1
|
Na MK, Oh Y, Lee D, Park J, Yoon SJ, Yoo J, Kim SJ, Shim JK, Baek S, Moon JH, Kim EH, Teo WY, Chang JH, Sung HJ, Kang SG. Comparison of the biological characteristics of glioblastoma tumorspheres obtained from fresh and cryopreserved glioblastoma tissues. J Neurooncol 2025:10.1007/s11060-025-05052-7. [PMID: 40325336 DOI: 10.1007/s11060-025-05052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Human GBM tumorspheres (TS) are essential for preclinical drug screening and establishing patient-derived xenograft (PDX) models, but their derivation is often limited to fresh tissue. Whether TS from cryopreserved tissues retain comparable molecular and biological properties to those from fresh tissues remains underexplored. We hypothesized that TS from cryopreserved tissues could provide a reliable alternative for TS derivation, thereby expanding accessibility for GBM research. METHODS TS isolation rates were compared across 39 primary GBM samples. Tumor tissues collected during surgical resection were divided into two groups: one processed immediately as fresh tissue, and the other cryopreserved for 1 month before processing. Gene expression profiling via RNA sequencing and biological comparisons, including cell proliferation, neuroglial differentiation, stemness, invasiveness, and responsiveness to radiation and temozolomide, were performed on three matched TS samples from each group. Tumorigenesis was also assessed using PDX models. RESULTS TS were successfully isolated from 64.1% of fresh and 58.9% of cryopreserved tissues. Gene expression profiling revealed similar expression patterns in TS derived from both tissue types, despite variations in cancer subtypes. Cell proliferation, neuroglial differentiation, stemness, or invasiveness rates did not differ significantly between TS derived from fresh and cryopreserved tissues. All three GBM TS exhibited comparable responsiveness to temozolomide and radiation, as well as similar tumorigenic potential in the PDX models. CONCLUSION These findings suggest an alternative method for isolating TS when immediate processing is not feasible, offering a time-independent approach for GBM research.
Collapse
Affiliation(s)
- Min Kyun Na
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Yoojung Oh
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dongkyu Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sewoom Baek
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138632, Singapore
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hak-Jun Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Medical Sciences, Yonsei University Graduate School, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Hong JP, Choi RJ, Shim JK, Kim K, Kim RN, Cho H, Kim SJ, Kim S, Kim NH, Park HH, Moon JH, Kim EH, Teo WY, Chung S, Chang JH, Kang SG. Synergistic combination of perphenazine and temozolomide suppresses patient-derived glioblastoma tumorspheres. Neuro Oncol 2025; 27:654-667. [PMID: 39392921 PMCID: PMC11889716 DOI: 10.1093/neuonc/noae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM), a primary malignant brain tumor, has a poor prognosis, even with standard treatments such as radiotherapy and chemotherapy. In this study, we explored the anticancer effects of the synergistic combination of perphenazine (PER), a dopamine receptor D2/3 (DRD2/3) antagonist, and temozolomide (TMZ), a standard treatment for GBM, in patient-derived human GBM tumorspheres (TSs). METHODS The biological effects of the combination of PER and TMZ in GBM TSs were assessed by measuring cell viability, ATP, stemness, invasiveness, and apoptosis. Changes in protein and mRNA expression were analyzed using western blotting and RNA sequencing. Co-administration of PER and TMZ was evaluated in vivo using a mouse orthotopic xenograft model. RESULTS The Severance dataset showed that DRD2 and DRD3 expressions were higher in tumor tissues than in the tumor-free cortex of patients with GBM. DRD2/3 knockout by CRISPR/Cas9 in patient-derived human GBM TSs inhibited cell growth and ATP production. The combined treatment with PER and TMZ resulted in superior effects on cell viability and ATP assays compared to those in single treatment groups. Flow cytometry, western blotting, and RNA sequencing confirmed elevated apoptosis in GBM TSs following combination treatment. Additionally, the combination of PER and TMZ downregulated the expression of protein and mRNA associated with stemness and invasiveness. In vivo evaluation showed that combining PER and TMZ extended the survival period of the mouse orthotopic xenograft model. CONCLUSIONS The synergistic combination of PER and TMZ has potential as a novel combination treatment strategy for GBM.
Collapse
Affiliation(s)
- Jun Pyo Hong
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ran Joo Choi
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Kyoung Shim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kibyeong Kim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ryong Nam Kim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - HyeJoung Cho
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Jin Kim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Hwa Kim
- Department of Premedical, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hun Ho Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wan-Yee Teo
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kim SJ, Park J, Shim JK, Choi RJ, Moon JH, Kim EH, Teo WY, Chang JH, Kang SG. Disruption of bioenergetics enhances the radio-sensitivity of patient-derived glioblastoma tumorspheres. Transl Oncol 2025; 51:102197. [PMID: 39550888 PMCID: PMC11609692 DOI: 10.1016/j.tranon.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Despite available treatment approaches, including surgical resection along with chemotherapy and radiotherapy, glioblastoma (GBM), the most prevalent primary brain tumor, remains associated with a grim prognosis. Although radiotherapy is central to GBM treatment, its combination with bioenergetics regulators has not been validated in clinical practice. Here, we hypothesized that bioenergetics regulators can enhance the radio-sensitivity of GBM tumorspheres (TSs). METHODS Gene expression profiles of GBM patient-derived TSs were obtained through microarray and RNA-seq. In vitro treatment efficacy was assessed using clonogenic assay, 3D invasion assay, neurosphere formation assay, and flow cytometry. Protein expression was measured via western blot, and γH2AX foci were detected via immunofluorescence. In vivo efficacy was confirmed in an orthotopic xenograft model. RESULTS Based on radiation response-associated gene expression, GBM TSs were classified into high- or low-radioresistant groups. Among the five bioenergetics regulators, the pentose phosphate pathway inhibitor DHEA and the glycolysis inhibitor 2-DG notably enhanced the efficacy of ionizing radiation (IR) efficacy in vitro, reducing the survival fraction, stemness, and invasiveness in high- and low-radioresistant TSs. Combination with 2-DG further stimulated IR-induced DNA damage response and apoptosis in low-radioresistant GBM TSs. RNA-seq analysis revealed a downregulation of bioenergetics- and cell cycle-associated genes, whereas extracellular matrix- and cell adhesion-associated genes were enhanced by combined IR and 2-DG treatment. This therapeutic regimen extended survival and diminished tumor size in mouse xenograft models. CONCLUSIONS Our data suggest that combination with bioenergetics regulator 2-DG enhances the radio-sensitivity of GBM TSs, highlighting the clinical potential of this combined regimen.
Collapse
Affiliation(s)
- Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea; Department of Medical Science, Yonsei University Graduate School, Seoul, South Korea.
| |
Collapse
|
4
|
Valenzuela-Fuenzalida JJ, Moyano-Valarezo L, Silva-Bravo V, Milos-Brandenberg D, Orellana-Donoso M, Nova-Baeza P, Suazo-Santibáñez A, Rodríguez-Luengo M, Oyanedel-Amaro G, Sanchis-Gimeno J, Gutiérrez Espinoza H. Association between the Anatomical Location of Glioblastoma and Its Evaluation with Clinical Considerations: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:3460. [PMID: 38929990 PMCID: PMC11204640 DOI: 10.3390/jcm13123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Glioblastoma is a primary malignant brain tumor; it is aggressive with a high degree of malignancy and unfavorable prognosis and is the most common type of malignant brain tumor. Glioblastomas can be located in the brain, cerebellum, brainstem, and spinal cord, originating from glial cells, particularly astrocytes. Methods: The databases MEDLINE, Scopus, Web of Science, Google Scholar, and CINAHL were researched up to January 2024. Two authors independently performed the search, study selection, and data extraction. Methodological quality was evaluated with an assurance tool for anatomical studies (AQUA). The statistical mean, standard deviation, and difference of means calculated with the Student's t-test for presence between hemispheres and presence in the frontal and temporal lobes were analyzed. Results: A total of 123 studies met the established selection criteria, with a total of 6224 patients. In relation to the mean, GBM between hemispheres had a mean of 33.36 (SD 58.00) in the right hemisphere and a mean of 34.70 (SD 65.07) in the left hemisphere, due to the difference in averages between hemispheres. There were no statistically significant differences, p = 0.35. For the comparison between the presence of GBM in the frontal lobe and the temporal lobe, there was a mean in the frontal lobe of 23.23 (SD 40.03), while in the temporal lobe, the mean was 22.05 (SD 43.50), and for the difference in means between the frontal lobe and the temporal lobe, there was no statistically significant difference for the presence of GBM, p = 0.178. Conclusions: We believe that before a treatment, it will always be correct to know where the GBM is located and how it behaves clinically, in order to generate correct conservative or surgical treatment guidelines for each patient. We believe that more detailed studies are also needed to show why GBM is associated more with some regions than others, despite the brain structure being homologous to other regions in which GMB occurs less frequently, which is why knowing its predominant presence in brain regions is very important.
Collapse
Affiliation(s)
- Juan Jose Valenzuela-Fuenzalida
- Departamento de Ciencias Química y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8320000, Chile;
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Laura Moyano-Valarezo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Vicente Silva-Bravo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Daniel Milos-Brandenberg
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
- Escuela de Medicina, Facultad Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Mathias Orellana-Donoso
- Escuela de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
- Department of Morphological Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 8420524, Chile
| | - Pablo Nova-Baeza
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | | | - Macarena Rodríguez-Luengo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Gustavo Oyanedel-Amaro
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juan Sanchis-Gimeno
- GIAVAL Research Group, Department of Anatomy and Human Embryology, Faculty of Medicine, University of Valencia, 46001 Valencia, Spain;
| | | |
Collapse
|
5
|
Park J, Shim JK, Lee M, Kim D, Yoon SJ, Moon JH, Kim EH, Park JY, Chang JH, Kang SG. Classification of IDH wild-type glioblastoma tumorspheres into low- and high-invasion groups based on their transcriptional program. Br J Cancer 2023; 129:1061-1070. [PMID: 37558923 PMCID: PMC10539507 DOI: 10.1038/s41416-023-02391-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM), one of the most lethal tumors, exhibits a highly infiltrative phenotype. Here, we identified transcription factors (TFs) that collectively modulate invasion-related genes in GBM. METHODS The invasiveness of tumorspheres (TSs) were quantified using collagen-based 3D invasion assays. TF activities were quantified by enrichment analysis using GBM transcriptome, and confirmed by cell-magnified analysis of proteome imaging. Invasion-associated TFs were knocked down using siRNA or shRNA, and TSs were orthotopically implanted into mice. RESULTS After classifying 23 patient-derived GBM TSs into low- and high-invasion groups, we identified active TFs in each group-PCBP1 for low invasion, and STAT3 and SRF for high invasion. Knockdown of these TFs reversed the phenotype and invasion-associated-marker expression of GBM TSs. Notably, MRI revealed consistent patterns of invasiveness between TSs and the originating tumors, with an association between high invasiveness and poor prognosis. Compared to controls, mice implanted with STAT3- or SRF-downregulated GBM TSs showed reduced normal tissue infiltration and tumor growth, and prolonged survival, indicating a therapeutic response. CONCLUSIONS Our integrative transcriptome analysis revealed three invasion-associated TFs in GBM. Based on the relationship among the transcriptional program, invasive phenotype, and prognosis, we suggest these TFs as potential targets for GBM therapy.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mirae Lee
- Department of Neurosurgery, The Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dokyeong Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- Department of Neurosurgery, The Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Park J, Oh SJ, Shim JK, Ji YB, Moon JH, Kim EH, Huh YM, Suh JS, Chang JH, Lee SJ, Kang SG. C5α secreted by tumor mesenchymal stem-like cells mediates resistance to 5-aminolevulinic acid-based photodynamic therapy against glioblastoma tumorspheres. J Cancer Res Clin Oncol 2023; 149:4391-4402. [PMID: 36107247 DOI: 10.1007/s00432-022-04347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Advancements in photodynamic diagnosis (PDD) and photodynamic therapy (PDT) as a standard care in cancer therapy have been limited. This study is aimed to investigate the clinical availability of 5-aminolevulinic acid (5-ALA)-based PDD and PDT in glioblastoma (GBM) patient-derived tumorspheres (TSs) and mouse orthotopic xenograft model. METHODS PDT was performed using a 635 nm light-emitting diode (LED). Transcriptome profiles were obtained from microarray data. For knockdown of C5α, siRNA was transfected into tumor mesenchymal stem-like cells (tMSLCs). The invasiveness of TSs was quantified using collagen-based 3D invasion assays. RESULTS Treatment with 1 mM 5 ALA induced distinct protoporphyrin IX (PpIX) fluorescence in GBM TSs, but not in non-tumor cells or tissues, including tMSLCs. These observations were negatively correlated with the expression levels of FECH, which catalyzes the conversion of accumulated PpIX to heme. Furthermore, the 5-ALA-treated GBM TSs were sensitive to PDT, thereby significantly decreasing cell viability and invasiveness. Notably, the effects of PDT were abolished by culturing TSs with tMSLC-conditioned media. Transcriptome analysis revealed diverse tMSLC-secreted chemokines, including C5α, and their correlations with the expression of stemness- or mesenchymal transition-associated genes. By adding or inhibiting C5α, we confirmed that acquired resistance to PDT was induced via tMSLC-secreted C5α. CONCLUSIONS Our results show substantial therapeutic effects of 5-ALA-based PDT on GBM TSs, suggesting C5α as a key molecule responsible for PDT resistance. These findings could trigger PDT as a standard clinical modality for the treatment of GBM.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Jae Oh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Bin Ji
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency, Gimhae, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Min Huh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Suck Suh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Fibrosis and Cancer Targeting Biotechnology, FNCT Biotech, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Li S, Dong L, Pan Z, Yang G. Targeting the neural stem cells in subventricular zone for the treatment of glioblastoma: an update from preclinical evidence to clinical interventions. Stem Cell Res Ther 2023; 14:125. [PMID: 37170286 PMCID: PMC10173522 DOI: 10.1186/s13287-023-03325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most common and aggressive adult brain tumors. The conventional treatment strategy, surgery combined with chemoradiotherapy, did not change the fact that the recurrence rate was high and the survival rate was low. Over the years, accumulating evidence has shown that the subventricular zone has an important role in the recurrence and treatment resistance of glioblastoma. The human adult subventricular zone contains neural stem cells and glioma stem cells that are probably a part of reason for therapy resistance and recurrence of glioblastoma. MAIN BODY Over the years, both bench and bedside evidences strongly support the view that the presence of neural stem cells and glioma stem cells in the subventricular zone may be the crucial factor of recurrence of glioblastoma after conventional therapy. It emphasizes the necessity to explore new therapy strategies with the aim to target subventricular zone to eradicate neural stem cells or glioma stem cells. In this review, we summarize the recent preclinical and clinical advances in targeting neural stem cells in the subventricular zone for glioblastoma treatment, and clarify the prospects and challenges in clinical application. CONCLUSIONS Although there remain unresolved issues, current advances provide us with a lot of evidence that targeting the neural stem cells and glioma stem cells in subventricular zone may have the potential to solve the dilemma of glioblastoma recurrence and treatment resistance.
Collapse
Affiliation(s)
- Sijia Li
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
| | - Zhenyu Pan
- Department of Radiation Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000 China
| | - Guozi Yang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
- Department of Radiation Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000 China
| |
Collapse
|
8
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
9
|
Park J, Lee D, Shim JK, Yoon SJ, Moon JH, Kim EH, Chang JH, Lee SJ, Kang SG. Mesenchymal Stem-Like Cells Derived from the Ventricle More Effectively Enhance Invasiveness of Glioblastoma Than Those Derived from the Tumor. Yonsei Med J 2023; 64:157-166. [PMID: 36825341 PMCID: PMC9971438 DOI: 10.3349/ymj.2022.0430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) is one of the most lethal human tumors with a highly infiltrative phenotype. Our previous studies showed that GBM originates in the subventricular zone, and that tumor-derived mesenchymal stem-like cells (tMSLCs) promote the invasiveness of GBM tumorspheres (TSs). Here, we extend these studies in terms of ventricles using several types of GBM patient-derived cells. MATERIALS AND METHODS The invasiveness of GBM TSs and ventricle spheres (VSs) were quantified via collagen-based 3D invasion assays. Gene expression profiles were obtained from microarray data. A mouse orthotopic xenograft model was used for in vivo experiments. RESULTS After molecular and functional characterization of ventricle-derived mesenchymal stem-like cells (vMSLCs), we investigated the effects of these cells on the invasiveness of GBM TSs. We found that vMSLC-conditioned media (CM) significantly accelerated the invasiveness of GBM TSs and VSs, compared to the control and even tMSLC-CM. Transcriptome analyses revealed that vMSLC secreted significantly higher levels of several invasiveness-associated cytokines. Moreover, differentially expressed genes between vMSLCs and tMSLCs were enriched for migration, adhesion, and chemotaxis-related gene sets, providing a mechanistic basis for vMSLC-induced invasion of GBM TSs. In vivo experiments using a mouse orthotopic xenograft model confirmed vMSLC-induced increases in the invasiveness of GBM TSs. CONCLUSION Although vMSLCs are non-tumorigenic, this study adds to our understanding of how GBM cells acquire infiltrative features by vMSLCs, which are present in the region where GBM genesis originates.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dongkyu Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jae Lee
- Fibrosis and Cancer Targeting Biotechnology, FNCT Biotech, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Medical Science, Yonsei University Graduate School, Seoul, Korea.
| |
Collapse
|
10
|
Kim SJ, Park SJ, Park J, Cho HJ, Shim JK, Seon J, Choi RJ, Yoon SJ, Moon JH, Kim EH, Seo EK, Kim SH, Kim HS, Teo WY, Chang JH, Yook JI, Kang SG. Dual inhibition of CPT1A and G6PD suppresses glioblastoma tumorspheres. J Neurooncol 2022; 160:677-689. [PMID: 36396930 DOI: 10.1007/s11060-022-04189-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Limited treatment options are currently available for glioblastoma (GBM), an extremely lethal type of brain cancer. For a variety of tumor types, bioenergetic deprivation through inhibition of cancer-specific metabolic pathways has proven to be an effective therapeutic strategy. Here, we evaluated the therapeutic effects and underlying mechanisms of dual inhibition of carnitine palmitoyltransferase 1A (CPT1A) and glucose-6-phosphate dehydrogenase (G6PD) critical for fatty acid oxidation (FAO) and the pentose phosphate pathway (PPP), respectively, against GBM tumorspheres (TSs). METHODS Therapeutic efficacy against GBM TSs was determined by assessing cell viability, neurosphere formation, and 3D invasion. Liquid chromatography-mass spectrometry (LC-MS) and RNA sequencing were employed for metabolite and gene expression profiling, respectively. Anticancer efficacy in vivo was examined using an orthotopic xenograft model. RESULTS CPT1A and G6PD were highly expressed in GBM tumor tissues. Notably, siRNA-mediated knockdown of both genes led to reduced viability, ATP levels, and expression of genes associated with stemness and invasiveness. Similar results were obtained upon combined treatment with etomoxir and dehydroepiandrosterone (DHEA). Transcriptome analyses further confirmed these results. Data from LC-MS analysis showed that this treatment regimen induced a considerable reduction in the levels of metabolites associated with the TCA cycle and PPP. Additionally, the combination of etomoxir and DHEA inhibited tumor growth and extended survival in orthotopic xenograft model mice. CONCLUSION Our collective findings support the utility of dual suppression of CPT1A and G6PD with selective inhibitors, etomoxir and DHEA, as an efficacious therapeutic approach for GBM.
Collapse
Affiliation(s)
- Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soo Jeong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Joung Cho
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jieun Seon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Kyo Seo
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Kazemi Shariat Panahi H, Dehhaghi M, Lam SS, Peng W, Aghbashlo M, Tabatabaei M, Guillemin GJ. Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. Semin Cancer Biol 2022; 86:1122-1142. [PMID: 34004331 DOI: 10.1016/j.semcancer.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mortaza Aghbashlo
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia.
| |
Collapse
|
12
|
Shim JK, Choi S, Yoon SJ, Choi RJ, Park J, Lee EH, Cho HJ, Lee S, Teo WY, Moon JH, Kim HS, Kim EH, Cheong JH, Chang JH, Yook JI, Kang SG. Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres. Cancer Cell Int 2022; 22:309. [PMID: 36221088 PMCID: PMC9552483 DOI: 10.1186/s12935-022-02731-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction The importance of fatty acid oxidation (FAO) in the bioenergetics of glioblastoma (GBM) is being realized. Etomoxir (ETO), a carnitine palmitoyltransferase 1 (CPT1) inhibitor exerts cytotoxic effects in GBM, which involve interrupting the FAO pathway. We hypothesized that FAO inhibition could affect the outcomes of current standard temozolomide (TMZ) chemotherapy against GBM. Methods The FAO-related gene expression was compared between GBM and the tumor-free cortex. Using four different GBM tumorspheres (TSs), the effects of ETO and/or TMZ was analyzed on cell viability, tricarboxylate (TCA) cycle intermediates and adenosine triphosphate (ATP) production to assess metabolic changes. Alterations in tumor stemness, invasiveness, and associated transcriptional changes were also measured. Mouse orthotopic xenograft model was used to elucidate the combinatory effect of TMZ and ETO. Results GBM tissues exhibited overexpression of FAO-related genes, especially CPT1A, compared to the tumor-free cortex. The combined use of ETO and TMZ further inhibited TCA cycle and ATP production than single uses. This combination treatment showed superior suppression effects compared to treatment with individual agents on the viability, stemness, and invasiveness of GBM TSs, as well as better downregulation of FAO-related gene expression. The results of in vivo study showed prolonged survival outcomes in the combination treatment group. Conclusion ETO, an FAO inhibitor, causes a lethal energy reduction in the GBM TSs. When used in combination with TMZ, ETO effectively reduces GBM cell stemness and invasiveness and further improves survival. These results suggest a potential novel treatment option for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02731-7.
Collapse
Affiliation(s)
- Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seonah Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, 03722, Republic of Korea
| | - Eun Hee Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye Joung Cho
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Suji Lee
- Department of Medical Science, BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, 169857, Singapore
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Departments of Medical Science, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
14
|
A lignan from Alnus japonica inhibits glioblastoma tumorspheres by suppression of FOXM1. Sci Rep 2022; 12:13990. [PMID: 35978012 PMCID: PMC9385634 DOI: 10.1038/s41598-022-18185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Forkhead Box M1 (FOXM1) is known to regulate cell proliferation, apoptosis and tumorigenesis. The lignan, (-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol (DFS), from Alnus japonica has shown anti-cancer effects against colon cancer cells by suppressing FOXM1. The present study hypothesized that DFS can have anti-cancer effects against glioblastoma (GBM) tumorspheres (TSs). Immunoprecipitation and luciferase reporter assays were performed to evaluate the ability of DFS to suppress nuclear translocation of β-catenin through β-catenin/FOXM1 binding. DFS-pretreated GBM TSs were evaluated to assess the ability of DFS to inhibit GBM TSs and their transcriptional profiles. The in vivo efficacy was examined in orthotopic xenograft models of GBM. Expression of FOXM1 was higher in GBM than in normal tissues. DFS-induced FOXM1 protein degradation blocked β-catenin translocation into the nucleus and consequently suppressed downstream target genes of FOXM1 pathways. DFS inhibited cell viability and ATP levels, while increasing apoptosis, and it reduced tumorsphere formation and the invasiveness of GBM TSs. And DFS reduced the activities of transcription factors related to tumorigenesis, stemness, and invasiveness. DFS significantly inhibited tumor growth and prolonged the survival rate of mice in orthotopic xenograft models of GBM. It suggests that DFS inhibits the proliferation of GBM TSs by suppressing FOXM1. DFS may be a potential therapeutic agent to treat GBM.
Collapse
|
15
|
Yoo J, Yoon SJ, Kim KH, Jung IH, Lim SH, Kim W, Yoon HI, Kim SH, Sung KS, Roh TH, Moon JH, Park HH, Kim EH, Suh CO, Kang SG, Chang JH. Patterns of recurrence according to the extent of resection in patients with IDH-wild-type glioblastoma: a retrospective study. J Neurosurg 2022; 137:533-543. [PMID: 34972087 DOI: 10.3171/2021.10.jns211491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In glioblastoma (GBM) patients, controlling the microenvironment around the tumor using various treatment modalities, including surgical intervention, is essential in determining the outcome of treatment. This study was conducted to elucidate whether recurrence patterns differ according to the extent of resection (EOR) and whether this difference affects prognosis. METHODS This single-center study included 358 eligible patients with histologically confirmed isocitrate dehydrogenase (IDH)-wild-type GBM from November 1, 2005, to December 31, 2018. Patients were assigned to one of three separate groups according to EOR: supratotal resection (SupTR), gross-total resection (GTR), and subtotal resection (STR) groups. The patterns of recurrence were classified as local, marginal, and distant based on the range of radiation. The relationship between EOR and recurrence pattern was statistically analyzed. RESULTS Observed tumor recurrence rates for each group were as follows: SupTR group, 63.4%; GTR group, 75.3%; and STR group, 80.5% (p = 0.072). Statistically significant differences in patterns of recurrences among groups were observed with respect to local recurrence (SupTR, 57.7%; GTR, 76.0%; STR, 82.8%; p = 0.036) and distant recurrence (SupTR, 50.0%; GTR, 30.1%; STR, 23.2%; p = 0.028). Marginal recurrence showed no statistical difference between groups. Both overall survival and progression-free survival were significantly increased in the SupTR group compared with the STR and GTR groups (p < 0.0001). CONCLUSIONS In this study, the authors investigated the association between EOR and patterns of recurrence in patients with IDH-wild-type GBM. The findings not only show that recurrence patterns differ according to EOR but also provide clinical evidence supporting the hypothesized mechanism by which distant recurrence occurs.
Collapse
Affiliation(s)
- Jihwan Yoo
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
- 2Yonsei University College of Medicine
- 3Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Seon-Jin Yoon
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
- 4Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine
| | - Kyung Hwan Kim
- 5Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine
| | - In-Ho Jung
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Seung Hoon Lim
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Woohyun Kim
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Hong In Yoon
- 5Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine
| | - Se Hoon Kim
- 6Department of Pathology, Yonsei University College of Medicine, Seoul
| | - Kyoung Su Sung
- 7Department of Neurosurgery, Dong-A University College of Medicine, Busan
| | - Tae Hoon Roh
- 8Department of Neurosurgery, Ajou University School of Medicine, Suwon
| | - Ju Hyung Moon
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Hun Ho Park
- 3Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Eui Hyun Kim
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Chang-Ok Suh
- 9Department of Radiation Oncology, CHA Bundang Medical Center, CHA University College of Medicine, Bundang; and
| | - Seok-Gu Kang
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
- 10Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Jong Hee Chang
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| |
Collapse
|
16
|
Roh TH, Lee JH, Kim SJ, Shim JK, Park J, Yoon SJ, Teo WY, Kim SH, Chang JH, Kang SG. A novel biguanide (IM1761065) inhibits bioenergetics of glioblastoma tumorspheres. J Neurooncol 2021; 156:139-151. [PMID: 34811601 DOI: 10.1007/s11060-021-03903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE Glioblastoma (GBM) is a rapidly growing tumor in the central nervous system with altered metabolism. Depleting the bioenergetics of tumors with biguanides have been suggested as an effective therapeutic approach for treating GBMs. The purpose of this study was to determine the effects of IM1761065, a novel biguanide with improved pharmacokinetics, on GBM-tumorspheres (TSs). METHODS The biological activities of IM1761065 on GBM-TSs, including their effects on viability, ATP levels, cell cycle, stemness, invasive properties, and transcriptomes were examined. The in vivo efficacy of IM1761065 was tested in a mouse orthotopic xenograft model. RESULTS IM1761065 decreased the viability and ATP levels of GBM-TSs in a dose-dependent manner, and reduced basal and spare respiratory capacity in patient-derived GBM-TS, as measured by the oxygen consumption rate. Sphere formation, expression of stemness-related proteins, and invasive capacity of GBM-TSs were also significantly suppressed by IM1761065. A gene-ontology comparison of IM1761065-treated groups showed that the expression levels of stemness-related, epithelial mesenchymal transition-related, and mitochondrial complex I genes were also significantly downregulated by IM1761065. An orthotopic xenograft mouse model showed decreased bioluminescence in IM1761065-treated cell-injected mice at 5 weeks. IM1761065-treated group showed longer survival than the control group (P = 0.0289, log-rank test). CONCLUSION IM1761065 is a potent inhibitor of oxidative phosphorylation. The inhibitory effect of IM1761065 on the bioenergetics of GBM-TS suggests that this novel compound could be used as a new drug for the treatment of GBM.
Collapse
Affiliation(s)
- Tae Hoon Roh
- Department of Neurosurgery, Brain Tumor Center, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji-Hyun Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Kong SH, Yoo J, Lee D, Moon S, Sung KS, Park SH, Shim JK, Choi RJ, Yoon SJ, Moon JH, Kim EH, Lee SJ, Chang JH, Kang SG. Influence of the Amount of Fresh Specimen on the Isolation of Tumor Mesenchymal Stem-Like Cells from High-Grade Glioma. Yonsei Med J 2021; 62:936-942. [PMID: 34558873 PMCID: PMC8470561 DOI: 10.3349/ymj.2021.62.10.936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE A critical indicator of the overall survival of patients with high-grade glioma is the successful isolation of tumor mesenchymal stem-like cells (tMSLCs), which play important roles in glioma progression. However, attempts to isolate tMSLCs from surgical specimens have not always been successful, and the reasons for this remain unclear. Considering that the amount of surgical high-grade glioma specimens varies, we hypothesized that larger surgical specimens would be better for tMSLC isolation. MATERIALS AND METHODS We assessed 51 fresh, high-grade glioma specimens and divided them into two groups according to the success or failure of tMSLC isolation. The success of tMSLC isolation was confirmed by plastic adherence, presenting antigens, tri-lineage differentiation, and non-tumorigenicity. Differences in characteristics between the two groups were tested using independent two sample t-tests, chi-square tests, or Kaplan-Meier survival analysis. RESULTS The mean specimen weights of the groups differed from each other (tMSLC-negative group: 469.9±341.9 mg, tMSLC positive group: 546.7±618.9 mg), but the difference was not statistically significant. The optimal cut-off value of specimen weight was 180 mg, and the area under the curve value was 0.599. CONCLUSION Our results suggested a minimum criterion for specimen collection, and found that the specimen amount was not deeply related to tMSLC detection. Collectively, our findings imply that the ability to isolate tMSLCs is determined by factors other than the specimen amount.
Collapse
Affiliation(s)
| | - Jihwan Yoo
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dongkyu Lee
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sohyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University College of Medicine, Busan, Korea
| | - So Hee Park
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Jin Yoon
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D. Fluorescence-Guided Surgery for High-Grade Gliomas: State of the Art and New Perspectives. Technol Cancer Res Treat 2021; 20:15330338211021605. [PMID: 34212784 PMCID: PMC8255554 DOI: 10.1177/15330338211021605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are aggressive tumors that require multimodal management and gross total resection is considered to be the first crucial step of treatment. Because of their infiltrative nature, intraoperative differentiation of neoplastic tissue from normal parenchyma can be challenging. For these reasons, in the recent years, neurosurgeons have increasingly performed this surgery under the guidance of tissue fluorescence. Sodium fluoresceine and 5-aminolevulinic acid represent the 2 main compounds that allow real-time identification of residual malignant tissue and have been associated with improved gross total resection and radiological outcomes. Though presenting different profiles of sensitivity and specificity and further investigations concerning cost-effectiveness are need, Sodium fluoresceine, 5-aminolevulinic acid and new phluorophores, such as Indocyanine green, represent some of the most important tools in the neurosurgeon’s hands to achieve gross total resection.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Fabio Cofano
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy.,Neurosurgery/Spine Surgery, Humanitas Gradenigo Hospital, Turin, Italy
| | - Luca Francesco Salvati
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Matteo Monticelli
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Pietro Zeppa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Antonio Melcarne
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giuseppe Maria Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Fulvio Tartara
- Unit of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Francesco Zenga
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Diego Garbossa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
19
|
Park HH, Park J, Cho HJ, Shim JK, Moon JH, Kim EH, Chang JH, Kim SY, Kang SG. Combinatorial Therapeutic Effect of Inhibitors of Aldehyde Dehydrogenase and Mitochondrial Complex I, and the Chemotherapeutic Drug, Temozolomide against Glioblastoma Tumorspheres. Molecules 2021; 26:E282. [PMID: 33429981 PMCID: PMC7827959 DOI: 10.3390/molecules26020282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/16/2023] Open
Abstract
Resident cancer cells with stem cell-like features induce drug tolerance, facilitating survival of glioblastoma (GBM). We previously showed that strategies targeting tumor bioenergetics present a novel emerging avenue for treatment of GBM. The objective of this study was to enhance the therapeutic effects of dual inhibition of tumor bioenergetics by combination of gossypol, an aldehyde dehydrogenase inhibitor, and phenformin, a biguanide compound that depletes oxidative phosphorylation, with the chemotherapeutic drug, temozolomide (TMZ), to block proliferation, stemness, and invasiveness of GBM tumorspheres (TSs). Combination therapy with gossypol, phenformin, and TMZ induced a significant reduction in ATP levels, cell viability, stemness, and invasiveness compared to TMZ monotherapy and dual therapy with gossypol and phenformin. Analysis of differentially expressed genes revealed up-regulation of genes involved in programmed cell death, autophagy, and protein metabolism and down-regulation of those associated with cell metabolism, cycle, and adhesion. Combination of TMZ with dual inhibitors of tumor bioenergetics may, therefore, present an effective strategy against GBM by enhancing therapeutic effects through multiple mechanisms of action.
Collapse
Affiliation(s)
- Hun Ho Park
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.P.); (H.J.C.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hye Joung Cho
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.P.); (H.J.C.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.P.); (H.J.C.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.P.); (H.J.C.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.P.); (H.J.C.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.P.); (H.J.C.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
| | - Soo Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.P.); (H.J.C.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Department of Medical Science, Yonsei University Graduate School, Seoul 03722, Korea
| |
Collapse
|
20
|
Yoon SJ, Son HY, Shim JK, Moon JH, Kim EH, Chang JH, Teo WY, Kim SH, Park SW, Huh YM, Kang SG. Co-expression of cancer driver genes: IDH-wildtype glioblastoma-derived tumorspheres. J Transl Med 2020; 18:482. [PMID: 33317554 PMCID: PMC7734785 DOI: 10.1186/s12967-020-02647-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Driver genes of GBM may be crucial for the onset of isocitrate dehydrogenase (IDH)-wildtype (WT) glioblastoma (GBM). However, it is still unknown whether the genes are expressed in the identical cluster of cells. Here, we have examined the gene expression patterns of GBM tissues and patient-derived tumorspheres (TSs) and aimed to find a progression-related gene. METHODS We retrospectively collected primary IDH-WT GBM tissue samples (n = 58) and tumor-free cortical tissue samples (control, n = 20). TSs are isolated from the IDH-WT GBM tissue with B27 neurobasal medium. Associations among the driver genes were explored in the bulk tissue, bulk cell, and a single cell RNAsequencing techniques (scRNAseq) considering the alteration status of TP53, PTEN, EGFR, and TERT promoter as well as MGMT promoter methylation. Transcriptomic perturbation by temozolomide (TMZ) was examined in the two TSs. RESULTS We comprehensively compared the gene expression of the known driver genes as well as MGMT, PTPRZ1, or IDH1. Bulk RNAseq databases of the primary GBM tissue revealed a significant association between TERT and TP53 (p < 0.001, R = 0.28) and its association increased in the recurrent tumor (p < 0.001, R = 0.86). TSs reflected the tissue-level patterns of association between the two genes (p < 0.01, R = 0.59, n = 20). A scRNAseq data of a TS revealed the TERT and TP53 expressing cells are in a same single cell cluster. The driver-enriched cluster dominantly expressed the glioma-associated long noncoding RNAs. Most of the driver-associated genes were downregulated after TMZ except IGFBP5. CONCLUSIONS GBM tissue level expression patterns of EGFR, TERT, PTEN, IDH1, PTPRZ1, and MGMT are observed in the GBM TSs. The driver gene-associated cluster of the GBM single cells were enriched with the glioma-associated long noncoding RNAs.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hye Young Son
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wan Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- National Cancer Center, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, College of Medicine, Yonsei University, Seoul, Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Yong-Min Huh
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea.
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea.
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, Korea.
| |
Collapse
|
21
|
Yoon SJ, Noh J, Son HY, Moon JH, Kim EH, Park SW, Kim SH, Chang JH, Huh YM, Kang SG. Ambient carbon monoxide exposure and elevated risk of mortality in the glioblastoma patients: A double-cohort retrospective observational study. Cancer Med 2020; 9:9018-9026. [PMID: 33161654 PMCID: PMC7724304 DOI: 10.1002/cam4.3572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023] Open
Abstract
An increasing number of studies indicate air pollutants infiltrate into the brain. We aimed to find the association of cumulative air pollution exposure in the main body of primary brain tumor: glioblastoma (GBM). In this double-cohort, retrospective analysis study with a protocol, we compared the health effect of air pollution on the GBM patients from the SEER (Surveillance, Epidemiology, and End Results Program) in 27 U.S. counties from 10 states and GBM patients of Severance cohort of Korea. From 2000 to 2015, 10621 GBM patients of the SEER were individually evaluated for the cumulative average exposure for each pollutant, and 9444 (88.9%) mortality events were reported. From 2011 to 2018, 398 GBM patients of the Severance with the same protocol showed 259 (65.1%) mortality events. The multi-pollutant models show that the association level of risk with CO is increased in the SEER (HR 1.252; 95% CI 1.141-1.373) with an increasing linear trend of relative death rate in the spline curve. The Severance GBM data showed such a statistically significant result of the health impact of CO on GBM patients. The overall survival gain of the less exposure group against CO was 2 and 3 months in the two cohorts. Perioperative exposure to CO may increase the risk of shorter survival of GBM patients of the SEER and the Severance cohort.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Young Son
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Min Huh
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,YUHS-KRIBB Medical Convergence Research Institute, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Medical Science, Yonsei University Graduate School, Seoul, Korea
| |
Collapse
|
22
|
Oh HC, Shim JK, Park J, Lee JH, Choi RJ, Kim NH, Kim HS, Moon JH, Kim EH, Chang JH, Yook JI, Kang SG. Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres. J Cancer Res Clin Oncol 2020; 146:2817-2828. [PMID: 32712753 PMCID: PMC7519913 DOI: 10.1007/s00432-020-03330-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most aggressive type of brain tumor and has poor survival outcomes, even after a combination of surgery, radiotherapy, and chemotherapy. Temozolomide is the only agent that has been shown to be effective against GBM, suggesting that combination of temozolomide with other agents may be more effective. Niclosamide, an FDA approved anthelmintic agent, has shown anti-cancer effects against human colon, breast, prostate cancers as well as GBM. However, the efficacy of the combination of niclosamide with temozolomide against GBM tumorspheres (TSs) has not been determined. We hypothesized that the combined treatment could effectively suppress GBM TSs. METHODS GBM TSs (TS15-88, GSC11) were treated with niclosamide and/or temozolomide. Combined effects of two drugs were evaluated by measuring viability, neurosphere formation, and 3D-invasion in collagen matrix. Transcriptional profiles of GBM TS were analyzed using RNA sequencing. In vivo anticancer efficacy of combined drugs was tested in a mouse orthotopic xenograft model. RESULTS Combination treatment of niclosamide and temozolomide significantly inhibited the cell viability, stemness, and invasive properties of GBM TSs. This combined treatment significantly down-regulated the expression of epithelial mesenchymal transition-related markers, Zeb1, N-cadherin, and β-catenin. The combined treatment also significantly decreased tumor growth in orthotopic xenograft models. CONCLUSION The combination of niclosamide and temozolomide effectively decreased the stemness and invasive properties of GBM TSs, suggesting that this regimen may be therapeutically effective in treating patients with GBM.
Collapse
Affiliation(s)
- Hyeong-Cheol Oh
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Hyun Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Department of Medical Science, Yonsei University Graduate School, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|