1
|
Gálvez-Ramírez A, González-Valdez A, Hernández-Ochoa B, Canseco-Ávila LM, López-Roblero A, Arreguin-Espinosa R, Pérez de la Cruz V, Hernández-Urzua E, Cárdenas-Rodríguez N, Enríquez-Flores S, De la Mora-De la Mora I, Vidal-Limon A, Gómez-Manzo S. Evaluation of Three Mutations in Codon 385 of Glucose-6-Phosphate Dehydrogenase via Biochemical and In Silico Analysis. Int J Mol Sci 2024; 25:12556. [PMID: 39684266 DOI: 10.3390/ijms252312556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an enzymopathy that affects approximately 500 million people worldwide. A great number of mutations in the G6PD gene have been described. However, three class A G6PD variants known as G6PD Tomah (C385R), G6PD Kangnam (C385G), and G6PD Madrid (C385W) have been reported to be clinically important due to their associations with severe clinical manifestations such as hemolytic anemia. Therefore, this work aimed to perform, for the first time, biochemical and functional characterizations of these variants. The G6PD variants were cloned and purified for this purpose, followed by analyses of their kinetic parameters and thermal stability, as well as in silico studies. The results showed that the mutations induced changes in the proteins. Regarding the kinetic parameters, it was observed that the three variants showed lower affinities for G6P and NADP+, as well as lower thermal stability compared to WT-G6PD. Molecular dynamics simulations showed that C385 mutations induced changes around neighboring amino acids. Metadynamics simulations showed that most remarkable changes account for the binding pocket volumes, particularly in the structural NADP+ binding site, with a concomitant loss of affinity for catalytic processes.
Collapse
Affiliation(s)
- Adriana Gálvez-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico
| | - Luis Miguel Canseco-Ávila
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico
| | - Alexander López-Roblero
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Elizabeth Hernández-Urzua
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| |
Collapse
|
2
|
Huang Z, Li Z, Li Y, Cao Y, Zhong S, Liu J, Lin Z, Lin L, Fang Y, Zeng J, Su Z, Li H, Liang J, Zhu B, Lin Z, Huang Y, Yang X, Jiang L. Exploring Appropriate Reference Intervals and Clinical Decision Limits for Glucose-6-Phosphate Dehydrogenase Activity in Individuals From Guangzhou, China. Ann Lab Med 2024; 44:487-496. [PMID: 38699793 PMCID: PMC11375190 DOI: 10.3343/alm.2023.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background Quantitative detection of glucose-6-phosphate dehydrogenase (G6PD) is commonly done to screen for G6PD deficiency. However, current reference intervals (RIs) of G6PD are unsuitable for evaluating G6PD-activity levels with local populations or associating G6PD variants with hemolysis risk to aid clinical decision-making. We explored appropriate RIs and clinical decision limits (CDLs) for G6PD activity in individuals from Guangzhou, China. Methods We enrolled 5,852 unrelated individuals between 2020 and 2022 and screened their samples in quantitative assays for G6PD activity. We conducted further investigations, including G6PD genotyping, thalassemia genotyping, follow-up analysis, and statistical analysis, for different groups. Results In Guangzhou, the RIs for the G6PD activities were 11.20-20.04 U/g Hb in male and 12.29-23.16 U/g Hb in female. The adjusted male median and normal male median (NMM) values were 15.47 U/g Hb and 15.51 U/g Hb, respectively. A threshold of 45% of the NMM could be used as a CDL to estimate the probability of G6PD variants. Our results revealed high hemolysis-risk CDLs (male: <10% of the NMM, female: <30% of the NMM), medium hemolysis-risk CDLs (male: 10%-45% of the NMM, female: 30%-79% of the NMM), and low hemolysis-risk CDLs (male: ≥ 45% of the NMM, female: ≥ 79% of the NMM). Conclusions Collectively, our findings contribute to a more accurate evaluation of G6PD-activity levels within the local population and provide valuable insights for clinical decision-making. Specifically, identifying threshold values for G6PD variants and hemolysis risk enables improved prediction and management of G6PD deficiency, ultimately enhancing patient care and treatment outcomes.
Collapse
Affiliation(s)
- Zhenyi Huang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyan Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunshan Cao
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Suping Zhong
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlu Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqian Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanping Fang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zeng
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoying Su
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huibin Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianfen Liang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Biqing Zhu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zipei Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongxin Huang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuexi Yang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lingxiao Jiang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Guru A, Meena P, Sawke GK, Tripathi S. Establishing the Approach to the Diagnosis of Hemolytic Anemia in the Genetic Era: A Case Series. Cureus 2024; 16:e67952. [PMID: 39328644 PMCID: PMC11426547 DOI: 10.7759/cureus.67952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Hemolytic anemia is characterized by the premature destruction of red blood cells, a condition that ranges from chronic to life-threatening. Hereditary hemolytic anemias (HHAs) encompass a broad spectrum of disorders including hemoglobinopathies, enzymopathies, and membrane disorders. In India, hemoglobinopathies, notably thalassemia and sickle cell disease, are significant health concerns contributing to high morbidity and mortality rates. Despite many cases being clinically insignificant, these disorders exert a considerable public health burden due to their prevalence. Techniques like next-generation sequencing (NGS) and high-performance liquid chromatography (HPLC) have emerged as powerful tools for identifying and diagnosing HHAs. NGS enables comprehensive genetic analysis, pinpointing mutations associated with hemoglobinopathies and other forms of hereditary anemia. HPLC allows precise quantification and characterization of hemoglobin variants, which is crucial for diagnosing hemoglobinopathies. AIMS AND OBJECTIVES This study aimed to establish a refined approach for diagnosing hemolytic anemias and categorize different types of hemolytic anemia using state-of-the-art technologies for early and precise treatment interventions. MATERIALS AND METHODS This retrospective study was conducted in the Hematology Section of the Department of Pathology at Atal Bihari Vajpayee Government Medical College, Vidisha, Madhya Pradesh. The study included six patients diagnosed with hemolytic anemia based on comprehensive hematological, biochemical, and molecular evaluations. Results: The retrospective analysis of six cases of hemolytic anemia highlighted the diagnostic approach utilized. Clinical presentations, physical examinations, routine hematological investigations, advanced diagnostic modalities, and hemoglobin electrophoresis were instrumental in identifying specific types of hemolytic anemias. CONCLUSION Despite the availability of advanced diagnostic techniques, basic hematological investigations remain the cornerstone in the initial evaluation of HHAs. Hemoglobin electrophoresis plays a pivotal role in confirming diagnoses. In some cases, subtle hematological findings necessitate thorough evaluation, including familial studies, to guide appropriate management strategies.
Collapse
Affiliation(s)
- Aayushi Guru
- Pathology, Atal Bihari Vajpayee Government Medical College Vidisha, Vidisha, IND
| | - Pratibha Meena
- Pathology, Atal Bihari Vajpayee Government Medical College Vidisha, Vidisha, IND
| | - G K Sawke
- Pathology, Atal Bihari Vajpayee Government Medical College Vidisha, Vidisha, IND
| | - Sakshi Tripathi
- Pathology, Atal Bihari Vajpayee Government Medical College Vidisha, Vidisha, IND
| |
Collapse
|
4
|
Chueh HW, Shim YJ, Jung HL, Kim N, Hwang SM, Kim M, Choi HS. Current Status of Molecular Diagnosis of Hereditary Hemolytic Anemia in Korea. J Korean Med Sci 2024; 39:e162. [PMID: 38742293 PMCID: PMC11091231 DOI: 10.3346/jkms.2024.39.e162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hereditary hemolytic anemia (HHA) is considered a group of rare hematological diseases in Korea, primarily because of its unique ethnic characteristics and diagnostic challenges. Recently, the prevalence of HHA has increased in Korea, reflecting the increasing number of international marriages and increased awareness of the disease. In particular, the diagnosis of red blood cell (RBC) enzymopathy experienced a resurgence, given the advances in diagnostic techniques. In 2007, the RBC Disorder Working Party of the Korean Society of Hematology developed the Korean Standard Operating Procedure for the Diagnosis of Hereditary Hemolytic Anemia, which has been continuously updated since then. The latest Korean clinical practice guidelines for diagnosing HHA recommends performing next-generation sequencing as a preliminary step before analyzing RBC membrane proteins and enzymes. Recent breakthroughs in molecular genetic testing methods, particularly next-generation sequencing, are proving critical in identifying and providing insight into cases of HHA with previously unknown diagnoses. These innovative molecular genetic testing methods have now become important tools for the management and care planning of patients with HHA. This review aims to provide a comprehensive overview of recent advances in molecular genetic testing for the diagnosis of HHA, with particular emphasis on the Korean context.
Collapse
Affiliation(s)
- Hee Won Chueh
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Lim Jung
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
5
|
Wang J, Fu HX, Zhang YY, Mo XD, Han TT, Kong J, Sun YQ, Lyu M, Han W, Chen H, Chen YY, Wang FR, Yan CH, Chen Y, Wang JZ, Wang Y, Xu LP, Huang XJ, Zhang XH. [The effect of glucose-6-phosphate dehydrogenase deficiency on allogeneic hematopoietic stem cell transplantation in patients with hematological disorders]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:121-127. [PMID: 38604787 PMCID: PMC11078675 DOI: 10.3760/cma.j.cn121090-20231009-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 04/13/2024]
Abstract
Objectives: To determine the effect of glucose-6-phosphate-dehydrogenase (G6PD) deficiency on patients' complications and prognosis following allogeneic stem cell hematopoietic transplantation (allo-HSCT) . Methods: 7 patients with G6PD deficiency (study group) who underwent allo-HSCT at Peking University People's Hospital from March 2015 to January 2021 were selected as the study group, and thirty-five patients who underwent allo-HSCT during the same period but did not have G6PD deficiency were randomly selected as the control group in a 1∶5 ratio. Gender, age, underlying diseases, and donors were balanced between the two groups. Collect clinical data from two patient groups and perform a retrospective nested case-control study. Results: The study group consisted of six male patients and one female patient, with a median age of 37 (range, 2-45) years old. The underlying hematologic diseases included acute myeloid leukemia (n=3), acute lymphocytic leukemia (n=2), and severe aplastic anemia (n=2). All 7 G6PD deficiency patients achieved engraftment of neutrophils within 28 days of allo-HSCT, while the engraftment rate of neutrophils was 94.5% in the control group. The median days of platelet engraftment were 21 (6-64) d and 14 (7-70) d (P=0.113). The incidence rates of secondary poor graft function in the study group and control group were 42.9% (3/7) and 8.6% (3/35), respectively (P=0.036). The CMV infection rates were 71.4% (5/7) and 31.4% (11/35), respectively (P=0.049). The incidence rates of hemorrhagic cystitis were 57.1% (4/7) and 8.6% (3/35), respectively (P=0.005), while the bacterial infection rates were 100% (7/7) and 77.1% (27/35), respectively (P=0.070). The infection rates of EBV were 14.3% (1/7) and 14.3% (5/35), respectively (P=1.000), while the incidence of fungal infection was 14.3% (1/7) and 25.7% (9/35), respectively (P=0.497). The rates of post-transplant lymphoproliferative disease (PTLD) were 0% and 5.7%, respectively (P=0.387) . Conclusions: The findings of this study indicate that blood disease patients with G6PD deficiency can tolerate conventional allo-HSCT pretreatment regimens, and granulocytes and platelets can be implanted successfully. However, after transplantation, patients should exercise caution to avoid viral infection, complications of hemorrhagic cystitis, and secondary poor graft function.
Collapse
Affiliation(s)
- J Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - H X Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X D Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - T T Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - M Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - W Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - H Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - F R Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Z Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
6
|
Au TY, Wiśniewski OW, Benjamin S, Kubicki T, Dytfeld D, Gil L. G6PD deficiency-does it alter the course of COVID-19 infections? Ann Hematol 2023:10.1007/s00277-023-05164-y. [PMID: 36905446 PMCID: PMC10006571 DOI: 10.1007/s00277-023-05164-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/18/2022] [Indexed: 03/12/2023]
Abstract
Despite the existence of well-founded data around the relationship between reactive oxygen species (ROS) and glucose-6-phosphate dehydrogenase (G6PD), current research around G6PD-deficient patients with viral infections, and limitations as a result of their condition, are inadequate. Here, we analyze existing data around immunological risks, complications, and consequences of this disease, particularly in relation to COVID-19 infections and treatment. The relationship between G6PD deficiency and elevated ROS leading to increased viral load suggests that these patients may confer heightened infectivity. Additionally, worsened prognoses and more severe complications of infection may be realized in class I G6PD-deficient individuals. Though more research is demanded on the topic, preliminary studies suggest that antioxidative therapy which reduces ROS levels in these patients could prove beneficial in the treatment of viral infections in G6PD-deficient individuals.
Collapse
Affiliation(s)
- Tsz Yuen Au
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| | | | - Shamiram Benjamin
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Tadeusz Kubicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Dytfeld
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
7
|
Bahk YY, Ahn SK, Jeon HJ, Na BK, Lee SK, Shin HJ. An Evaluation of a New Quantitative Point-of Care Diagnostic to Measure Glucose-6-phosphate Dehydrogenase Activity. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:281-288. [PMID: 36041490 PMCID: PMC9441449 DOI: 10.3347/kjp.2022.60.4.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Malaria continues to be one of the most crucial infectious burdens in endemic areas worldwide, as well as for travelers visiting malaria transmission regions. It has been reported that 8-aminoquinolines are effective against the Plasmodium species, particularly primaquine, for anti-hypnozoite therapy in P. vivax malaria. However, primaquine causes acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Therefore, G6PD deficiency testing should precede hypnozoite elimination with 8-aminoquinoline. Several point-of-care devices have been developed to detect G6PD deficiency. The aim of the present study was to evaluate the performance of a novel, quantitative G6PD diagnostics based on a metagenomic blue fluorescent protein (mBFP). We comparatively evaluated the sensitivity and specificity of the G6PD diagnostic modality with standard methods using 120 human whole blood samples. The G6PD deficiency was spectrophotometrically confirmed. The performance of the G6PD quantitative test kit was compared with that of a licensed control medical device, the G6PD strip. The G6PD quantitative test kit had a sensitivity of 95% (95% confidence interval (CI): 89.3–100%) and a specificity of 100% (95% CI: 94.3–100%). This study shows that the novel diagnostic G6PD quantitative test kit could be a cost-effective and time-efficient, and universally mandated screening tool for G6PD deficiency.
Collapse
Affiliation(s)
- Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Seong Kyu Ahn
- Infectious Diseases Investigation Division, Jeonnam Institute of Public Health and Environment, Muan 58568, Korea
| | - Heung Jin Jeon
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Deajeon 35015, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Sung-Keun Lee
- Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
- Corresponding authors (; )
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea
- Corresponding authors (; )
| |
Collapse
|
8
|
Ngo TT, Tran TH, Ta TD, Le TP, Nguyen PD, Tran MA, Bui TH, Ta TV, Tran VK. Molecular Characterization and Genotype-Phenotype Correlation of G6PD Mutations in Five Ethnicities of Northern Vietnam. Anemia 2022; 2022:2653089. [PMID: 35845714 PMCID: PMC9277213 DOI: 10.1155/2022/2653089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme disorder and is caused by G6PD gene mutations. To date, more than 400 variants in the G6PD gene have been discovered, and about 160 identified variants are associated with a significant decrease in the G6PD enzyme activity. However, the molecular characterization and epidemiological study of G6PD deficiency are still limited in Vietnam. Therefore, we conducted this study to determine the G6PD variants among the Vietnamese populations and evaluate their correlation to G6PD enzyme activity. A total of 339 patients (302 males and 37 females) were enrolled in this study. The G6PD variants were identified by Sanger sequencing. Our results indicate that males are more severely deficient in G6PD than females. This enzyme activity in males (1.27 ± 1.06 IU/g·Hb) is significantly lower than in females (2.98 ± 1.57 IU/g·Hb) (p < 0.0001). The enzyme activity of the heterozygous-homozygous females and heterozygous females-hemizygous males was found to be significantly different (p < 0.05), which is interpreted due to random X-inactivation. For G6PD molecular characteristics, Viangchan (c.871G>A), Canton (c.1376G>T) and Kaiping (c.1388G>A) variants were the most dominant, accounting for 24.48%, 17.70%, and 22.42%, respectively, whereas the highest frequency of complex variants was observed in Viangchan/Silent with 20.35%. In terms of G6PD activity, the Union variant presented the lowest mean value (1.03 IU/g·Hb) compared to the other variants (p < 0.05). Computational analysis using Polyphen-2 tool investigated that all variants were relative to G6PD deficiency and separated the levels as benign and damaged. The result will establish effective methods to screen G6PD variants in Vietnam.
Collapse
Affiliation(s)
- Thi Thao Ngo
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Thinh Huy Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
- Biochemistry Department, Hanoi Medical University, Hanoi 10000, Vietnam
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Thanh Dat Ta
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Thi Phuong Le
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Phuoc Dung Nguyen
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Mai Anh Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
| | - The-Hung Bui
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
- Center for Molecular Medicine and Surgery, Clinical Genetics Unit, Karolinska Institute, Karolinska University Hospital, Stockholm 14186, Sweden
| | - Thanh Van Ta
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
- Biochemistry Department, Hanoi Medical University, Hanoi 10000, Vietnam
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Van Khanh Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi 10000, Vietnam
| |
Collapse
|
9
|
Bahk YY, Ahn SK, Lee J, Im JH, Yeom JS, Park S, Kwon J, Kan H, Kim M, Jang W, Kim TS. A Profile of Glucose-6-Phosphate Dehydrogenase Variants and Deficiency of Multicultural Families in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:447-455. [PMID: 34724763 PMCID: PMC8561050 DOI: 10.3347/kjp.2021.59.5.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022]
Abstract
Vivax malaria incidence in Korea is now decreased and showing a low plateau. Nowadays, vivax malaria in Korea is expected to be successfully eliminated with anti-malaria chemotherapy, primaquine, and vector control. The glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with potential hemolytic anemia after primaquine administration. This inborn disorder has a pivotal polymorphism with genetic variants and is the most prevalent X-chromosome-linked disorder. The prevalence of G6PD deficiency was previously reported negligible in Korea. As the population of multicultural families pertaining marriage immigrants and their adolescents increases, it is necessary to check G6PD deficiency for them prior to primaquine treatment for vivax malaria. The prevalence of G6PD variants and G6PD deficiency in multicultural families was performed in 7 counties and 2 cities of Jeollanam-do (Province), Gyeonggi-do, and Gangwon-do. A total of 733 blood samples of multicultural family participants were subjected to test the phenotypic and genetic G6PD deficiency status using G6PD enzyme activity quantitation kit and PCR-based G6PD genotyping kit. The G6PD phenotypic deficiency was observed in 7.8% of male adolescent participants and 3.2% of materfamilias population. Based on the PCR-based genotyping, we observed total 35 participants carrying the mutated alleles. It is proposed that primaquine prescription should seriously be considered prior to malaria treatment.
Collapse
Affiliation(s)
- Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Seong Kyu Ahn
- Infectious Diseases Investigation Division, Jeonnam Institute of Public Health and Environment, Muan 58568, Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Jae Hyoung Im
- Division of Infection Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Joon-Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sookkyung Park
- Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Osong 28159, Korea
| | - Jeongran Kwon
- Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Osong 28159, Korea
| | - Hyesu Kan
- Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Osong 28159, Korea
| | - Miyoung Kim
- Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Osong 28159, Korea
| | - Woori Jang
- Department of Laboratory Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Tong-Soo Kim
- Department of Parasitology and Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea.,Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
10
|
Bancone G, Chu CS. G6PD Variants and Haemolytic Sensitivity to Primaquine and Other Drugs. Front Pharmacol 2021; 12:638885. [PMID: 33790795 PMCID: PMC8005603 DOI: 10.3389/fphar.2021.638885] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Restrictions on the cultivation and ingestion of fava beans were first reported as early as the fifth century BC. Not until the late 19th century were clinical descriptions of fava-induced disease reported and soon after characterised as “favism” in the early 20th century. It is now well known that favism as well as drug-induced haemolysis is caused by a deficiency of the glucose-6-phosphate dehydrogenase (G6PD) enzyme, one of the most common enzyme deficiency in humans. Interest about the interaction between G6PD deficiency and therapeutics has increased recently because mass treatment with oxidative 8-aminoquinolines is necessary for malaria elimination. Historically, assessments of haemolytic risk have focused on the clinical outcomes (e.g., haemolysis) associated with either a simplified phenotypic G6PD characterisation (deficient or normal) or an ill-fitting classification of G6PD genetic variants. It is increasingly apparent that detailed knowledge of both aspects is required for a complete understanding of haemolytic risk. While more attention has been devoted recently to better phenotypic characterisation of G6PD activity (including the development of new point-of care tests), the classification of G6PD variants should be revised to be clinically useful in malaria eliminating countries and in populations with prevalent G6PD deficiency. The scope of this work is to summarize available literature on drug-induced haemolysis among individuals with different G6PD variants and to highlight knowledge gaps that could be filled with further clinical and laboratory research.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Lee W, Lee SE, Lee MJ, Noh KT. Investigation of glucose-6-phosphate dehydrogenase (G6PD) deficiency prevalence in a Plasmodium vivax-endemic area in the Republic of Korea (ROK). Malar J 2020; 19:317. [PMID: 32873296 PMCID: PMC7465311 DOI: 10.1186/s12936-020-03393-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most prevalent inborn disorder. This X-chromosome-linked recessive disease affects more than 400 million people globally, and is associated with haemolytic anaemia after medication with the anti-latent malaria drug, primaquine. To prevent malaria, the Republic of Korea (ROK) Army administers malaria chemoprophylaxis. Due to the previously low G6PD deficiency prevalence in the ROK, prior to primaquine administration, testing for G6PD deficiency was not mandatory. In this study, to evaluate the risk from malaria chemoprophylaxis in the ROK, G6PD deficiency prevalence was investigated. Methods Blood specimens from 1632 soldiers entering training camp for the 3rd Infantry of the ROK Army were collected. CareStart™ Biosensor for G6PD and haemoglobin (Hb) was used to detect G6PD levels. G6PD variants using the DiaPlexC G6PD Genotyping kit (Asian type) and full-length sequencing were examined. Results Of 1632 blood specimens tested, none was observed to be G6PD deficient. The median value of all tested samples was 7.582 U/g Hb. An investigation of 170 G6PD DNA variants was analysed and categorized as partially low normal [n = 131, 30–80% (2.27–6.05 U/g Hb) of the median value], high [n = 3, > 150% (> 11.373 U/g Hb) of the median value], or normal [n = 36, 80–150% (6.05–11.373 U/g Hb) of the median value], and none was amplified by the DiaPlexC kit. Five silent mutations (C→T) in 131 partially low normal specimens were found at the 1311th nucleotide position by sequence analysis. Another 8 silent mutations (T93C) were also detected in 131 partially low normal specimens. Thus, it is inferred that these silent mutations could be related to G6PD activity. Conclusions This G6PD deficiency prevalence study, conducted among participants from the 3rd Infantry of the ROK Army, provided crucial evidence for the safety of malaria chemoprophylaxis. This study showed that the prevalence of G6PD deficiency among 1632 young soldiers was wholly absent. Although G6PD phenotypic mutations were not detected, many silent mutations (C1311T and T93C) were observed. Thus, it is inferred that malaria chemoprophylaxis is relatively safe against G6PD deficiency-mediated haemolytic anaemia. However, given the number of individuals whose G6PD were at the partially low normal range and the frequent detection of G6PD deficiency-related mutations, consistent monitoring of G6PD deficiency is needed.
Collapse
Affiliation(s)
- Wonsig Lee
- Department of Infectious Disease Research, Armed Forces Medical Research Institute, 90bun, Jaunro, Yuseong-gu, Daejeon, 34059, Republic of Korea
| | - Sang-Eun Lee
- Division of Vectors & Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Min Jun Lee
- WELLS BIO Inc., 16, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, 07795, Republic of Korea
| | - Kyung Tae Noh
- Department of Infectious Disease Research, Armed Forces Medical Research Institute, 90bun, Jaunro, Yuseong-gu, Daejeon, 34059, Republic of Korea.
| |
Collapse
|
12
|
Shim YJ, Jung HL, Shin HY, Kang HJ, Choi JY, Hah JO, Lee JM, Lim YT, Yang EJ, Baek HJ, Choi HS, Yoo KH, Park JE, Kim S, Kim JY, Park ES, Im HJ, Chueh HW, Kim SK, Lee JH, Yoo ES, Park HJ, Lee JA, Park M, Kang HS, Park JK, Lee NH, Park SK, Lee YH, Lee SW, Choi EJ, Kong SG. Epidemiological Study of Hereditary Hemolytic Anemia in the Korean Pediatric Population during 1997-2016: a Nationwide Retrospective Cohort Study. J Korean Med Sci 2020; 35:e279. [PMID: 32830468 PMCID: PMC7445306 DOI: 10.3346/jkms.2020.35.e279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/02/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Hereditary hemolytic anemia (HHA) is a rare disease characterized by premature red blood cell (RBC) destruction due to intrinsic RBC defects. The RBC Disorder Working Party of the Korean Society of Hematology established and updated the standard operating procedure for making an accurate diagnosis of HHA since 2007. The aim of this study was to investigate a nationwide epidemiology of Korean HHA. METHODS We collected the data of a newly diagnosed pediatric HHA cohort (2007-2016) and compared this cohort's characteristics with those of a previously surveyed pediatric HHA cohort (1997-2006) in Korea. Each participant's information was retrospectively collected by a questionnaire survey. RESULTS A total of 369 children with HHA from 38 hospitals distributed in 16 of 17 districts of Korea were investigated. RBC membranopathies, hemoglobinopathies, RBC enzymopathies, and unknown etiologies accounted for 263 (71.3%), 59 (16.0%), 23 (6.2%), and 24 (6.5%) of the cases, respectively. Compared to the cohort from the previous decade, the proportions of hemoglobinopathies and RBC enzymopathies significantly increased (P < 0.001 and P = 0.008, respectively). Twenty-three of the 59 hemoglobinopathy patients had immigrant mothers, mostly from South-East Asia. CONCLUSION In Korea, thalassemia traits have increased over the past 10 years, reflecting both increased awareness of this disease and increased international marriages. The enhanced recognition of RBC enzymopathies is due to advances in diagnostic technique; however, 6.5% of HHA patients still do not have a clear diagnosis. It is necessary to improve accessibility of diagnosing HHA.
Collapse
MESH Headings
- Adolescent
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/epidemiology
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/epidemiology
- Child
- Child, Preschool
- Female
- Glucosephosphate Dehydrogenase Deficiency/diagnosis
- Glucosephosphate Dehydrogenase Deficiency/epidemiology
- Hemoglobinopathies/diagnosis
- Hemoglobinopathies/epidemiology
- Hemoglobins/genetics
- Hospitals
- Humans
- Infant
- Infant, Newborn
- Male
- Polymorphism, Genetic
- Pyruvate Kinase/deficiency
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/epidemiology
- Republic of Korea/epidemiology
- Retrospective Studies
- Surveys and Questionnaires
Collapse
Affiliation(s)
- Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Hye Lim Jung
- Deparment of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Hee Young Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, Korea.
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, Korea
| | - Jeong Ok Hah
- Department of Pediatrics, Daegu Fatima Hospital, Daegu, Korea
| | - Jae Min Lee
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Young Tak Lim
- Department of Pediatrics, Pusan National University School of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Eu Jeen Yang
- Department of Pediatrics, Pusan National University School of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Hee Jo Baek
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Eun Park
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Seongkoo Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Yoon Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Eun Sil Park
- Department of Pediatrics, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Ho Joon Im
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Hee Won Chueh
- Department of Pediatrics, Dong-A University College of Medicine, Busan, Korea
| | - Soon Ki Kim
- Department of Pediatrics, Inha University Hospital, Incheon, Korea
| | - Jae Hee Lee
- Department of Pediatrics, Chosun University Hospital, Gwangju, Korea
| | - Eun Sun Yoo
- Department of Pediatrics, Ewha Womans University College of Medicine, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Hyeon Jin Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Korea
| | - Jun Ah Lee
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Korea
| | - Meerim Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Korea
| | - Hyun Sik Kang
- Department of Pediatrics, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Ji Kyoung Park
- Department of Pediatrics, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Na Hee Lee
- Department of Pediatrics, Cha Bundang Medical Center, Cha University, Seongnam, Korea
| | - Sang Kyu Park
- Department of Pediatrics, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Young Ho Lee
- Department of Pediatrics, Hanyang University Seoul Hospital, Seoul, Korea
| | - Seong Wook Lee
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Eun Jin Choi
- Department of Pediatrics, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Seom Gim Kong
- Department of Pediatrics, Kosin University College of Medicine, Kosin University Gospel Hospital, Busan, Korea
| | | |
Collapse
|
13
|
A novel G6PD deleterious variant identified in three families with severe glucose-6-phosphate dehydrogenase deficiency. BMC MEDICAL GENETICS 2020; 21:150. [PMID: 32680472 PMCID: PMC7367331 DOI: 10.1186/s12881-020-01090-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase deficiency (D-G6PD) is an X-linked recessive disorder resulted from deleterious variants in the housekeeping gene Glucose-6-phosphate 1-dehydrogenase (G6PD), causing impaired response to oxidizing agents. Screening for new variations of the gene helps with early diagnosis of D-G6PD resulting in a reduction of disease related complications and ultimately increased life expectancy of the patients. METHODS One thousand five hundred sixty-five infants with pathological jaundice were screened for G6PD variants by Sanger sequencing all of the 13 exons, and the junctions of exons and introns of the G6PD gene. RESULTS We detected G6PD variants in 439 (28.1%) of the 1565 infants with pathological jaundice. In total, 9 types of G6PD variants were identified in our cohort; and a novel G6PD missense variant c.1118 T > C, p.Phe373Ser in exon 9 of the G6PD gene was detected in three families. Infants with this novel variant showed decreased activity of G6PD, severe anemia, and pathological jaundice, consistent with Class I G6PD deleterious variants. Analysis of the resulting protein's structure revealed this novel variant affects G6PD protein stability, which could be responsible for the pathogenesis of D-G6PD in these patients. CONCLUSIONS High rates of G6PD variants were detected in infants with pathological jaundice, and a novel Class I G6PD deleterious variants was identified in our cohort. Our data reveal that variant analysis is helpful for the diagnosis of D-G6PD in patients, and also for the expansion of the spectrum of known G6PD variants used for carrier detection and prenatal diagnosis.
Collapse
|
14
|
Wu H, Zhu Q, Zhong H, Yu Z, Zhang Q, Huang Q. Analysis of genotype distribution of thalassemia and G6PD deficiency among Hakka population in Meizhou city of Guangdong Province. J Clin Lab Anal 2019; 34:e23140. [PMID: 31793705 PMCID: PMC7171329 DOI: 10.1002/jcla.23140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of the study was to explore genotype distribution thalassemia and G6PD deficiency in Meizhou city, China. Methods A total of 16 158 individuals were involved in thalassemia genetic testing. A total of 605 subjects were screened for common Chinese G6PD mutations by gene chip analysis. Genotypes and allele frequencies were analyzed. Results A total of 5463 cases carried thalassemia mutations were identified, including 3585 cases, 1701 cases, and 177 cases with α‐, β‐, and α + β‐thalassemia mutations, respectively. ‐‐SEA (65.12%), ‐α3.7 (19.05%), and ‐α4.2 (8.05%) deletion were the main mutations of α‐thalassemia, while IVS‐II‐654(C → T) (40.39%), CD41‐42(‐TCTT) (32.72%), ‐28(A → G) (10.11%), and CD17(A → T) (9.32%) mutations were the principal mutations of β‐thalassemia in Meizhou. There were significant differences in allele frequencies in some counties. Genetic testing for G6PD deficiency, six mutation sites, and one polymorphism were detected in our study. A total of 198 alleles with the mutation were detected among 805 alleles (24.6%). G6PD Canton (c.1376 G → T) (45.96%), G6PD Kaiping (c.1388 G → A) (39.39%), and G6PD Gaohe (c.95 A → G) (9.09%) account for 94.44% mutations, followed by G6PD Chinese‐5 (c.1024 C → T) (4.04%), G6PD Viangchan (c.871G → A) (1.01%), and G6PD Maewo (c.1360 C → T) (0.51%). There were some differences of the distribution of G6PD mutations among eight counties in Meizhou. Conclusions The ‐‐SEA, ‐α3.7, and ‐α4.2 deletion were the main mutations of α‐thalassemia, while IVS‐II‐654(C → T), CD41‐42(‐TCTT), ‐28(A → G), and CD17(A → T) mutations were the principal mutations of β‐thalassemia in Meizhou. G6PD c.1376 G → T, c.1388 G → A, and c.95 A → G were the main mutations of G6PD deficiency. There were some differences of the distribution of thalassemia and G6PD mutations among eight counties in Meizhou.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Qiuyan Zhu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Hua Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Qunji Zhang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| |
Collapse
|
15
|
Kim YE, Ki CS, Jang MA. Challenges and Considerations in Sequence Variant Interpretation for Mendelian Disorders. Ann Lab Med 2019; 39:421-429. [PMID: 31037860 PMCID: PMC6502951 DOI: 10.3343/alm.2019.39.5.421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/28/2018] [Accepted: 04/09/2019] [Indexed: 11/23/2022] Open
Abstract
In 2015, the American College of Medical Genetics and Genomics (ACMG), together with the Association for Molecular Pathology (AMP), published the latest guidelines for the interpretation of sequence variants, which have been widely adopted into clinical practice. Despite these standardized efforts, the degrees of subjectivity and uncertainty allowed by the guidelines can lead to inconsistent variant classification across clinical laboratories, making it difficult to assess the pathogenicity of identified variants. We describe the critical elements of variant interpretation processes and potential pitfalls through practical examples and provide updated information based on a review of recent literature. The variant classification we describe is meant to be applicable to sequence variants for Mendelian disorders, whether identified by single-gene tests, multi-gene panels, exome sequencing, or genome sequencing. Continuing efforts to improve the reproducibility and objectivity of sequence variant interpretation across individuals and laboratories are needed.
Collapse
Affiliation(s)
- Young Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
| | | | - Mi Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| |
Collapse
|
16
|
Zhong Z, Wu H, Li B, Li C, Liu Z, Yang M, Zhang Q, Zhong W, Zhao P. Analysis of Glucose-6-Phosphate Dehydrogenase Genetic Polymorphism in the Hakka Population in Southern China. Med Sci Monit 2018; 24:7316-7321. [PMID: 30315739 PMCID: PMC6196584 DOI: 10.12659/msm.908402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background In southern China, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a significant health problem. The aim of this study was to investigate the molecular epidemiological characteristic of the G6PD gene among Chinese Hakka in southern Guangdong province. Material/Methods We screened 611 unrelated subjects for G6PD genetic polymorphism analyzed by a gene chip analysis for common Chinese G6PD mutations. G-6-PD enzyme activity was determined by use of the G-6-PD quantitative detection kit. Results Seven mutation sites were detected from subjects in our study. G6PD Canton (c.1376 G→T)(33.06%), G6PD Kaiping (c.1388 G→A)(30.67%), and polymorphism (c.1311 C→T)(25.89%) account for 89.62% of mutations, followed by G6PD Gaohe (c.95 A→G)(5.97%), G6PD Chinese-5 (c.1024 C→T)(3.58%), G6PD Maewo (c.1360 C→T)(0.39%), and G6PD Viangchan (c.871G→A)(0.39%). Conclusions We studied the genetic polymorphisms and frequencies of G6PD gene in the Hakka population of Meizhou. Our results coincide with the results among the Chinese Jiangxi Hakka population. It was consistent with previous research reports on Chinese people. There were differences in the results of reports from some other Asian populations. Our results could be useful for future prevention and control of G6PD deficiency aimed at the Chinese Hakka population.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Heming Wu
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Bin Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Cunren Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Zhidong Liu
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Min Yang
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Qifeng Zhang
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Pingsen Zhao
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| |
Collapse
|
17
|
Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis 2018; 12:e0006230. [PMID: 29672516 PMCID: PMC5908060 DOI: 10.1371/journal.pntd.0006230] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Primaquine is the only available antimalarial drug that kills dormant liver stages of Plasmodium vivax and Plasmodium ovale malarias and therefore prevents their relapse (‘radical cure’). It is also the only generally available antimalarial that rapidly sterilises mature P. falciparum gametocytes. Radical cure requires extended courses of primaquine (usually 14 days; total dose 3.5–7 mg/kg), whereas transmissibility reduction in falciparum malaria requires a single dose (formerly 0.75 mg/kg, now a single low dose [SLD] of 0.25 mg/kg is recommended). The main adverse effect of primaquine is dose-dependent haemolysis in glucose 6-phosphate dehydrogenase (G6PD) deficiency, the most common human enzymopathy. X-linked mutations conferring varying degrees of G6PD deficiency are prevalent throughout malaria-endemic regions. Phenotypic screening tests usually detect <30% of normal G6PD activity, identifying nearly all male hemizygotes and female homozygotes and some heterozygotes. Unfortunately, G6PD deficiency screening is usually unavailable at point of care, and, as a consequence, radical cure is greatly underused. Both haemolytic risk (determined by the prevalence and severity of G6PD deficiency polymorphisms) and relapse rates vary, so there has been considerable uncertainty in both policies and practices related to G6PD deficiency testing and use of primaquine for radical cure. Review of available information on the prevalence and severity of G6PD variants together with countries’ policies for the use of primaquine and G6PD deficiency testing confirms a wide range of practices. There remains lack of consensus on the requirement for G6PD deficiency testing before prescribing primaquine radical cure regimens. Despite substantially lower haemolytic risks, implementation of SLD primaquine as a P. falciparum gametocytocide also varies. In Africa, a few countries have recently adopted SLD primaquine, yet many with areas of low seasonal transmission do not use primaquine as an antimalarial at all. Most countries that recommended the higher 0.75 mg/kg single primaquine dose for falciparum malaria (e.g., most countries in the Americas) have not changed their recommendation. Some vivax malaria–endemic countries where G6PD deficiency testing is generally unavailable have adopted the once-weekly radical cure regimen (0.75 mg/kg/week for 8 weeks), known to be safer in less severe G6PD deficiency variants. There is substantial room for improvement in radical cure policies and practices.
Collapse
Affiliation(s)
- Judith Recht
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Fu C, Luo S, Li Q, Xie B, Yang Q, Geng G, Lin C, Su J, Zhang Y, Wang J, Qin Z, Luo J, Chen S, Fan X. Newborn screening of glucose-6-phosphate dehydrogenase deficiency in Guangxi, China: determination of optimal cutoff value to identify heterozygous female neonates. Sci Rep 2018; 8:833. [PMID: 29339739 PMCID: PMC5770456 DOI: 10.1038/s41598-017-17667-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
The aim of this study is to assess the disease incidence and mutation spectrum of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Guangxi, China, and to determine an optimal cutoff value to identify heterozygous female neonates. A total of 130, 635 neonates were screened from the year of 2013 to 2017. Neonates suspected for G6PD deficiency were further analyzed by quantitatively enzymatic assay and G6PD mutation analysis. The overall incidence of G6PD deficiency was 7.28%. A total of 14 G6PD mutations were identified, and different mutations lead to varying levels of G6PD enzymatic activities. The best cut-off value of G6PD activity in male subjects is 2.2 U/g Hb, same as conventional setting. In female population, however, the cut-off value is found to be 2.8 U/g Hb (sensitivity: 97.5%, specificity: 87.7%, AUC: 0.964) to best discriminate between normal and heterozygotes, and 1.6 U/g Hb (sensitivity: 82.2%, specificity: 85.9%, AUC: 0.871) between heterozygotes and deficient subjects. In conclusion, we have conducted a comprehensive newborn screening of G6PD deficiency in a large cohort of population from Guangxi, China, and first established a reliable cut-off value of G6PD activity to distinguish heterozygous females from either normal or deficient subjects.
Collapse
Affiliation(s)
- Chunyun Fu
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Shiyu Luo
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Qifei Li
- Guangxi Huayin Medical Laboratory Center, Nanning, 530012, China
| | - Bobo Xie
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Qi Yang
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Guoxing Geng
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Caijuan Lin
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Jiasun Su
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Yue Zhang
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Jin Wang
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Zailong Qin
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Jingsi Luo
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China
| | - Shaoke Chen
- Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China. .,Department of Pediatrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.
| | - Xin Fan
- Department of Genetic Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China. .,Research Center for Guangxi Birth Defects Control and Prevention, Nanning, 530003, China.
| |
Collapse
|
19
|
Kim Y, Park J, Kim M. Diagnostic approaches for inherited hemolytic anemia in the genetic era. Blood Res 2017; 52:84-94. [PMID: 28698843 PMCID: PMC5503903 DOI: 10.5045/br.2017.52.2.84] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Inherited hemolytic anemias (IHAs) are genetic diseases that present with anemia due to the increased destruction of circulating abnormal RBCs. The RBC abnormalities are classified into the three major disorders of membranopathies, hemoglobinopathies, and enzymopathies. Traditional diagnosis of IHA has been performed via a step-wise process combining clinical and laboratory findings. Nowadays, the etiology of IHA accounts for germline mutations of the responsible genes coding for the structural components of RBCs. Recent advances in molecular technologies, including next-generation sequencing, inspire us to apply these technologies as a first-line approach for the identification of potential mutations and to determine the novel causative genes in patients with IHAs. We herein review the concept and strategy for the genetic diagnosis of IHAs and provide an overview of the preparations for clinical applications of the new molecular technologies.
Collapse
Affiliation(s)
- Yonggoo Kim
- Department of Laboratory Medicine, Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|