1
|
Adami R, Pezzotta M, Cadile F, Cuniolo B, Rovati G, Canepari M, Bottai D. Physiological Features of the Neural Stem Cells Obtained from an Animal Model of Spinal Muscular Atrophy and Their Response to Antioxidant Curcumin. Int J Mol Sci 2024; 25:8364. [PMID: 39125934 PMCID: PMC11313061 DOI: 10.3390/ijms25158364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules.
Collapse
Affiliation(s)
- Raffaella Adami
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Matteo Pezzotta
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Francesca Cadile
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (F.C.); (M.C.)
| | - Beatrice Cuniolo
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Gianenrico Rovati
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Monica Canepari
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (F.C.); (M.C.)
| | - Daniele Bottai
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| |
Collapse
|
2
|
Barreiro-Sisto U, Fernández-Fariña S, González-Noya AM, Pedrido R, Maneiro M. Enemies or Allies? Hormetic and Apparent Non-Dose-Dependent Effects of Natural Bioactive Antioxidants in the Treatment of Inflammation. Int J Mol Sci 2024; 25:1892. [PMID: 38339170 PMCID: PMC10855620 DOI: 10.3390/ijms25031892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.
Collapse
Affiliation(s)
- Uxía Barreiro-Sisto
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| |
Collapse
|
3
|
Li J, Luo W, Xiao C, Zhao J, Xiang C, Liu W, Gu R. Recent advances in endogenous neural stem/progenitor cell manipulation for spinal cord injury repair. Theranostics 2023; 13:3966-3987. [PMID: 37554275 PMCID: PMC10405838 DOI: 10.7150/thno.84133] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) can cause severe neurological impairments. Clinically available treatments are quite limited, with unsatisfactory remediation effects. Residing endogenous neural stem/progenitor cells (eNSPCs) tend to differentiate towards astrocytes, leaving only a small fraction towards oligodendrocytes and even fewer towards neurons; this has been suggested as one of the reasons for the failure of autonomous neuronal regeneration. Thus, finding ways to recruit and facilitate the differentiation of eNSPCs towards neurons has been considered a promising strategy for the noninvasive and immune-compatible treatment of SCI. The present manuscript first introduces the responses of eNSPCs after exogenous interventions to boost endogenous neurogenesis in various SCI models. Then, we focus on state-of-art manipulation approaches that enhance the intrinsic neurogenesis capacity and reconstruct the hostile microenvironment, mainly consisting of pharmacological treatments, stem cell-derived exosome administration, gene therapy, functional scaffold implantation, inflammation regulation, and inhibitory element delineation. Facing the extremely complex situation of SCI, combined treatments are also highlighted to provide more clues for future relevant investigations.
Collapse
Affiliation(s)
- Jincheng Li
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jianhui Zhao
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunyu Xiang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| |
Collapse
|
4
|
Su X, Jing X, Jiang W, Li M, Liu K, Teng M, Wang D, Meng L, Zhang Y, Ji W. Curcumin-Containing Polyphosphazene Nanodrug for Anti-Inflammation and Nerve Regeneration to Improve Functional Recovery After Spinal Cord Injury. Int J Pharm 2023:123197. [PMID: 37406950 DOI: 10.1016/j.ijpharm.2023.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
The microenvironment of excessive inflammation and the activation of apoptotic signals are primary barriers to neurological recovery following spinal cord injury (SCI). Thus, long-lasting anti-inflammation has become an effective strategy to navigate SCI. Herein, a curcumin (CUR)-containing nanosystem (FCTHPC) with high drug loading efficiency was reported via assembling hydrophobic CUR into cross-linked polyphosphazene (PPZ), and simultaneous loading and coordinating with porous bimetallic polymers for greatly enhanced the water-solubility and biocompatibility of CUR. The nanosystem is noncytotoxic when directing its biological activities. By inhibiting the expression of pro-inflammatory factors (IL-1β, TNF-α and IL-6) and apoptotic proteins (C-caspase-3 and Bax/Bcl-2), which may be accomplished by activating the Wnt/β-catenin pathway, the versatile FCTHPC can significantly alleviate the damage to tissues and cells caused by inflammation and apoptosis in the early stage of SCI. In addition, the long-term in vivo studies had demonstrated that FCTHPC could effectively inhibit the formation of glial scars, and simultaneously promote nerve regeneration and myelination, leading to significant recovery of spinal cord function. This study emphasises the promise of the biocompatible CUR-based nanosystem and provides a fresh approach to effectively treat SCI.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xunan Jing
- Department of Talent Highland, Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Wanting Jiang
- Department of Ultrasound Diagnosis, The Fourth Hospital of Xi'an, Xi'an People's Hospital, Xi'an, 710004, P. R. China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Kai Liu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China; School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China; Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| |
Collapse
|
5
|
Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 2023; 31:243-260. [PMID: 36305097 DOI: 10.1080/1061186x.2022.2141755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Curcumin from turmeric is a natural phenolic compound with a promising potential to regulate fundamental processes involved in neurological diseases, including inflammation, oxidative stress, protein aggregation, and apoptosis at the molecular level. In this regard, employing nanoformulation can improve curcumin efficiency by reducing its limitations, such as low bioavailability. Besides curcumin, growing data suggest that stem cells are a noteworthy candidate for neurodegenerative disorders therapy due to their anti-inflammatory, anti-oxidative, and neuronal-differentiation properties, which result in neuroprotection. Curcumin and stem cells have similar neurogenic features and can be co-administered in a cell-drug delivery system to achieve better combination therapeutic outcomes for neurological diseases. Based on the evidence, curcumin can induce the neuroprotective activity of stem cells by modulating their related signalling pathways. The present review is about the role of curcumin and its nanoformulations in the improvement of neurological diseases alone and through the effect on different categories of stem cells by discussing the underlying mechanisms to provide a roadmap for future investigations.
Collapse
Affiliation(s)
- Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Palizban
- Semnan Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Lee S, Cho DC, Han I, Kim KT. Curcumin as a Promising Neuroprotective Agent for the Treatment of Spinal Cord Injury: A Review of the Literature. Neurospine 2022; 19:249-261. [PMID: 35793928 PMCID: PMC9260551 DOI: 10.14245/ns.2244148.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Curcumin is a polyphenolic chemical derived from the rhizomes of Curcuma longa. It has been used throughout the Indian subcontinent for medicinal purposes, religious events, and regional cuisine. It has various pharmacological benefits owing to its anti-inflammatory and antioxidant properties. Its neuroprotective effects on the brain and peripheral nerves have been demonstrated in several in vivo neuronal tissue studies. Because of these functional properties of curcumin, it is considered to have great potential for use in the treatment of spinal cord injuries (SCIs). Numerous immunopathological and biochemical studies have reported that curcumin can help prevent and alleviate subsequent secondary injuries, such as inflammation, edema, free radical damage, fibrosis, and glial scarring, after a primary SCI. Furthermore, following SCI, curcumin administration resulted in better outcomes of neurological function recovery as per the Basso, Beattie, and Bresnahan locomotor rating scale. However, to date, its utility in treating SCIs has only been reported in laboratories. More studies on its clinical applications are needed in the future for ensuring its bioavailability across the blood-brain barrier and for verifying the safe dose for treating SCIs in humans.
Collapse
Affiliation(s)
- Subum Lee
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Dae-Chul Cho
- Department of Neurosurgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
7
|
Calabrese EJ, Calabrese V, Dhawan G, Kapoor R, Giordano J. Hormesis and neural stem cells. Free Radic Biol Med 2022; 178:314-329. [PMID: 34871764 DOI: 10.1016/j.freeradbiomed.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
This paper provides a detailed identification and assessment of hormetic dose responses in neural stem cells (NSCs) as identified in a number of animal models and human tissues, with particular emphasis on cell proliferation and differentiation. Hormetic dose responses were commonly observed following administration of a number of agents, including dietary supplements [e.g., berberine, curcumin, (-)-epigallocatechin-3-gallate (EGCG), Ginkgo Biloba, resveratrol], pharmaceuticals (e.g., lithium, lovastatin, melatonin), endogenous ligands [e.g., hydrogen sulfide (H2S), magnesium, progesterone, taurine], environmental contaminants (e.g., arsenic, rotenone) and physical agents [e.g., hypoxia, ionizing radiation, electromagnetic radiation (EMF)]. These data indicate that numerous agents can induce hormetic dose responses to upregulate key functions of such as cell proliferation and differentiation in NSCs, and enhance resilience to inflammatory stresses. The paper assesses both putative mechanisms of hormetic responses in NSCs, and the potential therapeutic implications and application(s) of hormetic frameworks in clinical approaches to neurological injury and disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts; Amherst, MA, 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia, 97 - 95125, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - James Giordano
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington DC, 20007, USA.
| |
Collapse
|
8
|
Wang J, Hu J, Chen X, Lei X, Feng H, Wan F, Tan L. Traditional Chinese Medicine Monomers: Novel Strategy for Endogenous Neural Stem Cells Activation After Stroke. Front Cell Neurosci 2021; 15:628115. [PMID: 33716673 PMCID: PMC7952516 DOI: 10.3389/fncel.2021.628115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy, which has become a potential regenerative medical treatment and a promising approach for treating brain injuries induced by different types of cerebrovascular disease, has various application methods. Activation of endogenous neural stem cells (NSCs) can enable infarcted neuron replacement and promote neural networks’ regeneration without the technical and ethical issues associated with the transplantation of exogenous stem cells. Thus, NSC activation can be a feasible strategy to treat central nervous system (CNS) injury. The potential molecular mechanisms of drug therapy for the activation of endogenous NSCs have gradually been revealed by researchers. Traditional Chinese medicine monomers (TCMs) are active components extracted from Chinese herbs, and some of them have demonstrated the potential to activate proliferation and neurogenesis of NSCs in CNS diseases. Ginsenoside Rg1, astragaloside IV (AST), icariin (ICA), salvianolic acid B (Sal B), resveratrol (RES), curcumin, artesunate (ART), and ginkgolide B (GB) have positive effects on NSCs via different signaling pathways and molecules, such as the Wingless/integrated/β-catenin (Wnt/β-catenin) signaling pathway, the sonic hedgehog (Shh) signaling pathway, brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). This article may provide further motivation for researchers to take advantage of TCMs in studies on CNS injury and stem cell therapy.
Collapse
Affiliation(s)
- Ju Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
9
|
Attari F, Ghadiri T, Hashemi M. Combination of curcumin with autologous transplantation of adult neural stem/progenitor cells leads to more efficient repair of damaged cerebral tissue of rat. Exp Physiol 2020; 105:1610-1622. [PMID: 32627273 DOI: 10.1113/ep088697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can the neuroprotective agent curcumin affect restorative action of neural stem/progenitor cells in the injured rat brain? What is the main finding and its importance? In the presence of curcumin, transplantation of neural stem/progenitor cells in the context of PuraMatrix reduced lesion size and reactive inflammatory responses, and boosted survival rate of grafted neurons. In addition it improved the neurological status of injured animals. This could be beneficial in designing new therapeutic approaches for brain injury based on this combination therapy. ABSTRACT Traumatic brain injury (TBI) is catastrophic neurological damage associated with substantial morbidity and mortality. To date, there is no specific treatment for restoring lost brain tissue. In light of the complex pathology of brain injury, the present study evaluated the effects of combination therapy using autologous neural stem/progenitor cells (NS/PCs), PuraMatrix (PM) and curcumin in an animal model of brain injury. After stereotactic biopsy of subventricular zone tissue and culture of NS/PCs, 36 male Wistar rats (150-200 g) were randomly divided into six groups receiving dimethyl sulfoxide (DMSO), curcumin (100 mg kg-1 in DMSO), PM + curcumin (100 mg kg-1 in DMSO), NS/PCs + curcumin (100 mg kg-1 in DMSO), NS/PCs + PM + curcumin (100 mg kg-1 in DMSO) and NS/PCs + PM + curcumin (1 µm) following acute brain injury. The animals were evaluated in term of neurological status for 4 weeks, then decapitated. Nissl and TUNEL staining and immunohistochemistry for bromodeoxyuridine, glial fibrillary acidic protein, doublecortin, Map2, Olig2, Iba1 and CD68 were performed. We found that combination therapy by NS/PCs + PM + curcumin reduced the lesion size, astrogliosis, macrophage and microglial reaction as well as the number of apoptotic cells. Moreover, the transplanted cells were able to survive and differentiate after 4 weeks. Besides these findings, transplantation of NS/PCs in the context of PM and curcumin improved the neurological status of injured animals. In conclusion, our data suggest that this combination therapy can be beneficial in developing future therapeutic approaches for brain injury.
Collapse
Affiliation(s)
- Fatemeh Attari
- Department of Neuroscience, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mansoureh Hashemi
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Heidari S, Mahdiani S, Hashemi M, Kalalinia F. Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells. Biotechnol Appl Biochem 2020; 67:430-441. [PMID: 31978939 DOI: 10.1002/bab.1891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Curcumin is extensively used in the prevention and treatment of various diseases. Recently, growing attention has been paid to the use of curcumin as a neurogenic and neuroprotective agent. This review study is aimed to collect and categorize the recent findings regarding the effects of curcumin on various neurological diseases through the induction of neural stem cell proliferation and differentiation. In addition, we have discussed the molecular mechanisms modulated by curcumin that contribute to this efficacy and have summarized the recent advancements in the novel delivery strategies used to improve the induction of neural stem cells by curcumin.
Collapse
Affiliation(s)
- Shadi Heidari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Concetta Scuto M, Mancuso C, Tomasello B, Laura Ontario M, Cavallaro A, Frasca F, Maiolino L, Trovato Salinaro A, Calabrese EJ, Calabrese V. Curcumin, Hormesis and the Nervous System. Nutrients 2019; 11:2417. [PMID: 31658697 PMCID: PMC6835324 DOI: 10.3390/nu11102417] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Curcumin is a polyphenol compound extracted from the rhizome of Curcuma longa Linn (family Zingiberaceae) commonly used as a spice to color and flavor food. Several preclinical studies have suggested beneficial roles for curcumin as an adjuvant therapy in free radical-based diseases, mainly neurodegenerative disorders. Indeed, curcumin belongs to the family of hormetins and the enhancement of the cell stress response, mainly the heme oxygenase-1 system, is actually considered the common denominator for this dual response. However, evidence-based medicine has clearly demonstrated the lack of any therapeutic effect of curcumin to contrast the onset or progression of neurodegeneration and related diseases. Finally, the curcumin safety profile imposes a careful analysis of the risk/benefit balance prior to proposing chronic supplementation with curcumin.
Collapse
Affiliation(s)
- Maria Concetta Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
- Institute of Pharmacology, Catholic University of Sacred Heart, 00168 Roma, Italy.
| | - Barbara Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Andrea Cavallaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Francesco Frasca
- Department of Clinical and experimental Medicine, Division of Endocrinology, University of Catania, 95125 Catania, Italy.
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, 95125 Catania, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| |
Collapse
|
12
|
Feng X, Zhang G, Feng D, Jia X, Zhou Q. Spinal cord extracts from injured spinal cord impede differentiation of rat embryonic neural stem cells into neurons through regulating Notch signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3855-3861. [PMID: 31933774 PMCID: PMC6949741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
SCI (spinal cord injury) is a complex and serious neurological disease with no efficient treatment. NSC (neural stem cells) have the potential for self-renewal, proliferation and differentiation into all types of nerve cells. The aim of our study is to evaluate the effect of SCE (spinal cord extracts) from injured spinal cord on the differentiation of rat embryonic NSC and to clarify its potential mechanism. Here, NSC were isolated and cultured with SCE. The experiments were divided into four groups, including NSC + sham, NSC + SCE, NSC + SCE + DMSO (dimethyl sulfoxide), NSC + SCE + DAPT (N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-Phenyl-glycinet-butylester). The Notch1 (notch receptor 1) and Hes1 (hes family bHLH transcription factor 1) mRNA expression was analyzed by qPCR (quantitative real-time PCR) analysis. The protein expression levels of GFAP (glial fibrillary acidic protein) and NSE (nestin) were evaluated by immunofluorescence staining. Cell differentiation of NSC was induced by using neurobasal medium. The results showed that the NSC were successfully identified, and could proliferate to form spherical aggregates and was passaged continuously and steadily in vitro. The NSC at fifth generation were positively stained with NSE, and was capable of differentiating into NSE-positive cells and GFAP-positive cells. SCE treatment could upregulate the mRNA expression levels of Notch1 and Hes1, but inhibited the differentiation of NSC into neurons. DAPT could down-regulate the mRNA expression of Notch1 and Hes1 in NSC. Mechanically, DAPT targeting Notch signal pathway could facilitate NSC differentiation into neurons. Together, our data highlighted that SCE suppresses the differentiation of rat embryonic NSC by regulating the Notch signaling pathway, and DAPT treatment can reverse the effect of SCE related differentiation.
Collapse
Affiliation(s)
- Xiaolan Feng
- Department of Radiology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan Province, China
| | - Ge Zhang
- Department of Orthopaedics, The Peoples’ Hospital of Luzhou CityLuzhou, Sichuan Province, China
| | - Daxiong Feng
- Department of Spine Surgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan Province, China
| | - Xufeng Jia
- Department of Orthopaedics, The Peoples’ Hospital of Jianyang CityJianyang, Sichuan Province, China
| | - Qingzhong Zhou
- Department of Spine Surgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan Province, China
| |
Collapse
|
13
|
Krupa P, Svobodova B, Dubisova J, Kubinova S, Jendelova P, Machova Urdzikova L. Nano-formulated curcumin (Lipodisq™) modulates the local inflammatory response, reduces glial scar and preserves the white matter after spinal cord injury in rats. Neuropharmacology 2019; 155:54-64. [DOI: 10.1016/j.neuropharm.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
14
|
Sharifi S, Zununi Vahed S, Ahmadian E, Maleki Dizaj S, Abedi A, Hosseiniyan Khatibi SM, Samiei M. Stem Cell Therapy: Curcumin Does the Trick. Phytother Res 2019; 33:2927-2937. [DOI: 10.1002/ptr.6482] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research CenterTabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Ahmadian
- Kidney Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Atefeh Abedi
- Faculty of DentistryTabriz University of Medical Sciences Tabriz Iran
| | | | - Mohammad Samiei
- Faculty of DentistryTabriz University of Medical Sciences Tabriz Iran
- Stem Cell Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
15
|
Calabrese EJ, Dhawan G, Kapoor R, Mattson MP, Rattan SIS. Curcumin and hormesis with particular emphasis on neural cells. Food Chem Toxicol 2019; 129:399-404. [DOI: 10.1016/j.fct.2019.04.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/19/2022]
|
16
|
Moghaddam NSA, Oskouie MN, Butler AE, Petit PX, Barreto GE, Sahebkar A. Hormetic effects of curcumin: What is the evidence? J Cell Physiol 2018; 234:10060-10071. [PMID: 30515809 DOI: 10.1002/jcp.27880] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
Curcumin (diferuloylmethane), a component of the yellow powder prepared from the roots of Curcuma longa or Zingiberaceae (known as turmeric) is not only widely used to color and flavor food but also used as a pharmaceutical agent. Curcumin demonstrates anti-inflammatory, anticarcinogenic, antiaging, and antioxidant activity, as well as efficacy in wound healing. Notably, curcumin is a hormetic agent (hormetin), as it is stimulatory at low doses and inhibitory at high doses. Hormesis by curcumin could be also a particular function at low doses (i.e., antioxidant behavior) and another function at high dose (i.e., induction of autophagy and cell death). Recent findings suggest that curcumin exhibits biphasic dose-responses on cells, with low doses having stronger effects than high doses; examples being activation of the mitogen-activated protein kinase signaling pathway or antioxidant activity. This indicates that many effects induced by curcumin are dependent on dose and some effects might be greater at lower doses, indicative of a hormetic response. Despite the consistent occurrence of hormetic responses of curcumin in a wide range of biomedical models, epidemiological and clinical trials are needed to assess the nature of curcumin's dose-response in humans. Fortunately, more than one hundred clinical trials with curcumin and curcumin derivatives are ongoing. In this review, we provide the first comprehensive analysis supportive of the hormetic behavior of curcumin and curcumin derivatives.
Collapse
Affiliation(s)
| | - Mohammad Nosrati Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Patrice X Petit
- CNRS FR3636 Institut de Neurosciences "Mitochondria, Apoptosis and Autophagy Signalling," Université Paris-Descartes, Paris, France
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Ma XX, Liu J, Wang CM, Zhou JP, He ZZ, Lin H. Low-dose curcumin stimulates proliferation of rat embryonic neural stem cells through glucocorticoid receptor and STAT3. CNS Neurosci Ther 2018. [PMID: 29529355 DOI: 10.1111/cns.12843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS This study was to determine whether curcumin had any effect on the proliferation of neural stem cell (NSC), analyze the expression of glucocorticoid receptor (GR), signal transducer and activator of transcription 3 (STAT3), and Notch1 at transcription and protein level, and discuss the related mechanisms. METHODS AND RESULTS NSCs were harvested from E15 SD rat brain and cultured. All experiments were performed at the second passage. Cell cytotoxicity, cell viability, and proliferation assays were used to figure out the optimal concentration of curcumin, which can be used for the protein and mRNA studies. The results showed that by downregulation of GR and STAT3 expression, 0.5 μmol L-1 curcumin exhibited the most pronounced effect in promoting the proliferation of NSCs, which were also induced by antagonists of GR and STAT3, but was inhibited by GR agonist. CONCLUSION This study shows that low-dose curcumin stimulates the proliferation of NSCs, which is probably by inhibiting the mRNA and protein expressions of GR and directly or indirectly regulating the STAT3 via the synergistic effect of GR and STAT3 pathways and its related signal pathways.
Collapse
Affiliation(s)
- Xiao-Xiao Ma
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Liu
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Man Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Ping Zhou
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen-Zhou He
- Department of Anesthesiology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Han Lin
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Ruzicka J, Urdzikova LM, Svobodova B, Amin AG, Karova K, Dubisova J, Zaviskova K, Kubinova S, Schmidt M, Jhanwar-Uniyal M, Jendelova P. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury? Neural Regen Res 2018; 13:119-127. [PMID: 29451216 PMCID: PMC5840977 DOI: 10.4103/1673-5374.224379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systematic inflammatory response after spinal cord injury (SCI) is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG) are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg)] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg)] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB) open-field locomotor test, flat beam test). Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining) and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43). Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES) were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf) related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.
Collapse
Affiliation(s)
- Jiri Ruzicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská, Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská, Prague, Czech Republic
| | - Barbora Svobodova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | | | - Kristyna Karova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Jana Dubisova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Kristyna Zaviskova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská, Prague, Czech Republic
| | | | | | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
19
|
Bang WS, Kim KT, Seo YJ, Cho DC, Sung JK, Kim CH. Curcumin Increase the Expression of Neural Stem/Progenitor Cells and Improves Functional Recovery after Spinal Cord Injury. J Korean Neurosurg Soc 2017; 61:10-18. [PMID: 29354231 PMCID: PMC5769840 DOI: 10.3340/jkns.2017.0203.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/12/2017] [Accepted: 05/31/2017] [Indexed: 12/03/2022] Open
Abstract
Objective To investigates the effect of curcumin on proliferation of spinal cord neural stem/progenitor cells (SC-NSPCs) and functional outcome in a rat spinal cord injury (SCI) model. Methods Sixty adult male Sprague-Dawley rats were randomly and blindly allocated into three groups (sham control group; curcumin treated group after SCI; vehicle treated group after SCI). Functional recovery was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale during 6 weeks after SCI. The expression of SC-NSPC proliferation and astrogliosis were analyzed by nestin/Bromodeoxyuridine (BrdU) and Glial fibrillary acidic protein (GFAP) staining. The injured spinal cord was then examined histologically, including quantification of cavitation. Results The BBB score of the SCI-curcumin group was better than that of SCI-vehicle group up to 14 days (p<0.05). The co-immunoreactivity of nestin/BrdU in the SCI-curcumin group was much higher than that of the SCI-vehicle group 1 week after surgery (p<0.05). The GFAP immunoreactivity of the SCI-curcumin group was remarkably lower than that of the SCI-vehicle group 4 weeks after surgery (p<0.05). The lesion cavity was significantly reduced in the curcumin group as compared to the control group (p<0.05). Conclusion These results indicate that curcumin could increase the expression of SC-NSPCs, and reduce the activity of reactive astrogliosis and lesion cavity. Consequently curcumin could improve the functional recovery after SCI via SC-NSPC properties.
Collapse
Affiliation(s)
- Woo-Seok Bang
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
| | - Ye Jin Seo
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
| | - Dae-Chul Cho
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
| | - Joo-Kyung Sung
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
20
|
Mouthuy PA, Somogyi Škoc M, Čipak Gašparović A, Milković L, Carr AJ, Žarković N. Investigating the use of curcumin-loaded electrospun filaments for soft tissue repair applications. Int J Nanomedicine 2017; 12:3977-3991. [PMID: 28579781 PMCID: PMC5449166 DOI: 10.2147/ijn.s133326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Electrospun filaments represent a new generation of medical textiles with promising applications in soft tissue repair. A potential strategy to improve their design is to combine them with bioactive molecules. Curcumin, a natural compound found in turmeric, is particularly attractive for its antioxidant, anti-inflammatory, and antimicrobial properties. However, investigating the range of relevant doses of curcumin in materials designed for tissue regeneration has remained limited. In this paper, a wide range of curcumin concentrations was explored and the potential of the resulting materials for soft tissue repair applications was assessed. Polydioxanone (PDO) filaments were prepared with various amounts of curcumin: 0%, 0.001%, 0.01%, 0.1%, 1%, and 10% (weight to weight ratio). The results from the present study showed that, at low doses (≤0.1%), the addition of curcumin has no influence on the spinning process or on the physicochemical properties of the filaments, whereas higher doses lead to smaller fiber diameters and improved mechanical properties. Moreover, filaments with 0.001% and 0.01% curcumin stimulate the metabolic activity and proliferation of normal human dermal fibroblasts (NHDFs) compared with the no-filament control. However, this stimulation is not significant when compared to the control filaments (0%). Highly dosed filaments induce either the inhibition of proliferation (with 1%) or cell apoptosis (with 10%) as a result of the concentrations of curcumin found in the medium (9 and 32 μM, respectively), which are near or above the known toxicity threshold of curcumin (~10 μM). Moreover, filaments with 10% curcumin increase the catalase activity and glutathione content in NHDFs, indicating an increased production of reactive oxygen species resulting from the large concentration of curcumin. Overall, this study suggested that PDO electrospun filaments loaded with low amounts of curcumin are more promising compared with higher concentrations for stimulating tissue repair. This study also highlighted the need to explore lower concentrations when using polymers as PDO, such as those with polycaprolactone and other degradable polyesters.
Collapse
Affiliation(s)
- Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia.,Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Science Division, University of Oxford, Oxford, UK
| | - Maja Somogyi Škoc
- Department of Materials, Fibres and Textile Testing, University of Zagreb, Zagreb, Croatia
| | | | - Lidija Milković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Science Division, University of Oxford, Oxford, UK
| | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
21
|
Wang Y, Gao S, Wang W, Liang J. Temozolomide inhibits cellular growth and motility via targeting ERK signaling in glioma C6 cells. Mol Med Rep 2016; 14:5732-5738. [DOI: 10.3892/mmr.2016.5964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/08/2016] [Indexed: 11/06/2022] Open
|
22
|
The Potential of Curcumin in Treatment of Spinal Cord Injury. Neurol Res Int 2016; 2016:9468193. [PMID: 27298735 PMCID: PMC4889828 DOI: 10.1155/2016/9468193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/10/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Current treatment for spinal cord injury (SCI) is supportive at best; despite great efforts, the lack of better treatment solutions looms large on neurological science and medicine. Curcumin, the active ingredient in turmeric, a spice known for its medicinal and anti-inflammatory properties, has been validated to harbor immense effects for a multitude of inflammatory-based diseases. However, to date there has not been a review on curcumin's effects on SCI. Herein, we systematically review all known data on this topic and juxtapose results of curcumin with standard therapies such as corticosteroids. Because all studies that compare the two show superior results for curcumin over corticosteroids, it could be true that curcumin better acts at the inflammatory source of SCI-mediated neurological injury, although this question remains unanswered in patients. Because curcumin has shown improvements from current standards of care in other diseases with few true treatment options (e.g., osteoarthritis), there is immense potential for this compound in treating SCI. We critically and systematically summarize available data, discuss clinical implications, and propose further testing of this well-tolerated compound in both the preclinical and the clinical realms. Analyzing preclinical data from a clinical perspective, we hope to create awareness of the incredible potential that curcumin shows for SCI in a patient population that direly needs improvements on current therapy.
Collapse
|
23
|
Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis. Neurotox Res 2015; 29:419-31. [PMID: 26690780 DOI: 10.1007/s12640-015-9588-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
Methylglyoxal (MG) is formed during normal metabolism by processes like glycolysis, lipid peroxidation, and threonine catabolism, and its accumulation is associated with various degenerative diseases, such as diabetes and arterial atherogenesis. Furthermore, MG has also been reported to have toxic effects on hippocampal neurons. However, these effects have not been studied in the context of neurogenesis. Here, we report that MG adversely affects hippocampal neurogenesis and induces neural progenitor cell (NPC) death. MG significantly reduced C17.2 NPC proliferation, and high concentration of MG (500 μM) induced cell death and elevated oxidative stress. Further, MG was found to activate the ERK signaling pathway, indicating elevated stress response. To determine the effects of MG in vivo, mice were administrated with vehicle or MG (0.5 or 1 % in drinking water) for 4 weeks. The numbers of BrdU-positive cells in hippocampi were significantly lower in MG-treated mice, indicating impaired neurogenesis, but MG did not induce neuronal damage or glial activations. Interestingly, MG reduced memory retention when administered to mice at 1 % but not at 0.5 %. In addition, the levels of hippocampal BDNF and synaptophysin were significantly lower in the hippocampi of mice treated with MG at 1 %. Collectively, our findings suggest MG could be harmful to NPCs and to hippocampal neurogenesis.
Collapse
|
24
|
Attari F, Zahmatkesh M, Aligholi H, Mehr SE, Sharifzadeh M, Gorji A, Mokhtari T, Khaksarian M, Hassanzadeh G. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. ACTA ACUST UNITED AC 2015; 23:33. [PMID: 26063234 PMCID: PMC4466857 DOI: 10.1186/s40199-015-0115-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/04/2015] [Indexed: 01/15/2023]
Abstract
Background The beneficial effects of curcumin which includes its antioxidant, anti-inflammatory and cancer chemo-preventive properties have been identified. Little information is available regarding the optimal dose and treatment periods of curcumin on the proliferation rate of different sources of stem cells. Methods In this study, the effect of various concentrations of curcumin on the survival and proliferation of two types of outstanding stem cells which includes bone marrow stem cells (BMSCs) and adult rat neural stem/progenitor cells (NS/PCs) at different time points was investigated. BMSCs were isolated from bilateral femora and tibias of adult Wistar rats. NS/PCs were obtained from subventricular zone of adult Wistar rat brain. The curcumin (0.1, 0.5, 1, 5 and 10 μM/L) was added into a culture medium for 48 or 72 h. Fluorescent density of 5-bromo-2′-deoxyuridine (Brdu)-positive cells was considered as proliferation index. In addition, cell viability was assessed by MTT assay. Results Treatment of BMSCs with curcumin after 48 h, increased cell survival and proliferation in a dose-dependent manner. However, it had no effect on NSCs proliferation except a toxic effect in the concentration of 10 μM of curcumin. After a 72 h treatment period, BMSCs and NS/PCs survived and proliferated with low doses of curcumin. However, high doses of curcumin administered for 72 h showed toxic effects on both stem cells. Conclusions These findings suggest that curcumin survival and proliferative effects depend on its concentration, treatment period and the type of stem cells. Appropriate application of these results may be helpful in the outcome of combination therapy of stem cells and curcumin.
Collapse
Affiliation(s)
- Fatemeh Attari
- Department of Neuroscience, School of Advanced Technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Shefa Neuroscience Research Center, Khatamolanbia Hospital, Tehran, Iran.
| | - Maryam Zahmatkesh
- Department of Neuroscience, School of Advanced Technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Shefa Neuroscience Research Center, Khatamolanbia Hospital, Tehran, Iran.
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatamolanbia Hospital, Tehran, Iran. .,Epilepsy Research Center, WestfälischeWilhelms-UniversitätMünster, Münster, Germany.
| | - Tahmineh Mokhtari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Khaksarian
- Department of Physiology, Medical College, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Gholamreza Hassanzadeh
- Department of Neuroscience, School of Advanced Technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|