1
|
Souan L, Rihani R, Sughayer MA. Predicting cytomegalovirus infection and graft-versus-host disease using QuantiFERON-CMV and Monitor in pediatric transplants: a proof-of-concept study. Ther Adv Hematol 2025; 16:20406207251316680. [PMID: 39926028 PMCID: PMC11806478 DOI: 10.1177/20406207251316680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Background Cytomegalovirus (CMV) infection can lead to significant morbidity and mortality in pediatric hematopoietic stem cell transplant recipients. Early detection of CMV infection is crucial for managing its impact. Aim This study aims to evaluate the effectiveness of QuantiFERON-CMV® (QF-CMV) and QuantiFERON-Monitor® (QFM) tests in predicting CMV infection and graft-versus-host disease (GvHD) in pediatric hematopoietic stem cell transplant recipients to enhance patient outcomes and support personalized prevention strategies. Methods The QF-CMV and QFM tests were used to predict CMV pp65 antigen and GvHD in 24 pediatric hematopoietic stem cell transplant recipients. Results Data showed that positive CMV antigenemia (CMV-Ag) increased the risk of GvHD by 21.2%. QF-CMV and QFM were associated with CMV-Ag, with QF-CMV inversely predicting GvHD. Lymphocyte and neutrophil counts were positively linked to both tests. Conclusion The findings suggest that QF-CMV and QFM tests could predict GvHD and CMV infection risk and help identify high-risk patients, contributing to personalized prevention strategies and improving CMV treatment. Despite the small sample size, this study is an essential proof of concept due to the unique patient population of pediatric bone marrow stem cell transplant recipients. Further multicenter studies are needed to validate these results.
Collapse
Affiliation(s)
- Lina Souan
- Department of Pathology & Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Rawad Rihani
- Pediatric Blood and Marrow and Cellular Therapy Program, Department of Pediatric Hematology and Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Maher A. Sughayer
- Department of Pathology & Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
2
|
Gupta C, Mundan NG, Das S, Jawed A, Dar SA, Dailah HG. Cytomegalovirus Infections in Hematopoietic Stem Cell Transplant: Moving Beyond Molecular Diagnostics to Immunodiagnostics. Diagnostics (Basel) 2024; 14:2523. [PMID: 39594189 PMCID: PMC11592488 DOI: 10.3390/diagnostics14222523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Human CMV, regularly reactivated by simple triggers, results in asymptomatic viral shedding, powerful cellular immune responses, and memory inflation. Immunocompetent individuals benefit from a robust immune response, which aids in viral management without causing clinically significant illness; however, immunodeficient individuals are always at a higher risk of CMV reactivation and disease. Hematopoietic stem cell transplant (HSCT) recipients are consistently at higher risk of CMV reactivation and clinically significant CMV illness due to primary disease, immunosuppression, and graft vs. host disease. Early recovery of CMV-CMI responses may mitigate effects of viral reactivation in HSCT recipients. Immune reconstitution following transplantation occurs spontaneously and is mediated initially by donor-derived T cells, followed by clonal growth of T cells produced from graft progenitors. CMV-specific immune reconstitution post-transplant is related to spontaneous clearance of CMV reactivation and may eliminate the need for prophylactic or pre-emptive medication, making it a potential predictive marker for monitoring CMV reactivation. This review highlights current thoughts and therapeutic options for CMV reactivation in HSCT, with focus on CMV immune reconstitution and post-HSCT monitoring. Immune monitoring aids in risk stratification of transplant recipients who may progress from CMV reactivation to clinically significant CMV infection. Implementing this approach in clinical practice reduces the need for periodic viral surveillance and antiviral therapy in recipients who have a high CMV-CMI and thus may experience self-limited reactivation. Therefore, in the age of precision medicine, it is critical to incorporate CMV-specific cellular immune surveillance into conventional procedures and algorithms for the management of transplant recipients.
Collapse
Affiliation(s)
- Chhavi Gupta
- Department of Infectious Diseases, Yashoda Super Speciality Hospital, Ghaziabad 201001, India
| | - Netto George Mundan
- Department of Infectious Diseases, Government Medical College, Kottayam 686008, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and GTB Hospital (University of Delhi), Delhi 110095, India
| | - Arshad Jawed
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| | - Sajad Ahmad Dar
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| | - Hamad Ghaleb Dailah
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| |
Collapse
|
3
|
Yoon E, Shin S, Choi S, Jang JH, Kim K, Kim SJ, Kim WS, Jung CW, Kang ES. QuantiFERON monitor predicts early cytomegalovirus infection and viral burden in allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2024; 26:e14328. [PMID: 38980949 DOI: 10.1111/tid.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is a major cause of transplantation-related morbidity and mortality. This study assessed the utility of the QuantiFERON monitor (QFM; Qiagen) for the prediction of early CMV infection and viral burden. METHODS QuantiFERON-CMV (QF-CMV; Qiagen) and QFM were measured at the post-allogeneic hematopoietic stem cell transplantation (HSCT) week 4. CMV DNA was measured at every visit until post-HSCT week 24. The QFM cutoff specific to CMV infection was established. RESULT At the post-HSCT week 4, the QFM cutoff predicting CMV infection was 86.95 IU/mL. While QF-CMV results at the post-HSCT week 4 were associated with high-level CMV infection (CMV DNA ≥ 5,000 IU/mL) but not with CMV infection (CMV DNA ≥ 500 IU/mL), QFM was associated with both CMV infection and high-level CMV infection. Both indeterminate QF-CMV and nonreactive QFM were associated with increased peak CMV DNA. CONCLUSION Low QFM is a risk factor for CMV infection and increased CMV viral loads. QFM at post-HSCT week 4 can be utilized as an assay to predict the risk and burden of early CMV infection in HSCT recipients, in conjunction with other risk factors.
Collapse
Affiliation(s)
- Eungjun Yoon
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sunghwan Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Sooin Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Jun Ho Jang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kihyun Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seok Jin Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won Seog Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chul Won Jung
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Lauruschkat CD, Muchsin I, Rein AF, Erhard F, Grathwohl D, Dölken L, Köchel C, Nehmer A, Falk CS, Grigoleit GU, Einsele H, Wurster S, Kraus S. Impaired T cells and "memory-like" NK-cell reconstitution is linked to late-onset HCMV reactivation after letermovir cessation. Blood Adv 2024; 8:2967-2979. [PMID: 38315873 PMCID: PMC11302378 DOI: 10.1182/bloodadvances.2023012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (alloSCT) is the only cure for many hematologic malignancies. However, alloSCT recipients are susceptible to opportunistic pathogens, such as human cytomegalovirus (HCMV). Letermovir prophylaxis has revolutionized HCMV management, but the challenge of late HCMV reactivations has emerged. Immunological surrogates of clinically significant HCMV infection (csCMVi) after discontinuation of letermovir remain to be defined. Therefore, we studied natural killer (NK)-cell reconstitution along with the global and HCMV pp65-specific T-cell repertoire of 24 alloSCT recipients at 7 time points before (day +90) and after (days +120-270) cessation of letermovir prophylaxis. Patients who experienced csCMVi had lower counts of IFN-γ+ HCMV-specific CD4+ and CD8+ T cells than HCMV controllers. Furthermore, patients with csCMVi displayed late impairment of NK-cell reconstitution, especially suppression of "memory-like" CD159c+CD56dim NK-cell counts that preceded csCMVi events in most patients. Moreover, several surrogates of immune reconstitution were associated with the severity of HCMV manifestation, with patients suffering from HCMV end-organ disease and/or refractory HCMV infection harboring least HCMV-specific T cells and "memory-like" NK cells. Altogether, our findings establish an association of delayed or insufficient proliferation of both HCMV-specific T cells and "memory-like" NK cells with csCMVi and the severity of HCMV manifestations after discontinuation of letermovir prophylaxis.
Collapse
Affiliation(s)
| | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
| | - Alice Felicitas Rein
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
| | - Denise Grathwohl
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
- Helmholtz-Institute for RNA-based Infection Research, Würzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Anne Nehmer
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Christine Susanne Falk
- Institute of Transplant Immunology, Medizinische Hochschule Hanover, Hanover, Germany
- German Center for Infection Research, TTU-IICH, Hanover, Germany
- German Center for Lung Diseases, BREATH Site, Hanover, Germany
| | - Götz Ulrich Grigoleit
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| |
Collapse
|
5
|
Otto WR, Vora SB, Dulek DE. Cytomegalovirus Cell-mediated Immunity Assays in Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S22-S30. [PMID: 38417088 DOI: 10.1093/jpids/piae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
Cytomegalovirus (CMV) is a significant cause of morbidity and mortality in pediatric transplantation. However, currently utilized CMV prevention paradigms have limitations, leading to research aimed at novel strategies for mitigation of CMV infection. Cell-mediated immunity (CMI) is crucial in controlling CMV infection and the use of CMV-specific CMI assays to guide prevention and treatment of CMV infection in both solid organ transplant and hematopoietic cell transplant recipients shows great promise. In this article, we review the immune response to CMV infection to highlight the rationale for CMI assays, describe available commercial assays and strategies for their use, and summarize relevant literature regarding the use of CMI assays in transplant recipients.
Collapse
Affiliation(s)
- William R Otto
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Surabhi B Vora
- Division of Infectious Diseases, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Daniel E Dulek
- Division of Pediatric Infectious Diseases, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Souan L, Jazar HA, Nashwan S, Sughayer MA. QuantiFERON-CMV and monitor predict cytomegalovirus, mortality, and graft-versus-host disease in transplant recipients. J Med Virol 2023; 95:e29250. [PMID: 38009250 DOI: 10.1002/jmv.29250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Cytomegalovirus (CMV) is the most prevalent infection in recipients of hematopoietic stem cell transplant (HSCT). QuantiFERON-CMV (QF-CMV) and QuantiFERON-Monitor (QFM) assays were used to test whether immune-competent adult allogeneic HSCT recipients with CMV-specific T cells can control CMV infection or reactivation. Our data demonstrated a significant correlation between CMV infection measured by CMV-antigenemia test and QF-CMV results, graft versus host disease (GvHD), and mortality rates. The QF-CMV test revealed that CMV-specific T cells with higher interferon-γ (IFN-γ) release were correlated with lower CMV infection rates. There was a significant negative association between QF-CMV results, GvHD, and mortality rates. Data showed that a one-unit rise in IFN-γ was linked with a 12.7% reduction in GvHD and a 20.7% reduction in the mortality odds ratio. In addition, a negative correlation was found between QF-M results and CMV infection, with the QFM test predicting protection against CMV infection by 1.9%. This is one of the few studies establishing the QF-CMV test's predictive value for GvHD and mortality, its use to monitor HSCT patients for pre-emptive therapy, and the use of the QFM test to predict CMV infection and mortality in HSCT patients. Thus, these assays could be utilized to optimize preventive and pre-emptive therapy procedures to reduce transplant recipient adverse effects and posttransplant therapy costs.
Collapse
Affiliation(s)
- Lina Souan
- Department of Pathology & Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Husam Abu Jazar
- Bone Marrow and Stem Cell Transplantation Program, King Hussein Cancer Center, Amman, Jordan
| | - Sura Nashwan
- Department of Pathology & Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Maher A Sughayer
- Department of Pathology & Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
7
|
Eberhardt KA, Jung V, Knops E, Heger E, Wirtz M, Steger G, Kaiser R, Affeldt P, Holtick U, Klein F, Scheid C, Di Cristanziano V. CMV-IgG pre-allogeneic hematopoietic stem cell transplantation and the risk for CMV reactivation and mortality. Bone Marrow Transplant 2023; 58:639-646. [PMID: 36869190 PMCID: PMC10247370 DOI: 10.1038/s41409-023-01944-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
Cytomegalovirus (CMV) represents one of the most common infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Currently, a common diagnostic test used to stratify the risk for CMV infection in allo-HSCT recipients is the qualitative CMV serology of donor and recipient. A positive serostatus of the recipient is the most important risk factor for CMV reactivation and associated with reduced overall survival post-transplantation (TX). Direct and indirect effects of CMV are involved in the poorer survival outcome. The present study investigated if the quantitative interpretation of anti-CMV IgG before allo-HSCT might serve as a novel parameter for the identification of patients at risk for CMV reactivation and worse outcome post-TX. For this purpose, a cohort of 440 allo-HSCT recipients over a period of 10 years was retrospectively analyzed. Our findings indicated that patients with high CMV IgG pre-allo-HSCT had a higher risk to develop CMV reactivation, including clinically relevant infections, and a worse prognosis 36 months post-allo-HSCT as compared to recipients with low CMV IgG values. In the letermovir (LMV) era, this group of patients might benefit from a closer CMV monitoring, and hence, earlier intervention if needed, especially after discontinuation of prophylaxis.
Collapse
Affiliation(s)
- Kirsten Alexandra Eberhardt
- Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, Hamburg, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Jung
- Department of Hematology and Stem-Cell Transplantation, University Hospital Essen, Essen, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maike Wirtz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gertrud Steger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Patrick Affeldt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christof Scheid
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Lauruschkat CD, Muchsin I, Rein A, Erhard F, Grathwohl D, Dölken L, Köchel C, Falk CS, Einsele H, Wurster S, Grigoleit GU, Kraus S. CD4+ T cells are the major predictor of HCMV control in allogeneic stem cell transplant recipients on letermovir prophylaxis. Front Immunol 2023; 14:1148841. [PMID: 37234158 PMCID: PMC10206124 DOI: 10.3389/fimmu.2023.1148841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) causes significant morbidity and mortality in allogeneic stem cell transplant (alloSCT) recipients. Recently, antiviral letermovir prophylaxis during the first 100 days after alloSCT replaced PCR-guided preemptive therapy as the primary standard of care for HCMV reactivations. Here, we compared NK-cell and T-cell reconstitution in alloSCT recipients receiving preemptive therapy or letermovir prophylaxis in order to identify potential biomarkers predicting prolonged and symptomatic HCMV reactivation. Methods To that end, the NK-cell and T-cell repertoire of alloSCT recipients managed with preemptive therapy (n=32) or letermovir prophylaxis (n=24) was characterized by flow cytometry on days +30, +60, +90 and +120 after alloSCT. Additionally, background-corrected HCMV-specific T-helper (CD4+IFNγ+) and cytotoxic (CD8+IFNγ+CD107a+) T cells were quantified after pp65 stimulation. Results Compared to preemptive therapy, letermovir prophylaxis prevented HCMV reactivation and decreased HCMV peak viral loads until days +120 and +365. Letermovir prophylaxis resulted in decreased T-cell numbers but increased NK-cell numbers. Interestingly, despite the inhibition of HCMV, we found high numbers of "memory-like" (CD56dimFcεRIγ- and/or CD159c+) NK cells and an expansion of HCMV-specific CD4+ and CD8+ T cells in letermovir recipients. We further compared immunological readouts in patients on letermovir prophylaxis with non/short-term HCMV reactivation (NSTR) and prolonged/symptomatic HCMV reactivation (long-term HCMV reactivation, LTR). Median HCMV-specific CD4+ T-cell frequencies were significantly higher in NSTR patients (day +60, 0.35 % vs. 0.00 % CD4+IFNγ+/CD4+ cells, p=0.018) than in patients with LTR, whereas patients with LTR had significantly higher median regulatory T-cell (Treg) frequencies (day +90, 2.2 % vs. 6.2 % CD4+CD25+CD127dim/CD4+ cells, p=0.019). ROC analysis confirmed low HCMV specific CD4+ (AUC on day +60: 0.813, p=0.019) and high Treg frequencies (AUC on day +90: 0.847, p=0.021) as significant predictors of prolonged and symptomatic HCMV reactivation. Discussion Taken together, letermovir prophylaxis delays HCMV reactivation and alters NK- and T-cell reconstitution. High numbers of HCMV-specific CD4+ T cells and low numbers of Tregs seem to be pivotal to suppress post-alloSCT HCMV reactivation during letermovir prophylaxis. Administration of more advanced immunoassays that include Treg signature cytokines might contribute to the identification of patients at high-risk for long-term and symptomatic HCMV reactivation who might benefit from prolonged administration of letermovir.
Collapse
Affiliation(s)
| | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Alice Rein
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Denise Grathwohl
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Wuerzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Christine Susanne Falk
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
- TTU-IICH, German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- BREATH Site, German Center for Lung Research (DZL), Hannover-Braunschweig, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Götz Ulrich Grigoleit
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Callens R, Colman S, Delie A, Schauwvlieghe A, Lodewyck T, Selleslag D, Reynders M, Kerre T, Padalko E. Immunological monitoring after allogeneic stem cell transplantation: T-SPOT.CMV and QuantiFERON-CMV, are they the same? Transplant Cell Ther 2023:S2666-6367(23)01177-6. [PMID: 36963722 DOI: 10.1016/j.jtct.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND CMV-reactivation and -disease is still a major concern after allogeneic stem cell transplantation [allo-HSCT], despite prophylactic and pre-emptive strategies. In recent years, immunologic monitoring using CMV-IGRA has gained interest to better risk stratify immunocompromised patients or to guide prophylactic therapies. CMV-IGRA can quantify CMV cell-mediated immunity by measuring the interferon-gamma that is released by CD4+ and CD8+ T-lymphocytes in the presence of CMV-antigens. However, the two most widely used CMV-IGRAs, T-SPOT.CMV and QuantiFERON-CMV, have not yet been compared in the setting of an allo-HSCT. OBJECTIVE To perform a method comparison between the T-SPOT.CMV and QuantiFERON-CMV 28 and 100 days after allo-HSCT, and to assess predictive values of both tests for CMV-reactivation. STUDY DESIGN In a bicentric prospective trial, 27 patients were included. Samples were taken on day +28 and day +100 after allo-HSCT. Patients' clinical information was collected up to 270 days after the transplant. Method comparison was performed using Cohen's kappa. RESULTS On day +28 (n=26) after allo-HSCT T-SPOT.CMV gave three positive test results, and QuantiFERON-CMV only two. On day +100 (n=24) T-SPOT.CMV gave seven positive test results, and QuantiFERON-CMV nine. One discordant result was obtained at day +28 (n=26), while six results were discordant at day +100 (n=24). Method comparison showed a strong agreement on day +28 (κ = 0.780 [95% CI: 0.366-1.000]), but only a moderate agreement on day +100 (κ = 0.442 [95% CI: 0.070-0.814]) and on pooled data from both time points (κ = 0.578 [95% CI: 0.300-0.856]). Four clinically significant CMV infections, (CS-CMVi) were observed, all occurring after discontinuation of letermovir-prophylaxis. None of those four patients had a positive result with either test at day +100 (or day +28). Negative predictive values (NPV) and sensitivity are therefore very high at 100% (for both tests, for NPV and sensitivity, measured at day +100). At day+100, positive predictive values (PPV) and specificity were considerably lower (T-SPOT.CMV: PPV 23.5% and specificity 35% - QuantiFERON-CMV: PPV 26.7% and specificity 45%). CONCLUSION T-SPOT.CMV and QuantiFERON-CMV only have a moderate agreement (at day +100) after allo-HSCT. Although these IGRAs are very promising, as shown by their very high negative predictive values for protection against CS-CMVi, they are not interchangeable. Future research should stipulate which IGRA was used, and future guidelines should preferably be assay-specific. As the QuantiFERON-CMV to date still lacks a large validation study after allo-HSCT, the moderate agreement with the T-SPOT.CMV poses a significant hurdle in the routine implementation of this test.
Collapse
Affiliation(s)
- Rutger Callens
- Department of Hematology, Ghent University Hospital, Ghent, Belgium; Department of Hematology, AZ Delta, Roeselare, Belgium
| | - Sofie Colman
- Department of Laboratory Medicine, O.L.V. van Lourdes Hospital, Waregem, Belgium
| | - Anke Delie
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | | | - Tom Lodewyck
- Department of Hematology, AZ Sint-Jan Hospital, Bruges, Belgium
| | | | - Marijke Reynders
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elizaveta Padalko
- Department of Medical Microbiology, Ghent University Hospital, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Capretti MG, Marsico C, Chiereghin A, Gabrielli L, Aceti A, Lazzarotto T. Immune Monitoring Using QuantiFERON®-CMV Assay in Congenital Cytomegalovirus Infection: Correlation With Clinical Presentation and CMV DNA Load. Clin Infect Dis 2021; 73:367-373. [PMID: 32504086 DOI: 10.1093/cid/ciaa704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cytomegalovirus (CMV)-specific CD8 + T-cell responses can be detected early in fetal life, but their role in the manifestations of congenital CMV (cCMV) infection remains largely unknown. METHODS CMV-specific CD8 + T-cell responses were assessed in neonates with cCMV using QuantiFERON®-CMV assay, within day 14 of life (T0) and during the second month of life (T1). Detection and quantification of CMV DNA in whole blood and urine samples were performed at both time points. QuantiFERON®-CMV results were evaluated in relation to timing of maternal infection, clinical manifestations of cCMV and CMV DNA levels. RESULTS Thirty neonates were enrolled (10/30 [33%] symptomatic; 20/30 [67%] asymptomatic). At T0 16/30 (53%) subjects had a reactive QuantiFERON®-CMV result and 16/16 (100%) were asymptomatic, whereas 14/30 (47%) had a nonreactive or indeterminate QuantiFERON®-CMV result and 4/14 (29%) were asymptomatic. At T1, 17/29 (59%) subjects had a reactive QuantiFERON®-CMV result, and 17/17 (100%) were asymptomatic, whereas 12/29 (41%) had a nonreactive or indeterminate result and 3/12 (25%) were asymptomatic. At both T0 and T1 reactive QuantiFERON®-CMV results correlated with lack of symptoms (P = .0001). At T1 median CMV DNAemia was lower in subjects with reactive QuantiFERON®-CMV results as compared with subjects with nonreactive or indeterminate results (1.82 log IU/mL [1.82-2.89] vs 2.55 log IU/mL [1.82-4.42], P = .009). No correlation was found between QuantiFERON®-CMV results and gestational age at maternal infection nor with urine CMV DNA levels. CONCLUSIONS A detectable CMV-specific CD8 + T-cell response, evaluated using the QuantiFERON®-CMV assay, correlates with the lack of CMV-related symptoms and the control of CMV DNAemia.
Collapse
Affiliation(s)
- Maria Grazia Capretti
- Neonatal Unit, Department of Medical and Surgical Sciences, St.Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Concetta Marsico
- Neonatal Unit, Department of Medical and Surgical Sciences, St.Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Angela Chiereghin
- Operative Unit of Clinical Microbiology, Department of Specialized, Experimental and Diagnostic Medicine, St.Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Liliana Gabrielli
- Operative Unit of Clinical Microbiology, St.Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Arianna Aceti
- Neonatal Unit, Department of Medical and Surgical Sciences, St.Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Operative Unit of Clinical Microbiology, Department of Specialized, Experimental and Diagnostic Medicine, St.Orsola Polyclinic, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Papadopoulou A, Koukoulias K, Alvanou M, Papadopoulos VK, Bousiou Z, Kalaitzidou V, Kika FS, Papalexandri A, Mallouri D, Batsis I, Sakellari I, Anagnostopoulos A, Yannaki E. Patient risk stratification and tailored clinical management of post-transplant CMV-, EBV-, and BKV-infections by monitoring virus-specific T-cell immunity. EJHAEM 2021; 2:428-439. [PMID: 35844677 PMCID: PMC9175754 DOI: 10.1002/jha2.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Background Despite routine post-transplant viral monitoring and pre-emptive therapy, viral infections remain a major cause of allogeneic hematopoietic cell transplantation-related morbidity and mortality. Objective We here aimed to prospectively assess the kinetics and the magnitude of cytomegalovirus-(CMV), Epstein Barr virus-(EBV), and BK virus-(BKV)-specific T cell responses post-transplant and evaluate their role in guiding therapeutic decisions by patient risk-stratification. Study design The tri-virus-specific immune recovery was assessed by Elispot, in 50 consecutively transplanted patients, on days +20, +30, +60, +100, +150, +200 post-transplant and in case of reactivation, weekly for 1 month. Results The great majority of the patients experienced at least one reactivation, while over 40% of them developed multiple reactivations from more than one of the tested viruses, especially those transplanted from matched or mismatched unrelated donors. The early reconstitution of virus-specific immunity (day +20), favorably correlated with transplant outcomes. Εxpanding levels of CMV-, EBV-, and BKV-specific T cells (VSTs) post-reactivation coincided with decreasing viral load and control of infection. Certain cut-offs of absolute VST numbers or net VST cell expansion post-reactivation were determined, above which, patients with CMV or BKV reactivation had >90% probability of complete response (CR). Conclusion Immune monitoring of virus-specific T-cell reconstitution post-transplant may allow risk-stratification of virus reactivating patients and enable patient-tailored treatment. The identification of individuals with high probability of CR will minimize unnecessary overtreatment and drug-associated toxicity while allowing candidates for pre-emptive intervention with adoptive transfer of VSTs to be appropriately selected.
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Kiriakos Koukoulias
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
- Department of Genetics, Development and Molecular Biology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Alvanou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | | | - Zoe Bousiou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Vasiliki Kalaitzidou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Fotini S. Kika
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Apostolia Papalexandri
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Despina Mallouri
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Ioannis Batsis
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Ioanna Sakellari
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Achilles Anagnostopoulos
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Evangelia Yannaki
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
12
|
CMV-Specific Cell-Mediated Immunity in Immunocompetent Adults with Primary CMV Infection: A Case Series and Review of the Literature. Viruses 2021; 13:v13050816. [PMID: 34062875 PMCID: PMC8147335 DOI: 10.3390/v13050816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Cytomegalovirus-specific cell-mediated immunity (CMV-CMI) in actively infected healthy immunocompetent hosts has been poorly investigated. Conversely, correlates of maternal protective immunity for the fetus after primary infection in pregnancy continue to be studied. The kinetics and magnitude of CMV-specific CMI in immunocompetent primary CMV-infected adults are described. A literature review on CMV-CMI in primarily infected pregnant women and its correlation to the risk of vertical virus transmission is included. Immunological measurements after infection were performed by enzyme-linked ImmunoSPOT assay enumerating IFN-γ secreting CMV-specific T cells, at a single cell level, upon in vitro stimulation with viral antigens. Simultaneously, serological and virological profiles of infected patients were investigated. Patients displayed mild-to-moderate clinical and laboratory profiles for infection, and all showed positive EliSpot results in the early stage of infection (<20 days after onset). The virus-CMI was strong in the majority of patients (58.8%) in which the lowest CMV-DNAemia levels (<300 copies/mL) were detected. Significantly higher viral loads were observed in patients with weak CMV-CMI at the same time-point post-infection (up to 15,104 copies/mL; p < 0.001). T cell response magnitudes to IE-1 and pp65-UL83 peptides were overlapping and stable over time. In these case series, the early presence of CMV-CMI was probably pivotal in controlling viral replication and led to spontaneous viral clearance.
Collapse
|
13
|
Wagner-Drouet E, Teschner D, Wolschke C, Janson D, Schäfer-Eckart K, Gärtner J, Mielke S, Schreder M, Kobbe G, Kondakci M, Hilgendorf I, von Lilienfeld-Toal M, Klein S, Heidenreich D, Kreil S, Verbeek M, Grass S, Ditschkowski M, Gromke T, Koch M, Lindemann M, Hünig T, Schmidt T, Rascle A, Guldan H, Barabas S, Deml L, Wagner R, Wolff D. Standardized monitoring of cytomegalovirus-specific immunity can improve risk stratification of recurrent cytomegalovirus reactivation after hematopoietic stem cell transplantation. Haematologica 2021; 106:363-374. [PMID: 31879324 PMCID: PMC7849569 DOI: 10.3324/haematol.2019.229252] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Recurrence of cytomegalovirus reactivation remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation. Monitoring cytomegalovirus-specific cellular immunity using a standardized assay might improve the risk stratification of patients. A prospective multicenter study was conducted in 175 intermediate- and high-risk allogeneic hematopoietic stem cell transplant recipients under preemptive antiviral therapy. Cytomegalovirus-specific cellular immunity was measured using a standardized IFN-γ ELISpot assay (T-Track® CMV). Primary aim was to evaluate the suitability of measuring cytomegalovirus-specific immunity after end of treatment for a first cytomegalovirus reactivation to predict recurrent reactivation. 40/101 (39.6%) patients with a first cytomegalovirus reactivation experienced recurrent reactivations, mainly in the high-risk group (cytomegalovirus-seronegative donor/cytomegalovirus-seropositive recipient). The positive predictive value of T-Track® CMV (patients with a negative test after the first reactivation experienced at least one recurrent reactivation) was 84.2% in high-risk patients. Kaplan-Meier analysis revealed a higher probability of recurrent cytomegalovirus reactivation in high-risk patients with a negative test after the first reactivation (hazard ratio 2.73; p=0.007). Interestingly, a post-hoc analysis considering T-Track® CMV measurements at day 100 post-transplantation, a time point highly relevant for outpatient care, showed a positive predictive value of 90.0% in high-risk patients. Our results indicate that standardized cytomegalovirus-specific cellular immunity monitoring may allow improved risk stratification and management of recurrent cytomegalovirus reactivation after hematopoietic stem cell transplantation. This study was registered at www.clinicaltrials.gov as #NCT02156479.
Collapse
Affiliation(s)
- Eva Wagner-Drouet
- Dpt of Hematology, Medical Oncology, and Pneumology, University Medical Center, Mainz, Germany
| | - Daniel Teschner
- Dpt of Hematology, Medical Oncology, and Pneumology, University Medical Center, Mainz, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Dietlinde Janson
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Kerstin Schäfer-Eckart
- Oncology, Hematology and Bone Marrow Transplantation Unit, Klinikum Nord, Nürnberg, Germany
| | - Johannes Gärtner
- Oncology, Hematology and Bone Marrow Transplantation Unit, Klinikum Nord, Nürnberg, Germany
| | - Stephan Mielke
- Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Martin Schreder
- First Department of Medicine, Center for Oncology and Hematology, Wilhelminenspital, Vienna, Austria
| | - Guido Kobbe
- Department of Hematology, University Hospital, Heinrich Heine University Düsseldorf, Germany
| | - Mustafa Kondakci
- Department of Hematology, University Hospital, Heinrich Heine University Düsseldorf, Germany
| | - Inken Hilgendorf
- Klinik f. Innere Medizin II, Abt. Haematol. und Internist. Onkologie, Univ.-Klinikum Jena, Germany
| | | | - Stefan Klein
- Dpt of Hematology and Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim,Germany
| | - Daniela Heidenreich
- Dpt of Hematology and Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim,Germany
| | - Sebastian Kreil
- Dpt of Hematology and Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim,Germany
| | - Mareike Verbeek
- III. Medical Department, Hematology and Oncology, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Sandra Grass
- III. Medical Department, Hematology and Oncology, Klinikum rechts der Isar, TUM, Munich, Germany
| | | | - Tanja Gromke
- Innere Klinik, Tumorforschung, University Hospital Essen, Germany
| | - Martina Koch
- Dpt of Transplantation Surgery, University Medical Center of the JGU, Mainz, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology, University Medical Center Würzburg, Germany
| | | | | | | | | | | | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Germany
| | - Daniel Wolff
- Dpt of Internal Medicine III, Hematology and Oncology, University Medical Center Regensburg, Germany
| |
Collapse
|
14
|
Bae H, Na DH, Chang JY, Park KH, Min JW, Ko EJ, Lee H, Yang CW, Chung BH, Oh EJ. Usefulness of BK virus-specific interferon-γ enzyme-linked immunospot assay for predicting the outcome of BK virus infection in kidney transplant recipients. Korean J Intern Med 2021; 36:164-174. [PMID: 32241081 PMCID: PMC7820663 DOI: 10.3904/kjim.2019.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/AIMS To investigate if BK virus (BKV)-specific T cell immunity measured by an interferon-γ enzyme-linked immunospot (ELISPOT) assay can predict the outcome of BK virus infection in kidney transplant recipients (KTRs). METHODS We included 68 KTRs with different viremia status (no viremia [n = 17], BK viremia [n = 27], and cleared viremia [n = 24]) and 44 healthy controls (HCs). The BK viremia group was divided into controller (< 3 months) and noncontroller (> 3 months) according to sustained duration of BKV infection. We compared BKV-ELISPOT results against five BKV peptides (large tumor antigen [LT], St, VP1-3). RESULTS BKV-ELISPOT results were higher in three KTRs groups with different BKV infection status than the HCs group (p < 0.05). In KTR groups, they were higher in cleared viremia group than no viremia or BK viremia group. Within the BK viremia group, controller group had higher LT-ELISPOT results compared to noncontroller group (p = 0.032). Also, KTRs without BK virus-associated nephropathy (BKVN) had higher LT, St, VP1, and VP2-ELISPOT results than those with BKVN (p < 0.05). CONCLUSION BKV-ELISPOT assay may be effective in predicting clinical outcomes of BKV infection in terms of clearance of BK virus and development of BKVN.
Collapse
Affiliation(s)
- Hyunjoo Bae
- Department of Biomedical Science, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Do Hyun Na
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Yeun Chang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki Hyun Park
- Department of Biomedical Science, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Won Min
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Eun Jeong Ko
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeyoung Lee
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Chul Woo Yang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Ha Chung
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Eun-Jee Oh, M.D. Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-1641 Fax: +82-2-2258-1719 E-mail:
| |
Collapse
|
15
|
Virus-specific T cells in pediatric renal transplantation. Pediatr Nephrol 2021; 36:789-796. [PMID: 32221706 PMCID: PMC7910244 DOI: 10.1007/s00467-020-04522-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
After pediatric kidney transplantation, immunosuppressive therapy causes an increased risk of severe viral complications, especially from cytomegalovirus (CMV), BK polyomavirus (BKPyV) or Epstein-Barr virus (EBV), and less frequent from adenovirus (ADV). However, suitable predictive markers for the individual outcome of viral infections are missing and the therapeutic management remains a challenge to the success of pediatric kidney transplantation. Virus-specific T cells are known for controlling viral replication and there is growing evidence that virus-specific T cells may serve as a prognostic marker to identify patients at risk for viral complications. This review provides an overview of the usability of virus-specific T cells for improving diagnostic and therapeutic management of viral infections with reference to the necessity of antiviral prophylaxis, timing of pre-emptive therapy, and dosing of immunosuppressive medication after pediatric kidney transplantation. Several studies demonstrated that high levels of virus-specific T cells are associated with decrease of virus load and favorable outcome, whereas lack of virus-specific T cells coincided with virus-induced complications. Accordingly, the additional monitoring of virus-specific T cells aims to personalize the management of antiviral therapy, identify overimmunosuppression, and avoid unnecessary therapeutic interventions. Prospective randomized trials in pediatric kidney recipients comparing standard antiviral and immunosuppressive regimens with T cell-guided therapeutic interventions are needed, before monitoring of virus-specific T cells is implemented in the routine care of pediatric kidney graft recipients.
Collapse
|
16
|
How I treat CMV reactivation after allogeneic hematopoietic stem cell transplantation. Blood 2020; 135:1619-1629. [PMID: 32202631 DOI: 10.1182/blood.2019000956] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation remains one of the most common and life-threatening infectious complications following allogeneic hematopoietic stem cell transplantation, despite novel diagnostic technologies, several novel prophylactic agents, and further improvements in preemptive therapy and treatment of established CMV disease. Treatment decisions for CMV reactivation are becoming increasingly difficult and must take into account whether the patient has received antiviral prophylaxis, the patient's individual risk profile for CMV disease, CMV-specific T-cell reconstitution, CMV viral load, and the potential drug resistance detected at the time of initiation of antiviral therapy. Thus, we increasingly use personalized treatment strategies for the recipient of an allograft with CMV reactivation based on prior use of anti-CMV prophylaxis, viral load, the assessment of CMV-specific T-cell immunity, and the molecular assessment of resistance to antiviral drugs.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Cytomegalovirus infection (CMVi) has been the troll of allogeneic hematopoietic cell transplantation (allo-HCT). Over the last 4 decades various approaches have been adopted to minimize the burden from CMVi. There has been major advancement in the management of CMVi in HCT within the last few years that is poised to change the approaches employed in preventing and managing CMVi. This review will summarize recent advances and potential future development in the management of CMV in HCT. RECENT FINDING The major development has been the approval of letermovir for the prevention of CMVi in allo-HCT recipients. Also, with the potential availability of tests that can determine host CMV immunity a risk adapted approach to CMV prevention may become a possibility. SUMMARY The landscape of CMV prevention is about to change with the approval of a new anti-CMV antiviral that is safe and effective. However, the prophylaxis may lead to late onset CMVi in the context of ongoing risk factors after stopping prophylaxis and measures to counter this shifting epidemiology will need further research; such as extending the prophylaxis in high-risk patients vs. immunotherapy with vaccination and T-cell therapy.
Collapse
|
18
|
Paouri B, Soldatou A, Petrakou E, Theodosaki M, Tsentidis C, Kaisari K, Oikonomopoulou C, Matsas M, Goussetis E. Quantiferon-Cytomegalovirus assay: A potentially useful tool in the evaluation of CMV-specific CD8+ T-cell reconstitution in pediatric hematopoietic stem cell transplant patients. Pediatr Transplant 2018; 22:e13220. [PMID: 29777573 DOI: 10.1111/petr.13220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
Pediatric HSCT recipients are at high risk for CMV reactivation due to their immature immune system and therapy following transplantation. Reconstitution of CMV-specific T-cell immunity is associated with control and protection against CMV. The clinical utility of monitoring CMV-specific CMI to predict CMV viremia in pediatric HSCT patients using the Quantiferon-CMV (QIAGEN® ) test was investigated prospectively. Thirty-seven pediatric allogeneic HSCT recipients were enrolled from 3/2010-6/2012. CMV viremia was detected via weekly real-time PCR. The Quantiferon-CMV test was conducted pretransplant, early after transplantation, 30, 90, 180, 270, and 360 days post-transplantation. The incidence of CMV viremia was 51% (19/37) with half of the episodes within ≤30 days post-transplant. Fifteen patients showed CMV-specific immunity (average of 82 days). The cumulative incidence of CMV reactivation in patients who developed CMV-specific immunity was lower than those who did not (15% vs 53%; P = .023). The ROC statistical analysis showed that the AUC was 0.725 in predicting viremia, for Quantiferon-CMV test. In this cohort, the Quantiferon-CMV assay was a valuable method for identifying pediatric HSCT patients at high risk for CMV viremia, suggesting potential clinical utility to individualize patient's management post-transplant.
Collapse
Affiliation(s)
- Bilio Paouri
- Second Department of Pediatrics, National and Kapodistrian University of Athens, P.& A. Kyriakou Children's Hospital, Athens, Greece
| | - Alexandra Soldatou
- Second Department of Pediatrics, National and Kapodistrian University of Athens, P.& A. Kyriakou Children's Hospital, Athens, Greece
| | - Eftihia Petrakou
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | - Maria Theodosaki
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | - Charalampos Tsentidis
- Second Department of Pediatrics, National and Kapodistrian University of Athens, P.& A. Kyriakou Children's Hospital, Athens, Greece
| | - Katerina Kaisari
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Minos Matsas
- Department of Microbiology & Serology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | - Eugenios Goussetis
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Immune monitoring to determine when and how the recovery of cytomegalovirus (CMV)-specific T-cells occurs post-transplantation may help clinicians to risk stratify individuals at risk of complications from CMV. We aimed to review all recent clinical studies using CMV immune monitoring in the pre- and post-transplant setting including the use of recently developed standardized assays (Quantiferon-CMV and the CMV ELISPOT) to better understand in whom, when, and how immune monitoring is best used. RECENT FINDINGS Pre-transplant assessment of CMV immunity in solid-organ transplant recipients where CMV seropositive recipients had undetectable cell-mediated responses despite past immunity has shown that they are at a much higher risk of developing CMV reactivation. Post-transplant CMV immune monitoring can guide (shorten or prolong) the duration of antiviral prophylaxis, identify recipients at risk of post-prophylaxis CMV disease, and predict recurrent CMV reactivation. Thus, CMV immune monitoring, in addition to current clinical and DNA-based monitoring for CMV, has the potential to be incorporated into routine clinical care to better improve CMV management in both the stem and solid-organ transplant population.
Collapse
Affiliation(s)
- Michelle K Yong
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia. .,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Oriol Manuel
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,Transplantation Center, Department of Anesthesiology and Surgery, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Yoshikawa T. Betaherpesvirus Complications and Management During Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:251-270. [PMID: 29896671 DOI: 10.1007/978-981-10-7230-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two of the four betaherpesviruses, Cytomegalovirus (CMV) and human herpesvirus 6B (HHV-6B), play an important role in opportunistic infections in hematopoietic stem cell transplant (HSCT) recipients. These viruses are ubiquitous in humans and can latently infect mononuclear lymphocytes, complicating the diagnosis of the diseases they cause. Although the detection of viral DNA in a patient's peripheral blood by real-time PCR is widely used for monitoring viral infection, it is insufficient for the diagnosis of virus-associated disease. Theoretically, end-organ disease should be confirmed by detecting either viral antigen or significant amounts of viral DNA in a tissue sample obtained from the involved organ; however, this is often difficult to perform in clinical practice. The frequency of CMV-associated diseases has decreased gradually as a result of the introduction of preemptive or prophylactic treatments; however, CMV and HHV-6B infections remain a major problem in HSCT recipients. Measurement of viral DNA load in peripheral blood or plasma using real-time PCR is commonly used for monitoring these infections. Additionally, recent data suggest that an assessment of host immune response, particularly cytotoxic T-cell response, may be a reliable tool for predicting these viral infections. The antiviral drugs ganciclovir and foscarnet are used as first-line treatments; however, it is well known that these drugs have side effects, such as bone marrow suppression and nephrotoxicity. Further research is required to develop less-toxic antiviral drugs.
Collapse
Affiliation(s)
- Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
21
|
Yong MK, Cameron PU, Slavin MA, Cheng AC, Morrissey CO, Bergin K, Spencer A, Ritchie D, Lewin SR. Low T-Cell Responses to Mitogen Stimulation Predicts Poor Survival in Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2017; 8:1506. [PMID: 29170666 PMCID: PMC5684122 DOI: 10.3389/fimmu.2017.01506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Background Successful engraftment and reconstitution of the innate and adaptive immune system are associated with improved outcomes in recipients of allogeneic hematopoietic stem cell transplantation (HSCT). A clinically meaningful and simple biomarker of immunosuppression could potentially assist clinicians in their decision-making. We aimed to determine the relationship between T-cell production of interferon gamma (IFN-γ) in response to phytohemagglutinin (PHA) to clinical outcomes in HSCT recipients. Methods A prospective observational multicenter study of 73 adult allogeneic HSCT recipients was conducted in Melbourne, Australia. Eligible participants were >18 years and at risk of cytomegalovirus disease. T-cell responses to PHA were assessed at 3, 6, 9, and 12 months post-HSCT using the commercial quantiferon-cytomegalovirus assay, which quantifies IFN-γ production by ELISA following stimulation with PHA. A low response was defined as IFN-γ <0.5 IU/ml following stimulation with PHA. Results At 3 months post-HSCT, high responses to PHA (median IFN-γ 7.68 IU/ml) were seen in 63% of participants and low responses to PHA (median IFN-γ 0.06 IU/ml) in 37%. IFN-γ responses to PHA were significantly associated with the severity of acute graft versus host disease (AGVHD) (spearman r = −0.53, p < 0.001) and correlated with blood lymphocyte count (spearman r = 0.52, p < 0.001). Twelve month overall survival was greater in individuals with high compared to low IFN-γ response to PHA at 3 months [92 vs. 62%, respectively, Cox proportional hazard ratio (HR): 4.12 95% CI: 1.2–13.7, p = 0.02]. Non-relapse mortality (NRM) was higher in individuals with low IFN-γ response to PHA (competing risk regression HR 11.6 p = 0.02). In individuals with no AGVHD compared to AGVHD and high IFN-γ response to PHA compared to AGVHD and low IFN-γ response to PHA, 12-month survival was 100 vs. 80 vs. 52%, respectively (log rank test p < 0.0001). Conclusion Low IFN-γ response to PHA at the 3-month time-point following allogeneic HSCT was predictive of reduced 12-month overall survival, increased NRM, and reduced survival in recipients with AGVHD. Assessing IFN-γ response to PHA post-HSCT may be a clinically useful immune biomarker.
Collapse
Affiliation(s)
- Michelle K Yong
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul U Cameron
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Monica A Slavin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Allen C Cheng
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia.,Department of Haematology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Krystal Bergin
- Department of Haematology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Andrew Spencer
- Department of Haematology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - David Ritchie
- Department of Clinical Haematology and Bone Marrow Transplant Service, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|