1
|
Sedor SF, Shao S. Mechanism of ASF1 engagement by CDAN1. Nat Commun 2025; 16:2599. [PMID: 40091041 PMCID: PMC11911400 DOI: 10.1038/s41467-025-57950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Codanin-1 (CDAN1) is an essential and ubiquitous protein named after congenital dyserythropoietic anemia type I, an autosomal recessive disease that manifests from mutations in CDAN1 or CDIN1 (CDAN1 interacting nuclease 1). CDAN1 interacts with CDIN1 and the paralogous histone H3-H4 chaperones ASF1A (Anti-Silencing Function 1 A) and ASF1B. However, CDAN1 function remains unclear. Here, we analyze CDAN1 complexes using biochemistry, single-particle cryo-EM, and structural predictions. We find that CDAN1 dimerizes and assembles into cytosolic complexes with CDIN1 and multiple copies of ASF1A/B. One CDAN1 can engage two ASF1 through two B-domains commonly found in ASF1 binding partners and two helices that mimic histone H3 binding. We additionally show that ASF1A and ASF1B have different requirements for CDAN1 engagement. Our findings explain how CDAN1 sequesters ASF1A/B by occupying all functional binding sites known to facilitate histone chaperoning and provide molecular-level insights into this enigmatic complex.
Collapse
Affiliation(s)
- Samantha F Sedor
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
King RA, Khoriaty R. Hereditary disorders of ineffective erythropoiesis. Blood Cells Mol Dis 2025; 111:102910. [PMID: 39938185 PMCID: PMC11884990 DOI: 10.1016/j.bcmd.2025.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Under steady state conditions, humans must produce ∼2 million red blood cells per second to sustain normal red blood cell counts and hemoglobin levels. Ineffective erythropoiesis, also termed dyserythropoiesis, is a process by which erythroid precursors die or fail to efficiently differentiate in the bone marrow. Ineffective erythropoiesis is characterized by expanded bone marrow erythropoiesis and increased erythroferrone production by bone marrow erythroblasts, with the latter resulting in reduced hepcidin production and increased iron absorption. Ineffective erythropoiesis may result from acquired and congenital conditions. Inherited causes of ineffective erythropoiesis include β-thalassemia, sideroblastic anemias, pyruvate kinase deficiency, and congenital dyserythropoietic anemias. This manuscript reviews the definition and evidence for ineffective erythropoiesis and describes the most common hereditary disorders of dyserythropoiesis.
Collapse
Affiliation(s)
- Richard A King
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Sedor SF, Shao S. Mechanism of ASF1 Inhibition by CDAN1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607204. [PMID: 39149339 PMCID: PMC11326237 DOI: 10.1101/2024.08.08.607204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Codanin-1 (CDAN1) is an essential and ubiquitous protein named after congenital dyserythropoietic anemia type I (CDA-I), an autosomal recessive disease that manifests from mutations in the CDAN1 or CDIN1 (CDAN1 interacting nuclease 1) gene. CDAN1 interacts with CDIN1 and the paralogous histone H3-H4 chaperones ASF1A (Anti-Silencing Function 1A) and ASF1B, but its function remains unclear. Here, we biochemically and structurally analyze CDAN1 complexes. We find that CDAN1 dimerizes and assembles into cytosolic complexes with CDIN1 and multiple copies of ASF1A/B. Single-particle cryogenic electron microscopy (cryo-EM) structures of CDAN1 complexes identify interactions with ASF1 mediated by two CDAN1 B-domains commonly found in ASF1 binding partners and two helices that mimic histone H3 binding. We additionally observe that one CDAN1 can recruit two ASF1 molecules and that ASF1A and ASF1B have different requirements for CDAN1 engagement. Our findings explain how CDAN1 sequesters and inhibits the chaperone function of ASF1A/B and provide new molecular-level insights into this enigmatic complex.
Collapse
Affiliation(s)
- Samantha F. Sedor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Badat M, Ejaz A, Hua P, Rice S, Zhang W, Hentges LD, Fisher CA, Denny N, Schwessinger R, Yasara N, Roy NBA, Issa F, Roy A, Telfer P, Hughes J, Mettananda S, Higgs DR, Davies JOJ. Direct correction of haemoglobin E β-thalassaemia using base editors. Nat Commun 2023; 14:2238. [PMID: 37076455 PMCID: PMC10115876 DOI: 10.1038/s41467-023-37604-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Haemoglobin E (HbE) β-thalassaemia causes approximately 50% of all severe thalassaemia worldwide; equating to around 30,000 births per year. HbE β-thalassaemia is due to a point mutation in codon 26 of the human HBB gene on one allele (GAG; glutamatic acid → AAG; lysine, E26K), and any mutation causing severe β-thalassaemia on the other. When inherited together in compound heterozygosity these mutations can cause a severe thalassaemic phenotype. However, if only one allele is mutated individuals are carriers for the respective mutation and have an asymptomatic phenotype (β-thalassaemia trait). Here we describe a base editing strategy which corrects the HbE mutation either to wildtype (WT) or a normal variant haemoglobin (E26G) known as Hb Aubenas and thereby recreates the asymptomatic trait phenotype. We have achieved editing efficiencies in excess of 90% in primary human CD34 + cells. We demonstrate editing of long-term repopulating haematopoietic stem cells (LT-HSCs) using serial xenotransplantation in NSG mice. We have profiled the off-target effects using a combination of circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) and deep targeted capture and have developed machine-learning based methods to predict functional effects of candidate off-target mutations.
Collapse
Affiliation(s)
- Mohsin Badat
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Clinical Haematology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Ayesha Ejaz
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Weijiao Zhang
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Christopher A Fisher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nirmani Yasara
- Department of Paediatrics, University of Kelaniya, Kelaniya, Sri Lanka
| | - Noemi B A Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Andi Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Paul Telfer
- Department of Clinical Haematology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Jim Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Douglas R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Clinical Haematology, Royal London Hospital, Barts Health NHS Trust, London, UK.
- National Institute of Health Research Blood and Transplant Research Unit in Precision Cellular Therapeutics, Oxford, UK.
| |
Collapse
|
5
|
Scott C, Bartolovic K, Clark SA, Waithe D, Hill QA, Okoli S, Renella R, Ryan K, Cahill MR, Higgs DR, Roy NBA, Buckle V, Roberts I, Babbs C. Functional impairment of erythropoiesis in Congenital Dyserythropoietic Anaemia type I arises at the progenitor level. Br J Haematol 2022; 198:e10-e14. [PMID: 35417566 DOI: 10.1111/bjh.18167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kerol Bartolovic
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, Oxford, UK
| | | | - Steven Okoli
- Imperial College, The Commonwealth Building, Hammersmith Hospital, London, UK
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, CHUV-UNIL, Lausanne, Switzerland
| | - Kate Ryan
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Cork, Ireland
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Noémi B A Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- BRC Blood Theme and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK
| | - Veronica Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin. Nat Commun 2022; 13:3485. [PMID: 35710802 PMCID: PMC9203812 DOI: 10.1038/s41467-022-31194-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/07/2022] [Indexed: 12/20/2022] Open
Abstract
The chromatin remodeller ATRX interacts with the histone chaperone DAXX to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats, many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. Here, using an improved protocol for chromatin immunoprecipitation, we show that ATRX also binds active regulatory elements in euchromatin. Mutations in ATRX lead to perturbation of gene expression associated with a reduction in chromatin accessibility, histone modification, transcription factor binding and deposition of H3.3 at the sequences to which it normally binds. In erythroid cells where downregulation of α-globin expression is a hallmark of ATR-X syndrome, perturbation of chromatin accessibility and gene expression occurs in only a subset of cells. The stochastic nature of this process suggests that ATRX acts as a general facilitator of cell specific transcriptional and epigenetic programmes, both in heterochromatin and euchromatin.
Collapse
|
7
|
Downes DJ, Cross AR, Hua P, Roberts N, Schwessinger R, Cutler AJ, Munis AM, Brown J, Mielczarek O, de Andrea CE, Melero I, Gill DR, Hyde SC, Knight JC, Todd JA, Sansom SN, Issa F, Davies JOJ, Hughes JR. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet 2021; 53:1606-1615. [PMID: 34737427 PMCID: PMC7611960 DOI: 10.1038/s41588-021-00955-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.
Collapse
Affiliation(s)
- Damien J Downes
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Amy R Cross
- Nuffield Department of Surgical Sciences, Transplantation Research and Immunology Group,University of Oxford, Oxford, UK
| | - Peng Hua
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine Centre for Computational Biology, University of Oxford, Oxford, UK
| | - Antony J Cutler
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Immunology Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Altar M Munis
- Department of Medicine, Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe University of Oxford, Oxford, UK
| | - Jill Brown
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Olga Mielczarek
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Carlos E de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Deborah R Gill
- Department of Medicine, Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe University of Oxford, Oxford, UK
| | - Stephen C Hyde
- Department of Medicine, Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe University of Oxford, Oxford, UK
| | - Julian C Knight
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - John A Todd
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, Transplantation Research and Immunology Group,University of Oxford, Oxford, UK
- Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - James O J Davies
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK.
| | - Jim R Hughes
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine Centre for Computational Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Hua P, Badat M, Hanssen LLP, Hentges LD, Crump N, Downes DJ, Jeziorska DM, Oudelaar AM, Schwessinger R, Taylor S, Milne TA, Hughes JR, Higgs DR, Davies JOJ. Defining genome architecture at base-pair resolution. Nature 2021; 595:125-129. [PMID: 34108683 DOI: 10.1038/s41586-021-03639-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
In higher eukaryotes, many genes are regulated by enhancers that are 104-106 base pairs (bp) away from the promoter. Enhancers contain transcription-factor-binding sites (which are typically around 7-22 bp), and physical contact between the promoters and enhancers is thought to be required to modulate gene expression. Although chromatin architecture has been mapped extensively at resolutions of 1 kilobase and above; it has not been possible to define physical contacts at the scale of the proteins that determine gene expression. Here we define these interactions in detail using a chromosome conformation capture method (Micro-Capture-C) that enables the physical contacts between different classes of regulatory elements to be determined at base-pair resolution. We find that highly punctate contacts occur between enhancers, promoters and CCCTC-binding factor (CTCF) sites and we show that transcription factors have an important role in the maintenance of the contacts between enhancers and promoters. Our data show that interactions between CTCF sites are increased when active promoters and enhancers are located within the intervening chromatin. This supports a model in which chromatin loop extrusion1 is dependent on cohesin loading at active promoters and enhancers, which explains the formation of tissue-specific chromatin domains without changes in CTCF binding.
Collapse
Affiliation(s)
- Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mohsin Badat
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lars L P Hanssen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Danuta M Jeziorska
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Taylor
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Doug R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Noy-Lotan S, Dgany O, Marcoux N, Atkins A, Kupfer GM, Bosques L, Gottschalk C, Steinberg-Shemer O, Motro B, Tamary H. Cdan1 Is Essential for Primitive Erythropoiesis. Front Physiol 2021; 12:685242. [PMID: 34234691 PMCID: PMC8255688 DOI: 10.3389/fphys.2021.685242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
Congenital dyserythropoietic anemia type I (CDA I) is an autosomal recessive disease characterized by moderate to severe macrocytic anemia and pathognomonic morphologic abnormalities of the erythroid precursors, including spongy heterochromatin. The disease is mainly caused by mutations in CDAN1 (encoding for Codanin-1). No patients with homozygous null type mutations have been described, and mouse null mutants die during early embryogenesis prior to the initiation of erythropoiesis. The cellular functions of Codanin-1 and the erythroid specificity of the phenotype remain elusive. To investigate the role of Codanin-1 in erythropoiesis, we crossed mice carrying the Cdan1 floxed allele (Cdanfl/fl) with mice expressing Cre-recombinase under regulation of the erythropoietin receptor promoter (ErGFPcre). The resulting CdanΔEry transgenic embryos died at mid-gestation (E12.5–E13.5) from severe anemia, with very low numbers of circulating erythroblast. Transmission electron microscopy studies of primitive erythroblasts (E9.5) revealed the pathognomonic spongy heterochromatin. The morphology of CdanΔEry primitive erythroblasts demonstrated progressive development of dyserythropoiesis. Annexin V staining showed increases in both early and late-apoptotic erythroblasts compared to controls. Flow cytometry studies using the erythroid-specific cell-surface markers CD71 and Ter119 demonstrated that CdanΔEry erythroid progenitors do not undergo the semi-synchronous maturation characteristic of primitive erythroblasts. Gene expression studies aimed to evaluate the effect of Cdan1 depletion on erythropoiesis revealed a delay of ζ to α globin switch compared to controls. We also found increased expression of Gata2, Pu.1, and Runx1, which are known to inhibit terminal erythroid differentiation. Consistent with this data, our zebrafish model showed increased gata2 expression upon cdan1 knockdown. In summary, we demonstrated for the first time that Cdan1 is required for primitive erythropoiesis, while providing two experimental models for studying the role of Codanin-1 in erythropoiesis and in the pathogenesis of CDA type I.
Collapse
Affiliation(s)
- Sharon Noy-Lotan
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Orly Dgany
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Nathaly Marcoux
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Atkins
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramt Gan, Israel
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Linette Bosques
- Department of Cell Biology, Yale School of Management, Yale University, New Haven, CT, United States
| | - Christine Gottschalk
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Orna Steinberg-Shemer
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.,The Rina Zaizov Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benny Motro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hannah Tamary
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.,The Rina Zaizov Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, Venkatesan V, Datari P, Pai AA, Janet NB, Balasubramanian P, Nakamura Y, Srivastava A, Mohankumar KM, Thangavel S, Velayudhan SR. Direct Generation of Immortalized Erythroid Progenitor Cell Lines from Peripheral Blood Mononuclear Cells. Cells 2021; 10:523. [PMID: 33804564 PMCID: PMC7999632 DOI: 10.3390/cells10030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vasanth Thamodaran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Phaneendra Datari
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Nancy Beryl Janet
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan;
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Kumarasamypet Murugesan Mohankumar
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| |
Collapse
|
11
|
Downes DJ, Beagrie RA, Gosden ME, Telenius J, Carpenter SJ, Nussbaum L, De Ornellas S, Sergeant M, Eijsbouts CQ, Schwessinger R, Kerry J, Roberts N, Shivalingam A, El-Sagheer A, Oudelaar AM, Brown T, Buckle VJ, Davies JOJ, Hughes JR. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale. Nat Commun 2021; 12:531. [PMID: 33483495 PMCID: PMC7822813 DOI: 10.1038/s41467-020-20809-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Chromosome conformation capture (3C) provides an adaptable tool for studying diverse biological questions. Current 3C methods generally provide either low-resolution interaction profiles across the entire genome, or high-resolution interaction profiles at limited numbers of loci. Due to technical limitations, generation of reproducible high-resolution interaction profiles has not been achieved at genome-wide scale. Here, to overcome this barrier, we systematically test each step of 3C and report two improvements over current methods. We show that up to 30% of reporter events generated using the popular in situ 3C method arise from ligations between two individual nuclei, but this noise can be almost entirely eliminated by isolating intact nuclei after ligation. Using Nuclear-Titrated Capture-C, we generate reproducible high-resolution genome-wide 3C interaction profiles by targeting 8055 gene promoters in erythroid cells. By pairing high-resolution 3C interaction calls with nascent gene expression we interrogate the role of promoter hubs and super-enhancers in gene regulation.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Matthew E Gosden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephanie J Carpenter
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lea Nussbaum
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sara De Ornellas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Martin Sergeant
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chris Q Eijsbouts
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jon Kerry
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Arun Shivalingam
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Afaf El-Sagheer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tom Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|