J, Zhu F. Platelet, a key regulator of innate and adaptive immunity. Front Med (Lausanne) 2023; 10:1074878. [PMID: 36968817 PMCID: PMC10038213 DOI: 10.3389/fmed.2023.1074878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Platelets, anucleate blood components, represent the major cell type involved in the regulation of hemostasis and thrombosis. In addition to performing haemostatic roles, platelets can influence both innate and adaptive immune responses. In this review, we summarize the development of platelets and their functions in hemostasis. We also discuss the interactions between platelet products and innate or adaptive immune cells, including neutrophils, monocytes, macrophages, T cells, B cells and dendritic cells. Activated platelets and released molecules regulate the differentiation and function of these cells via platelet-derived receptors or secreting molecules. Platelets have dual effects on nearly all immune cells. Understanding the exact mechanisms underlying these effects will enable further application of platelet transfusion.
Collapse
Affiliation(s)
- Cheng Yan
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haojie Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianchun Fang
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junji He
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhu
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Feng Zhu,
| |
Collapse
|
14
|
Englert M, Aurbach K, Becker IC, Gerber A, Heib T, Wackerbarth LM, Kusch C, Mott K, Araujo GHM, Baig AA, Dütting S, Knaus UG, Stigloher C, Schulze H, Nieswandt B, Pleines I, Nagy Z. Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice. Blood Adv 2022; 6:5184-5197. [PMID: 35819450 PMCID: PMC9631634 DOI: 10.1182/bloodadvances.2021006545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.
Collapse
Affiliation(s)
- Maximilian Englert
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Isabelle C. Becker
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Annika Gerber
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Tobias Heib
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Lou M. Wackerbarth
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Gabriel H. M. Araujo
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ayesha A. Baig
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ulla G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland; and
| | | | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
De Wispelaere K, Freson K. The Analysis of the Human Megakaryocyte and Platelet Coding Transcriptome in Healthy and Diseased Subjects. Int J Mol Sci 2022; 23:ijms23147647. [PMID: 35886993 PMCID: PMC9317744 DOI: 10.3390/ijms23147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.
Collapse
|
16
|
Tilburg J, Becker IC, Italiano JE. Don't you forget about me(gakaryocytes). Blood 2022; 139:3245-3254. [PMID: 34582554 PMCID: PMC9164737 DOI: 10.1182/blood.2020009302] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor β1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.
Collapse
Affiliation(s)
- Julia Tilburg
- Vascular Biology Program, Boston Children's Hospital, Boston, MA
| | | | | |
Collapse
|
17
|
Kimmerlin Q, Strassel C, Eckly A, Lanza F. The tubulin code in platelet biogenesis. Semin Cell Dev Biol 2022; 137:63-73. [PMID: 35148939 DOI: 10.1016/j.semcdb.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Blood platelets are small non-nucleated cellular fragments that prevent and stop hemorrhages. They are produced in the bone marrow by megakaryocytes through megakaryopoiesis. This intricate process involves profound microtubule rearrangements culminating in the formation of a unique circular sub-membranous microtubule array, the marginal band, which supports the typical disc-shaped morphology of platelets. Mechanistically, these processes are thought to be controlled by a specific tubulin code. In this review, we summarize the current knowledge on the key isotypes, notably β1-, α4A- and α8-tubulin, and putative post-translational modifications, involved in platelet and marginal band formation. Additionally, we provide a provisional list of microtubule-associated proteins (MAPs) involved in these processes and a survey of tubulin variants identified in patients presenting defective platelet production. A comprehensive characterization of the platelet tubulin code and the identification of essential MAPs may be expected in the near future to shed new light on a very specialized microtubule assembly process with applications in platelet diseases and transfusion.
Collapse
Affiliation(s)
- Quentin Kimmerlin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| |
Collapse
|
18
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
19
|
Palma-Barqueros V, Bury L, Kunishima S, Lozano ML, Rodríguez-Alen A, Revilla N, Bohdan N, Padilla J, Fernández-Pérez MP, de la Morena-Barrio ME, Marín-Quiles A, Benito R, López-Fernández MF, Marcellini S, Zamora-Cánovas A, Vicente V, Martínez C, Gresele P, Bastida JM, Rivera J. Expanding the genetic spectrum of TUBB1-related thrombocytopenia. Blood Adv 2021; 5:5453-5467. [PMID: 34516618 PMCID: PMC8714720 DOI: 10.1182/bloodadvances.2020004057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/20/2021] [Indexed: 11/20/2022] Open
Abstract
β1-Tubulin plays a major role in proplatelet formation and platelet shape maintenance, and pathogenic variants in TUBB1 lead to thrombocytopenia and platelet anisocytosis (TUBB1-RT). To date, the reported number of pedigrees with TUBB1-RT and of rare TUBB1 variants with experimental demonstration of pathogenicity is limited. Here, we report 9 unrelated families presenting with thrombocytopenia carrying 6 β1-tubulin variants, p.Cys12LeufsTer12, p.Thr107Pro, p.Gln423*, p.Arg359Trp, p.Gly109Glu, and p.Gly269Asp, the last of which novel. Segregation studies showed incomplete penetrance of these variants for platelet traits. Indeed, most carriers showed macrothrombocytopenia, some only increased platelet size, and a minority had no abnormalities. Moreover, only homozygous carriers of the p.Gly109Glu variant displayed macrothrombocytopenia, highlighting the importance of allele burden in the phenotypic expression of TUBB1-RT. The p.Arg359Trp, p.Gly269Asp, and p.Gly109Glu variants deranged β1-tubulin incorporation into the microtubular marginal ring in platelets but had a negligible effect on platelet activation, secretion, or spreading, suggesting that β1-tubulin is dispensable for these processes. Transfection of TUBB1 missense variants in CHO cells altered β1-tubulin incorporation into the microtubular network. In addition, TUBB1 variants markedly impaired proplatelet formation from peripheral blood CD34+ cell-derived megakaryocytes. Our study, using in vitro modeling, molecular characterization, and clinical investigations provides a deeper insight into the pathogenicity of rare TUBB1 variants. These novel data expand the genetic spectrum of TUBB1-RT and highlight a remarkable heterogeneity in its clinical presentation, indicating that allelic burden or combination with other genetic or environmental factors modulate the phenotypic impact of rare TUBB1 variants.
Collapse
Affiliation(s)
- Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Loredana Bury
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Shinji Kunishima
- Department of Medical Technology, Gifu University of Medical Science, Seki, Japan
| | - María Luisa Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Augustín Rodríguez-Alen
- Servicio de Hematología y Hemoterapia, Hospital Virgen de la Salud, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Nuria Revilla
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Natalia Bohdan
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - María P. Fernández-Pérez
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Ana Marín-Quiles
- Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Universidad de Salamanca-Consejo Superior de Investigaciones Científicas
| | - Rocío Benito
- Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Universidad de Salamanca-Consejo Superior de Investigaciones Científicas
| | | | | | - Ana Zamora-Cánovas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Constantino Martínez
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - José M. Bastida
- Departamento de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| |
Collapse
|
20
|
Bertović I, Bura A, Jurak Begonja A. Developmental differences of in vitro cultured murine bone marrow- and fetal liver-derived megakaryocytes. Platelets 2021; 33:887-899. [PMID: 34915807 DOI: 10.1080/09537104.2021.2007869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Multiple lines of evidence support differences in the megakaryopoiesis during development. Murine in vitro models to study megakaryopoiesis employ cultured megakaryocytes MKs derived from adult bone marrow (BM) or fetal livers (FL) of mouse embryos. Mouse models allow to study the molecular basis for cellular changes utilizing conditional or knock-out models and permit further in vitro genetic or pharmacological manipulations. Despite being extensively used, MKs cultured from these two sources have not been systematically compared. In the present study, we compared BM- and FL-derived MKs, assessing their size, proplatelet production capacity, expression of common MK markers (αIIb, β3, GPIb α, β) and cytoskeletal proteins (filamin A, β1-tubulin, actin), the subcellular appearance of α-granules (VWF), membranes (GPIbβ) and cytoskeleton (F-actin) throughout in vitro development. We demonstrate that FL MKs although smaller in size, spontaneously produce more proplatelets than BM MKs and at earlier stages express more β1-tubulin. In addition, early FL MKs show increased internal GPIbβ staining and present higher GPIbβ (early and late) and VWF (late stages) total fluorescence intensity (TFI)/cell size than BM MKs. BM MKs have up-regulated TPO signaling corresponding to their bigger size and ploidy, without changes in c-Mpl. Expressing endogenous β1-tubulin or the presence of heparin improves BM MKs ability to produce proplatelets. These data suggest that FL MKs undergo cytoplasmic maturation earlier than BM MKs and that this, in addition to higher β1-tubulin levels and GPIb, supported with an extensive F-actin network, could contribute to more efficient proplatelet formation in vitro.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology, The University of Rijeka, Rijeka, Croatia
| | - Ana Bura
- Department of Biotechnology, The University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
21
|
Tang A, Mendelson A. Recent lessons learned for ex-vivo platelet production. Curr Opin Hematol 2021; 28:424-430. [PMID: 34232141 PMCID: PMC8490274 DOI: 10.1097/moh.0000000000000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Platelet transfusion can be life-saving but carries a risk of infection or alloimmunization and is limited by insufficient donor sources and restricted unit shelf life. Generating sufficient platelets in vitro to replace a unit of collected blood remains a challenge. Here, we examine the latest advances in the regulation of megakaryocyte maturation and expansion along with platelet formation and survival. We also discuss alternative therapies investigated to induce platelet production. RECENT FINDINGS Recent studies examined candidate niche cells in the bone marrow microenvironment for promoting platelet formation and developed an explant-based bioreactor to enhance platelet production ex vivo. Chemical inhibitors were examined for their ability to promote megakaryocyte maturation and expansion. Microparticles from megakaryocytes or platelets were found to improve megakaryocyte maturation and platelet formation. Membrane budding was identified as a novel mode of platelet formation. Lastly, a chemical inhibitor to improve cold-stored platelets was identified. SUMMARY Recent advances in the regulation of megakaryocyte expansion and platelet production provide exciting promise for the development of improved approaches to generate platelets in vitro. These findings bring the field one step closer to achieving the ultimate goal of creating a unit of platelets without the need for donation.
Collapse
Affiliation(s)
- Alice Tang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Avital Mendelson
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| |
Collapse
|
22
|
Mbiandjeu S, Balduini A, Malara A. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases. Thromb Haemost 2021; 122:666-678. [PMID: 34218430 DOI: 10.1055/s-0041-1731717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.
Collapse
Affiliation(s)
- Serge Mbiandjeu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
23
|
Vainchenker W, Arkoun B, Basso-Valentina F, Lordier L, Debili N, Raslova H. Role of Rho-GTPases in megakaryopoiesis. Small GTPases 2021; 12:399-415. [PMID: 33570449 PMCID: PMC8583283 DOI: 10.1080/21541248.2021.1885134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes (MKs) are the bone marrow (BM) cells that generate blood platelets by a process that requires: i) polyploidization responsible for the increased MK size and ii) cytoplasmic organization leading to extension of long pseudopods, called proplatelets, through the endothelial barrier to allow platelet release into blood. Low level of localized RHOA activation prevents actomyosin accumulation at the cleavage furrow and participates in MK polyploidization. In the platelet production, RHOA and CDC42 play opposite, but complementary roles. RHOA inhibits both proplatelet formation and MK exit from BM, whereas CDC42 drives the development of the demarcation membranes and MK migration in BM. Moreover, the RhoA or Cdc42 MK specific knock-out in mice and the genetic alterations in their down-stream effectors in human induce a thrombocytopenia demonstrating their key roles in platelet production. A better knowledge of Rho-GTPase signalling is thus necessary to develop therapies for diseases associated with platelet production defects. Abbreviations: AKT: Protein Kinase BARHGEF2: Rho/Rac Guanine Nucleotide Exchange Factor 2ARP2/3: Actin related protein 2/3BM: Bone marrowCDC42: Cell division control protein 42 homologCFU-MK: Colony-forming-unit megakaryocyteCIP4: Cdc42-interacting protein 4mDIA: DiaphanousDIAPH1; Protein diaphanous homolog 1ECT2: Epithelial Cell Transforming Sequence 2FLNA: Filamin AGAP: GTPase-activating proteins or GTPase-accelerating proteinsGDI: GDP Dissociation InhibitorGEF: Guanine nucleotide exchange factorHDAC: Histone deacetylaseLIMK: LIM KinaseMAL: Megakaryoblastic leukaemiaMARCKS: Myristoylated alanine-rich C-kinase substrateMKL: Megakaryoblastic leukaemiaMLC: Myosin light chainMRTF: Myocardin Related Transcription FactorOTT: One-Twenty Two ProteinPACSIN2: Protein Kinase C And Casein Kinase Substrate In Neurons 2PAK: P21-Activated KinasePDK: Pyruvate Dehydrogenase kinasePI3K: Phosphoinositide 3-kinasePKC: Protein kinase CPTPRJ: Protein tyrosine phosphatase receptor type JRAC: Ras-related C3 botulinum toxin substrate 1RBM15: RNA Binding Motif Protein 15RHO: Ras homologousROCK: Rho-associated protein kinaseSCAR: Suppressor of cAMP receptorSRF: Serum response factorSRC: SarcTAZ: Transcriptional coactivator with PDZ motifTUBB1: Tubulin β1VEGF: Vascular endothelial growth factorWAS: Wiskott Aldrich syndromeWASP: Wiskott Aldrich syndrome proteinWAVE: WASP-family verprolin-homologous proteinWIP: WASP-interacting proteinYAP: Yes-associated protein
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,GrEX, Sorbonne Paris Cité, Paris, France
| | - Brahim Arkoun
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,GrEX, Sorbonne Paris Cité, Paris, France
| | - Francesca Basso-Valentina
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,Université Sorbonne Paris Cité/Université Paris Dideront, Paris, France
| | - Larissa Lordier
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| | - Najet Debili
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| | - Hana Raslova
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| |
Collapse
|
24
|
Zingariello M, Rosti V, Vannucchi AM, Guglielmelli P, Mazzarini M, Barosi G, Genova ML, Migliaccio AR. Shared and Distinctive Ultrastructural Abnormalities Expressed by Megakaryocytes in Bone Marrow and Spleen From Patients With Myelofibrosis. Front Oncol 2020; 10:584541. [PMID: 33312951 PMCID: PMC7701330 DOI: 10.3389/fonc.2020.584541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have documented ultrastructural abnormalities in malignant megakaryocytes from bone marrow (BM) of myelofibrosis patients but the morphology of these cells in spleen, an important extramedullary site in this disease, was not investigated as yet. By transmission-electron microscopy, we compared the ultrastructural features of megakaryocytes from BM and spleen of myelofibrosis patients and healthy controls. The number of megakaryocytes was markedly increased in both BM and spleen. However, while most of BM megakaryocytes are immature, those from spleen appear mature with well-developed demarcation membrane systems (DMS) and platelet territories and are surrounded by platelets. In BM megakaryocytes, paucity of DMS is associated with plasma (thick with protrusions) and nuclear (dilated with large pores) membrane abnormalities and presence of numerous glycosomes, suggesting a skewed metabolism toward insoluble polyglucosan accumulation. By contrast, the membranes of the megakaryocytes from the spleen were normal but these cells show mitochondria with reduced crests, suggesting deficient aerobic energy-metabolism. These distinctive morphological features suggest that malignant megakaryocytes from BM and spleen express distinctive metabolic impairments that may play different roles in the pathogenesis of myelofibrosis.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro M Vannucchi
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Luisa Genova
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy.,Myeloproliferative Neoplasm-Research Consortium, New York, NY, United States
| |
Collapse
|
25
|
Boscher J, Guinard I, Eckly A, Lanza F, Léon C. Blood platelet formation at a glance. J Cell Sci 2020; 133:133/20/jcs244731. [DOI: 10.1242/jcs.244731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
The main function of blood platelets is to ensure hemostasis and prevent hemorrhages. The 1011 platelets needed daily are produced in a well-orchestrated process. However, this process is not yet fully understood and in vitro platelet production is still inefficient. Platelets are produced in the bone marrow by megakaryocytes, highly specialized precursor cells that extend cytoplasmic projections called proplatelets (PPTs) through the endothelial barrier of sinusoid vessels. In this Cell Science at a Glance article and the accompanying poster we discuss the mechanisms and pathways involved in megakaryopoiesis and platelet formation processes. We especially address the – still underestimated – role of the microenvironment of the bone marrow, and present recent findings on how PPT extension in vivo differs from that in vitro and entails different mechanisms. Finally, we recapitulate old but recently revisited evidence that – although bone marrow does produce megakaryocytes and PPTs – remodeling and the release of bona fide platelets, mainly occur in the downstream microcirculation.
Collapse
Affiliation(s)
- Julie Boscher
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Ines Guinard
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| |
Collapse
|
26
|
Zuidscherwoude M, Haining EJ, Simms VA, Watson S, Grygielska B, Hardy AT, Bacon A, Watson SP, Thomas SG. Loss of mDia1 and Fhod1 impacts platelet formation but not platelet function. Platelets 2020; 32:1051-1062. [PMID: 32981398 PMCID: PMC8635707 DOI: 10.1080/09537104.2020.1822522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
An organized and dynamic cytoskeleton is required for platelet formation and function. Formins are a large family of actin regulatory proteins which are also able to regulate microtubule dynamics. There are four formin family members expressed in human and mouse megakaryocytes and platelets. We have previously shown that the actin polymerization activity of formin proteins is required for cytoskeletal dynamics and platelet spreading using a small molecule inhibitor. In the current study, we analyze transgenic mouse models deficient in two of these proteins, mDia1 and Fhod1, along with a model lacking both proteins. We demonstrate that double knockout mice display macrothrombocytopenia which is due to aberrant megakaryocyte function and a small decrease in platelet lifespan. Platelet function is unaffected by the loss of these proteins. This data indicates a critical role for formins in platelet and megakaryocyte function.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Elizabeth J. Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria A. Simms
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alex T. Hardy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Bacon
- Genome Editing Facility, Technology Hub, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephen P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Steven G. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|