1
|
Wang L, Zhang T, Yang X, Mo Q, Ran M, Li R, Yang B, Shen H, Li Q, Li Z, Jiang N, Zeng J, Xie X, He S, Huang F, Zhang C, Luo J, Wu J. Multimodal discovery of bavachinin A: A natural FLT3 agonist for treating thrombocytopenia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156597. [PMID: 40058315 DOI: 10.1016/j.phymed.2025.156597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Radiation-induced thrombocytopenia (RIT) poses a serious risk to patients with cancer undergoing radiotherapy and leads to hemorrhage and mortality. Unfortunately, effective treatment options for RIT are currently limited. PURPOSE This study aimed to discover active compound from Fructus Psoraleae, a traditional Chinese medicine recognized for its hemostatic properties, and to elucidate its mechanism of action in the treatment of RIT. METHODS The efficacy of Fructus Psoraleae in treating thrombocytopenia was assessed using network pharmacology. A drug-screening model was built using a naive Bayes algorithm to determine the effective compounds in Fructus Psoraleae. Giemsa staining and flow cytometry were used to evaluate the effects of bavachinin A on megakaryocytes (MK) differentiation. RIT and thrombopoietin (TPO) receptor (c-MPL) knockout (c-MPL-/-) mice were used to assess the therapeutic efficacy of bavachinin A in mitigating thrombocytopenia. Tg (cd41:eGFP) zebrafish were used to investigate the effect of bavachinin A on thrombopoiesis. RNA sequencing (RNA-seq), molecular docking simulations, molecular dynamics simulations, drug affinity responsive target stability assay (DARTS), and biolayer interferometry (BLI) were used to elucidate the molecular mechanisms of action of bavachinin A against thrombocytopenia. RESULTS In silico analysis using a drug screening model identified bavachinin A as promising candidate compound derived from Fructus Psoraleae. In vitro experiments demonstrated that Bavachinin A induced MK differentiation. In vivo experiments revealed that bavachinin A augmented platelet levels and improved coagulation in RIT mice, facilitated megakaryopoiesis and platelet levels in c-MPL-/- mice, and accelerated thrombopoiesis in zebrafish. Furthermore, RNA-seq, molecular docking simulations, molecular dynamics simulations, DARTS, and BLI demonstrated that bavachinin A bound directly to fms-like tyrosine kinase 3 (FLT3). Notably, blocking FLT3 or phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway hindered bavachinin-A-induced MK differentiation. However, repressing the TPO/c-MPL signaling pathway had no significant effect. CONCLUSION Bavachinin A promotes MK differentiation and thrombopoiesis by directly binding to FLT3 and activating PI3K/Akt signaling. Importantly, this effect was not dependent on the conventional TPO/c-MPL signaling pathway. This study underscores the translational potential of bavachinin A as a promising novel therapeutic for thrombocytopenia, offering novel insights into TPO-independent mechanisms of thrombopoiesis and establishing a robust multimodal approach for drug discovery.
Collapse
Affiliation(s)
- Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qi Mo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Mei Ran
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Rong Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bo Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qinyao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhichao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiang Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Siyu He
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chunxiang Zhang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Ma J, Hu Y, Dong S, Meng J, Wang Z, Ouyang J, Lin Z, Cheng X, Chen Z, Wu R. Therapeutic potential of roxadustat in immune thrombocytopenia: a Mendelian randomization analysis. J Thromb Haemost 2025; 23:1442-1451. [PMID: 39756656 DOI: 10.1016/j.jtha.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is characterized by immune-mediated platelet destruction and impaired megakaryocyte maturation. Hypoxia-inducible factor-1α (HIF-1α), pivotal in the development of megakaryocytes and immune regulation, is downregulated in ITP. Roxadustat, which stabilizes HIF-1α, has emerged as a potential therapeutic drug for ITP that acts by enhancing HIF-1α-mediated megakaryocyte development and modulating immune responses. OBJECTIVES This study evaluates the safety profile of roxadustat and its therapeutic efficacy for ITP treatment using Mendelian randomization (MR) analysis. METHODS We used expression quantitative trait loci data for roxadustat's target genes (EGLN1, EGLN2, and EGLN3) and genetic associations with ITP and adverse outcomes from the Open Genome-Wide Association Study project. MR analysis included inverse-variance weighted, MR-Egger regression, weighted median, and MR pleiotropy residual sum and outlier methods to evaluate pleiotropy. Heterogeneity was assessed using Cochran's Q statistic and I2 measure with sensitivity analyses. A meta-analysis was performed to integrate effect sizes from multiple literature sources. RESULTS MR analysis revealed a significant association between roxadustat and reduced ITP risk (odds ratio, 0.79; 95% CI, 0.66-0.95; P = .01) with no evidence of horizontal pleiotropy. Meta-analysis confirmed the protective effect of roxadustat on ITP. Utilizing the expression quantitative trait loci of roxadustat's target gene EGLN1 as instrumental variables, an MR analysis of 39 potential adverse reactions revealed no significant increase, suggesting a favorable safety profile for roxadustat. CONCLUSION Roxadustat demonstrates a potential protective effect against ITP without increasing the risk of adverse outcomes, suggesting its promise as a therapeutic option for ITP and warranting further investigation.
Collapse
MESH Headings
- Humans
- Mendelian Randomization Analysis
- Glycine/analogs & derivatives
- Glycine/therapeutic use
- Glycine/adverse effects
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Purpura, Thrombocytopenic, Idiopathic/blood
- Isoquinolines/therapeutic use
- Isoquinolines/adverse effects
- Treatment Outcome
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Quantitative Trait Loci
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Phenotype
- Polymorphism, Single Nucleotide
- Pharmacogenomic Variants
Collapse
Affiliation(s)
- Jingyao Ma
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yu Hu
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuyue Dong
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jinxi Meng
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhifa Wang
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Juntao Ouyang
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zheyan Lin
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoling Cheng
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhenping Chen
- Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Runhui Wu
- Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
3
|
Zeng Y, Li C, Yang F, Zhang L, Xu W, Wang L, Wu A, Zou W, Wu J, Huang F. Sheng Xue Ning as a Novel Agent that Promotes SCF-Driven Hematopoietic Stem/Progenitor Cell Proliferation to Promote Erythropoiesis. Biomolecules 2024; 14:1147. [PMID: 39334913 PMCID: PMC11429878 DOI: 10.3390/biom14091147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia, renal anemia, and anemia in pregnancy. This research reports a novel effect of SXN in enhancing the proliferation of hematopoietic stem/progenitor cell (HSPC) to promote erythropoiesis in the bone marrow, which is distinct from conventional iron supplements that primarily aid in the maturation of red blood cells. Employing a model of hematopoietic dysfunction induced by X-ray exposure, we evaluated the efficacy of SXN in restoring hematopoietic function. SXN significantly promoted the recovery of peripheral erythroid cells and enhanced the proliferation and differentiation of Lin-/c-KIT+/Sca-1+ HSPC in mice exposed to X-ray irradiation. Our results showed that SXN elevated the expression of stem cell factor (SCF) and activated the SCF/c-KIT/PI3K/AKT signaling pathway, facilitating the proliferation and differentiation of HSPC. In vitro, SXN markedly enhanced the proliferation of bone marrow nucleated cell (BMNC) and the colony-forming capacity of BFU-E, CFU-E, and CFU-GM, while also elevating the expression of proteins involved in the SCF/c-KIT/PI3K/AKT pathway in BMNC. Additionally, SXN enhanced the proliferation and differentiation of mesenchymal stem cell (MSC) and increased SCF secretion. In conclusion, SXN demonstrates the capacity to enhance erythropoiesis by upregulating SCF expression, thereby promoting HSPC proliferation and differentiation via the SCF/c-KIT/PI3K/AKT pathway. SXN may offer a new strategy for improving the activity of HSPC and promoting erythropoiesis in the treatment of hematopoiesis disorders.
Collapse
Affiliation(s)
- Yueying Zeng
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chunlu Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Yang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wanqi Xu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
Yang Y, Gan W, Lin L, Wang L, Wu J, Luo J. Identification of Active Molecules against Thrombocytopenia through Machine Learning. J Chem Inf Model 2024; 64:6506-6520. [PMID: 39109515 DOI: 10.1021/acs.jcim.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Thrombocytopenia, which is associated with thrombopoietin (TPO) deficiency, presents very limited treatment options and can lead to life-threatening complications. Discovering new therapeutic agents against thrombocytopenia has proven to be a challenging task using traditional screening approaches. Fortunately, machine learning (ML) techniques offer a rapid avenue for exploring chemical space, thereby increasing the likelihood of uncovering new drug candidates. In this study, we focused on computational modeling for drug-induced megakaryocyte differentiation and platelet production using ML methods, aiming to gain insights into the structural characteristics of hematopoietic activity. We developed 112 different classifiers by combining eight ML algorithms with 14 molecule features. The top-performing model achieved good results on both 5-fold cross-validation (with an accuracy of 81.6% and MCC value of 0.589) and external validation (with an accuracy of 83.1% and MCC value of 0.642). Additionally, by leveraging the Shapley additive explanations method, the best model provided quantitative assessments of molecular properties and structures that significantly contributed to the predictions. Furthermore, we employed an ensemble strategy to integrate predictions from multiple models and performed in silico predictions for new molecules with potential activity against thrombocytopenia, sourced from traditional Chinese medicine and the Drug Repurposing Hub. The findings of this study could offer valuable insights into the structural characteristics and computational prediction of thrombopoiesis inducers.
Collapse
Affiliation(s)
- Youyou Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wenli Gan
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lei Lin
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Basic Medical College, Southwest Medical University, Luzhou 646000, China
| | - Jiesi Luo
- Basic Medical College, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
5
|
Zhou L, Ni C, Liao R, Tang X, Yi T, Ran M, Huang M, Liao R, Zhou X, Qin D, Wang L, Huang F, Xie X, Wan Y, Luo J, Wang Y, Wu J. Activating SRC/MAPK signaling via 5-HT1A receptor contributes to the effect of vilazodone on improving thrombocytopenia. eLife 2024; 13:RP94765. [PMID: 38573820 PMCID: PMC10994662 DOI: 10.7554/elife.94765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.
Collapse
Affiliation(s)
- Ling Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Chengyang Ni
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Taian Yi
- School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Mei Ran
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiang Xie
- School of Basic Medical Sciences, Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical UniversityLuzhouChina
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
6
|
Tang X, Liao R, Zhou L, Yi T, Ran M, Luo J, Huang F, Wu A, Mei Q, Wang L, Huang X, Wu J. Genistin: A Novel Estrogen Analogue Targeting ERβ to Alleviate Thrombocytopenia. Int J Biol Sci 2024; 20:2236-2260. [PMID: 38617546 PMCID: PMC11008259 DOI: 10.7150/ijbs.90483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024] Open
Abstract
Thrombocytopenia, a prevalent hematologic challenge, correlates directly with the mortality of numerous ailments. Current therapeutic avenues for thrombocytopenia are not without limitations. Here, we identify genistin, an estrogen analogue, as a promising candidate for thrombocytopenia intervention, discovered through AI-driven compound library screening. While estrogen's involvement in diverse biological processes is recognized, its role in thrombopoiesis remains underexplored. Our findings elucidate genistin's ability to enhance megakaryocyte differentiation, thereby augmenting platelet formation and production. In vivo assessments further underscore genistin's remedial potential against radiation-induced thrombocytopenia. Mechanistically, genistin's efficacy is attributed to its direct interaction with estrogen receptor β (ERβ), with subsequent activation of both ERK1/2 and the Akt signaling pathways membrane ERβ. Collectively, our study positions genistin as a prospective therapeutic strategy for thrombocytopenia, shedding light on novel interplays between platelet production and ERβ.
Collapse
Affiliation(s)
- Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Taian Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Ran
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Qibing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Xinwu Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Liu Y, Zhang L, Wang L, Tang X, Wan S, Huang Q, Ran M, Shen H, Yang Y, Chiampanichayakul S, Tima S, Anuchapreeda S, Wu J. Targeting CD38/ ADP-ribosyl cyclase as a novel therapeutic strategy for identification of three potent agonists for leukopenia treatment. Pharmacol Res 2024; 200:107068. [PMID: 38232908 DOI: 10.1016/j.phrs.2024.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Leukopenia is the most common side effect of chemotherapy and radiotherapy. It potentially deteriorates into a life-threatening complication in cancer patients. Despite several agents being approved for clinical administration, there are still high incidences of pathogen-related disease due to a lack of functional immune cells. ADP-ribosyl cyclase of CD38 displays a regulatory effect on leukopoiesis and the immune system. To explore whether the ADP-ribosyl cyclase was a potential therapeutic target of leukopenia. We established a drug screening model based on an ADP-ribosyl cyclase-based pharmacophore generation algorithm and discovered three novel ADP-ribosyl cyclase agonists: ziyuglycoside II (ZGSII), brevifolincarboxylic acid (BA), and 3,4-dihydroxy-5-methoxybenzoic acid (DMA). Then, in vitro experiments demonstrated that these three natural compounds significantly promoted myeloid differentiation and antibacterial activity in NB4 cells. In vivo, experiments confirmed that the compounds also stimulated the recovery of leukocytes in irradiation-induced mice and zebrafish. The mechanism was investigated by network pharmacology, and the top 12 biological processes and the top 20 signaling pathways were obtained by intersecting target genes among ZGSII, BA, DMA, and leukopenia. The potential signaling molecules involved were further explored through experiments. Finally, the ADP-ribosyl cyclase agonists (ZGSII, BA, and DMA) has been found to regenerate microbicidal myeloid cells to effectively ameliorate leukopenia-associated infection by activating CD38/ADP-ribosyl cyclase-Ca2+-NFAT. In summary, this study constructs a drug screening model to discover active compounds against leukopenia, reveals the critical roles of ADP-ribosyl cyclase in promoting myeloid differentiation and the immune response, and provides a promising strategy for the treatment of radiation-induced leukopenia.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongping Shen
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Yang
- Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sawitree Chiampanichayakul
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|