1
|
Reeves WD, Ahmed I, Jackson BS, Sun W, Williams CF, Davis CL, McDowell JE, Yanasak NE, Su S, Zhao Q. fMRI-based data-driven brain parcellation using independent component analysis. J Neurosci Methods 2025; 417:110403. [PMID: 39978483 PMCID: PMC11908389 DOI: 10.1016/j.jneumeth.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Studies using functional magnetic resonance imaging (fMRI) broadly require a method of parcellating the brain into regions of interest (ROIs). Parcellations can be based on standardized brain anatomy, such as the Montreal Neurological Institute's (MNI) 152 atlas, or an individual's functional activity patterns, such as the Personode software. NEW METHOD This work outlines and tests the independent component analysis (ICA)-based parcellation algorithm (IPA) when applied to a hypertension study (n = 48) that uses the independent components (ICs) output from group ICA (gICA) to build ROIs which are ideally spatially consistent and functionally homogeneous. After regression of ICs to all subjects, the IPA builds individualized parcellations while simultaneously obtaining a gICA-derived parcellation. RESULTS ROI spatial consistency quantified by dice similarity coefficients (DSCs) show individualized parcellations exhibit mean DSCs of 0.69 ± 0.14. Functional homogeneity, calculated as mean Pearson correlation value of all voxels comprising a ROI, shows individualized parcellations with a mean of 0.30 ± 0.14 and gICA-derived parcellations' mean of 0.38 ± 0.15. COMPARISON WITH EXISTING METHOD(S) Individualized Personode parcellations show decreased mean DSCs (0.43 ± 0.11) with the individualized parcellations, gICA-derived parcellations, and the MNI atlas having decreased homogeneity values of 0.28 ± 0.14, 0.31 ± 0.15, and 0.20 ± 0.11 respectively. CONCLUSIONS Results show that the IPA can more reliably define a ROI and does so with higher functional homogeneity. Given these findings, the IPA shows promise as a novel parcellation technique that could aid the analysis of fMRI data.
Collapse
Affiliation(s)
- William D Reeves
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA
| | - Ishfaque Ahmed
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA
| | - Brooke S Jackson
- University of Georgia Franklin College of Arts and Sciences, Department of Psychology, Athens, GA, USA
| | - Wenwu Sun
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA
| | | | - Catherine L Davis
- Medical College of Georgia, Georgia Prevention Institute, Augusta, GA, USA
| | - Jennifer E McDowell
- University of Georgia Bio-Imaging Research Center, Athens, GA, USA; University of Georgia Franklin College of Arts and Sciences, Department of Psychology, Athens, GA, USA
| | - Nathan E Yanasak
- Medical College of Georgia, Department of Radiology and Imaging, Augusta, GA, USA
| | - Shaoyong Su
- Medical College of Georgia, Georgia Prevention Institute, Augusta, GA, USA
| | - Qun Zhao
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA.
| |
Collapse
|
2
|
Lee W, Lee S, Park Y, Kim GE, Bae JB, Han JW, Kim KW. Construction and validation of a brain magnetic resonance imaging template for normal older Koreans. BMC Neurol 2024; 24:222. [PMID: 38943101 PMCID: PMC11212263 DOI: 10.1186/s12883-024-03735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Spatial normalization to a standardized brain template is a crucial step in magnetic resonance imaging (MRI) studies. Brain templates made from sufficient sample size have low brain variability, improving the accuracy of spatial normalization. Using population-specific template improves accuracy of spatial normalization because brain morphology varies according to ethnicity and age. METHODS We constructed a brain template of normal Korean elderly (KNE200) using MRI scans 100 male and 100 female aged over 60 years old with normal cognition. We compared the deformation after spatial normalization of the KNE200 template to that of the KNE96, constructed from 96 cognitively normal elderly Koreans and to that of the brain template (OCF), constructed from 434 non-demented older Caucasians to examine the effect of sample size and ethnicity on the accuracy of brain template, respectively. We spatially normalized the MRI scans of elderly Koreans and quantified the amount of deformations associated with spatial normalization using the magnitude of displacement and volumetric changes of voxels. RESULTS The KNE200 yielded significantly less displacement and volumetric change in the parahippocampal gyrus, medial and posterior orbital gyrus, fusiform gyrus, gyrus rectus, cerebellum and vermis than the KNE96. The KNE200 also yielded much less displacement in the cerebellum, vermis, hippocampus, parahippocampal gyrus and thalamus and much less volumetric change in the cerebellum, vermis, hippocampus and parahippocampal gyrus than the OCF. CONCLUSION KNE200 had the better accuracy than the KNE96 due to the larger sample size and was far accurate than the template constructed from elderly Caucasians in elderly Koreans.
Collapse
Grants
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
Collapse
Affiliation(s)
- Wheesung Lee
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Subin Lee
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Yeseung Park
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Grace Eun Kim
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Oh H, Kim J, Park S, Jang M, Kim M, Kwon JS. Constructing the KOR152 Korean Young Adult Brain Atlas Utilizing the State-of-the-Art Method for the Age-Specific Population. Psychiatry Investig 2024; 21:664-671. [PMID: 38960444 PMCID: PMC11222079 DOI: 10.30773/pi.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Spatial normalization is an essential process for comparative analyses that heavily depends on the standard brain template used. Brain morphological differences are observed in different populations due to genetic and environmental factors, causing mismatches in regions when the data are normalized to different population templates. Recent studies have indicated differences between Caucasian and East Asian populations as well as within East Asian populations, suggesting the necessity of population-specific brain templates. Thus, this study aimed to construct a Korean young adult age-specific brain template utilizing an advanced method of template construction to update the currently available Korean template. METHODS The KOR152 template was constructed via affine and nonlinear iterative procedures based on prior studies. We compared the morphological features of different population templates (MNI152, Indian_157, and CN200). The distance and volumetric changes before and after registering the data to these templates were calculated for registration accuracy. RESULTS The KOR152 global brain features revealed a shorter overall length than the other population templates. The registration accuracy by distance and volumetric change was significantly lower than that of the other population templates, implying that the KOR152 was more accurate than other templates for the young adult Korean population. CONCLUSION This study provided evidence for the need for a population-specific template that may be more appropriate for structural and functional studies in Korean populations.
Collapse
Affiliation(s)
- Harin Oh
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jongrak Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Moonyoung Jang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Yang MH, Kim EH, Choi ES, Ko H. Comparison of Normative Percentiles of Brain Volume Obtained from NeuroQuant ® vs. DeepBrain ® in the Korean Population: Correlation with Cranial Shape. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:1080-1090. [PMID: 37869130 PMCID: PMC10585089 DOI: 10.3348/jksr.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 10/24/2023]
Abstract
Purpose This study aimed to compare the volume and normative percentiles of brain volumetry in the Korean population using quantitative brain volumetric MRI analysis tools NeuroQuant® (NQ) and DeepBrain® (DB), and to evaluate whether the differences in the normative percentiles of brain volumetry between the two tools is related to cranial shape. Materials and Methods In this retrospective study, we analyzed the brain volume reports obtained from NQ and DB in 163 participants without gross structural brain abnormalities. We measured three-dimensional diameters to evaluate the cranial shape on T1-weighted images. Statistical analyses were performed using intra-class correlation coefficients and linear correlations. Results The mean normative percentiles of the thalamus (90.8 vs. 63.3 percentile), putamen (90.0 vs. 60.0 percentile), and parietal lobe (80.1 vs. 74.1 percentile) were larger in the NQ group than in the DB group, whereas that of the occipital lobe (18.4 vs. 68.5 percentile) was smaller in the NQ group than in the DB group. We found a significant correlation between the mean normative percentiles obtained from the NQ and cranial shape: the mean normative percentile of the occipital lobe increased with the anteroposterior diameter and decreased with the craniocaudal diameter. Conclusion The mean normative percentiles obtained from NQ and DB differed significantly for many brain regions, and these differences may be related to cranial shape.
Collapse
|
5
|
Taylor PA, Glen DR, Reynolds RC, Basavaraj A, Moraczewski D, Etzel JA. Editorial: Demonstrating quality control (QC) procedures in fMRI. Front Neurosci 2023; 17:1205928. [PMID: 37325035 PMCID: PMC10264898 DOI: 10.3389/fnins.2023.1205928] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Paul A. Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Daniel R. Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Richard C. Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Arshitha Basavaraj
- Data Science and Sharing Team, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Joset A. Etzel
- Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
6
|
Gao P, Dong HM, Liu SM, Fan XR, Jiang C, Wang YS, Margulies D, Li HF, Zuo XN. A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping. Sci Data 2022; 9:286. [PMID: 35680932 PMCID: PMC9184635 DOI: 10.1038/s41597-022-01413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
The big-data use is becoming a standard practice in the neuroimaging field through data-sharing initiatives. It is important for the community to realize that such open science effort must protect personal, especially facial information when raw neuroimaging data are shared. An ideal tool for the face anonymization should not disturb subsequent brain tissue extraction and further morphological measurements. Using the high-resolution head images from magnetic resonance imaging (MRI) of 215 healthy Chinese, we discovered and validated a template effect on the face anonymization. Improved facial anonymization was achieved when the Chinese head templates but not the Western templates were applied to obscure the faces of Chinese brain images. This finding has critical implications for international brain imaging data-sharing. To facilitate the further investigation of potential culture-related impacts on and increase diversity of data-sharing for the human brain mapping, we released the 215 Chinese multi-modal MRI data into a database for imaging Chinese young brains, namely'I See your Brains (ISYB)', to the public via the Science Data Bank ( https://doi.org/10.11922/sciencedb.00740 ).
Collapse
Affiliation(s)
- Peng Gao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hao-Ming Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- National Basic Science Data Center, Beijing, 100109, China
| | - Si-Man Liu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue-Ru Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Chao Jiang
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Yin-Shan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Daniel Margulies
- Centre National de la Recherche Scientifique, Frontlab, Brain and Spinal Cord Institute, Paris, UMR 7225, France
| | - Hai-Fang Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- National Basic Science Data Center, Beijing, 100109, China.
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Key Laboratory of Brain and Education, School of Education Science, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
7
|
Spatial normalization and quantification approaches of PET imaging for neurological disorders. Eur J Nucl Med Mol Imaging 2022; 49:3809-3829. [PMID: 35624219 DOI: 10.1007/s00259-022-05809-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Quantification approaches of positron emission tomography (PET) imaging provide user-independent evaluation of pathophysiological processes in living brains, which have been strongly recommended in clinical diagnosis of neurological disorders. Most PET quantification approaches depend on spatial normalization of PET images to brain template; however, the spatial normalization and quantification approaches have not been comprehensively reviewed. In this review, we introduced and compared PET template-based and magnetic resonance imaging (MRI)-aided spatial normalization approaches. Tracer-specific and age-specific PET brain templates were surveyed between 1999 and 2021 for 18F-FDG, 11C-PIB, 18F-Florbetapir, 18F-THK5317, and etc., as well as adaptive PET template methods. Spatial normalization-based PET quantification approaches were reviewed, including region-of-interest (ROI)-based and voxel-wise quantitative methods. Spatial normalization-based ROI segmentation approaches were introduced, including manual delineation on template, atlas-based segmentation, and multi-atlas approach. Voxel-wise quantification approaches were reviewed, including voxel-wise statistics and principal component analysis. Certain concerns and representative examples of clinical applications were provided for both ROI-based and voxel-wise quantification approaches. At last, a recipe for PET spatial normalization and quantification approaches was concluded to improve diagnosis accuracy of neurological disorders in clinical practice.
Collapse
|
8
|
Lee JS, Kim KM, Choi Y, Kim HJ. A Brief History of Nuclear Medicine Physics, Instrumentation, and Data Sciences in Korea. Nucl Med Mol Imaging 2021; 55:265-284. [PMID: 34868376 DOI: 10.1007/s13139-021-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022] Open
Abstract
We review the history of nuclear medicine physics, instrumentation, and data sciences in Korea to commemorate the 60th anniversary of the Korean Society of Nuclear Medicine. In the 1970s and 1980s, the development of SPECT, nuclear stethoscope, and bone densitometry systems, as well as kidney and cardiac image analysis technology, marked the beginning of nuclear medicine physics and engineering in Korea. With the introduction of PET and cyclotron in Korea in 1994, nuclear medicine imaging research was further activated. With the support of large-scale government projects, the development of gamma camera, SPECT, and PET systems was carried out. Exploiting the use of PET scanners in conjunction with cyclotrons, extensive studies on myocardial blood flow quantification and brain image analysis were also actively pursued. In 2005, Korea's first domestic cyclotron succeeded in producing radioactive isotopes, and the cyclotron was provided to six universities and university hospitals, thereby facilitating the nationwide supply of PET radiopharmaceuticals. Since the late 2000s, research on PET/MRI has been actively conducted, and the advanced research results of Korean scientists in the fields of silicon photomultiplier PET and simultaneous PET/MRI have attracted significant attention from the academic community. Currently, Korean researchers are actively involved in endeavors to solve a variety of complex problems in nuclear medicine using artificial intelligence and deep learning technologies.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Kyeong Min Kim
- Department of Isotopic Drug Development, Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong Choi
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Hee-Joung Kim
- Department of Radiological Science, Yonsei University, Wonju, Korea
| |
Collapse
|
9
|
Guo XY, Chang Y, Kim Y, Rhee HY, Cho AR, Park S, Ryu CW, San Lee J, Lee KM, Shin W, Park KC, Kim EJ, Jahng GH. Development and evaluation of a T1 standard brain template for Alzheimer disease. Quant Imaging Med Surg 2021; 11:2224-2244. [PMID: 34079697 DOI: 10.21037/qims-20-710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) have high variability in brain tissue loss, making it difficult to use a disease-specific standard brain template. The objective of this study was to develop an AD-specific three-dimensional (3D) T1 brain tissue template and to evaluate the characteristics of the populations used to form the template. Methods We obtained 3D T1-weighted images from 294 individuals, including 101 AD, 96 amnestic MCI, and 97 cognitively normal (CN) elderly individuals, and segmented them into different brain tissues to generate AD-specific brain tissue templates. Demographic data and clinical outcome scores were compared between the three groups. Voxel-based analyses and regions-of-interest-based analyses were performed to compare gray matter volume (GMV) and white matter volume (WMV) between the three participant groups and to evaluate the relationship of GMV and WMV loss with age, years of education, and Mini-Mental State Examination (MMSE) scores. Results We created high-resolution AD-specific tissue probability maps (TPMs). In the AD and MCI groups, losses of both GMV and WMV were found with respect to the CN group in the hippocampus (F >44.60, P<0.001). GMV was lower with increasing age in all individuals in the left (r=-0.621, P<0.001) and right (r=-0.632, P<0.001) hippocampi. In the left hippocampus, GMV was positively correlated with years of education in the CN groups (r=0.345, P<0.001) but not in the MCI (r=0.223, P=0.0293) or AD (r=-0.021, P=0.835) groups. WMV of the corpus callosum was not significantly correlated with years of education in any of the three subject groups (r=0.035 and P=0.549 for left, r=0.013 and P=0.821 for right). In all individuals, GMV of the hippocampus was significantly correlated with MMSE scores (left, r=0.710 and P<0.001; right, r=0.680 and P<0.001), while WMV of the corpus callosum showed a weak correlation (left, r=0.142 and P=0.015; right, r=0.123 and P=0.035). Conclusions A 3D, T1 brain tissue template was created using imaging data from CN, MCI, and AD participants considering the participants' age, sex, and years of education. Our disease-specific template can help evaluate brains to promote early diagnosis of MCI individuals and aid treatment of MCI and AD individuals.
Collapse
Affiliation(s)
- Xiao-Yi Guo
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yunjung Chang
- Department of Biomedical Engineering, Undergraduate School, College of Electronics and Information, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Yehee Kim
- Department of Biomedical Engineering, Undergraduate School, College of Electronics and Information, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ah Rang Cho
- Department of Psychiatry, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Wonchul Shin
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Key-Chung Park
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eui Jong Kim
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Li H, Yan G, Luo W, Liu T, Wang Y, Liu R, Zheng W, Zhang Y, Li K, Zhao L, Limperopoulos C, Zou Y, Wu D. Mapping fetal brain development based on automated segmentation and 4D brain atlasing. Brain Struct Funct 2021; 226:1961-1972. [PMID: 34050792 DOI: 10.1007/s00429-021-02303-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022]
Abstract
Fetal brain MRI has become an important tool for in utero assessment of brain development and disorders. However, quantitative analysis of fetal brain MRI remains difficult, partially due to the limited tools for automated preprocessing and the lack of normative brain templates. In this paper, we proposed an automated pipeline for fetal brain extraction, super-resolution reconstruction, and fetal brain atlasing to quantitatively map in utero fetal brain development during mid-to-late gestation in a Chinese population. First, we designed a U-net convolutional neural network for automated fetal brain extraction, which achieved an average accuracy of 97%. We then generated a developing fetal brain atlas, using an iterative linear and nonlinear registration approach. Based on the 4D spatiotemporal atlas, we quantified the morphological development of the fetal brain between 23 and 36 weeks of gestation. The proposed pipeline enabled the fully automated volumetric reconstruction for clinically available fetal brain MRI data, and the 4D fetal brain atlas provided normative templates for the quantitative characterization of fetal brain development, especially in the Chinese population.
Collapse
Affiliation(s)
- Haotian Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guohui Yan
- Department of Radiology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanrong Luo
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruibin Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Kui Li
- Department of Radiology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhao
- Center for the Developing Brain, Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC, USA
| | - Catherine Limperopoulos
- Center for the Developing Brain, Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC, USA
| | - Yu Zou
- Department of Radiology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Razavi F, Raminfard S, Kalantar Hormozi H, Sisakhti M, Batouli SAH. A Probabilistic Atlas of the Pineal Gland in the Standard Space. Front Neuroinform 2021; 15:554229. [PMID: 34079447 PMCID: PMC8165226 DOI: 10.3389/fninf.2021.554229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Pineal gland (PG) is a structure located in the midline of the brain, and is considered as a main part of the epithalamus. There are numerous reports on the facilitatory role of this area for brain function; hormone secretion and its role in sleep cycle are the major reports. However, reports are rarely available on the direct role of this structure in brain cognition and in information processing. A suggestion for the limited number of such studies is the lack of a standard atlas for the PG; none of the available MRI templates and atlases has provided parcellations for this structure. In this study, we used the three-dimensional (3D) T1-weighted MRI data of 152 healthy young volunteers, and provided a probabilistic map of the PG in the standard Montreal Neurologic Institute (MNI) space. The methods included collecting the data using a 64-channel head coil on a 3-Tesla Prisma MRI Scanner, manual delineation of the PG by two experts, and robust template and atlas construction algorithms. This atlas is freely accessible, and we hope importing this atlas in the well-known neuroimaging software packages would help to identify other probable roles of the PG in brain function. It could also be used to study pineal cysts, for volumetric analyses, and to test any associations between the cognitive abilities of the human and the structure of the PG.
Collapse
Affiliation(s)
- Foroogh Razavi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Raminfard
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Kalantar Hormozi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Sisakhti
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cognitive Psychology, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Princich JP, Donnelly-Kehoe PA, Deleglise A, Vallejo-Azar MN, Pascariello GO, Seoane P, Veron Do Santos JG, Collavini S, Nasimbera AH, Kochen S. Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm. Front Neurol 2021; 12:613967. [PMID: 33692740 PMCID: PMC7937810 DOI: 10.3389/fneur.2021.613967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
Introduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS. Methods: Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy. Results: Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions. Conclusion: We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.
Collapse
Affiliation(s)
- Juan Pablo Princich
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Hospital de Pediatría J.P Garrahan, Departamento de Neuroimágenes, Buenos Aires, Argentina
| | - Patricio Andres Donnelly-Kehoe
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Procesamiento de Señales Multimedia - División Neuroimágenes, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alvaro Deleglise
- Instituto de Fisiología y Biofísica B. Houssay (IFIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Fisiología y Biofísica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Nahir Vallejo-Azar
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina
| | - Guido Orlando Pascariello
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Procesamiento de Señales Multimedia - División Neuroimágenes, Universidad Nacional de Rosario, Rosario, Argentina
| | - Pablo Seoane
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Hospital J.M Ramos Mejía, Centro de Epilepsia, Buenos Aires, Argentina
| | - Jose Gabriel Veron Do Santos
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina
| | - Santiago Collavini
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Instituto de investigación en Electrónica, Control y Procesamiento de Señales (LEICI), Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina.,Instituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Alejandro Hugo Nasimbera
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Hospital J.M Ramos Mejía, Centro de Epilepsia, Buenos Aires, Argentina
| | - Silvia Kochen
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina
| |
Collapse
|
13
|
Abstract
Human brain atlases have been evolving tremendously, propelled recently by brain big projects, and driven by sophisticated imaging techniques, advanced brain mapping methods, vast data, analytical strategies, and powerful computing. We overview here this evolution in four categories: content, applications, functionality, and availability, in contrast to other works limited mostly to content. Four atlas generations are distinguished: early cortical maps, print stereotactic atlases, early digital atlases, and advanced brain atlas platforms, and 5 avenues in electronic atlases spanning the last two generations. Content-wise, new electronic atlases are categorized into eight groups considering their scope, parcellation, modality, plurality, scale, ethnicity, abnormality, and a mixture of them. Atlas content developments in these groups are heading in 23 various directions. Application-wise, we overview atlases in neuroeducation, research, and clinics, including stereotactic and functional neurosurgery, neuroradiology, neurology, and stroke. Functionality-wise, tools and functionalities are addressed for atlas creation, navigation, individualization, enabling operations, and application-specific. Availability is discussed in media and platforms, ranging from mobile solutions to leading-edge supercomputers, with three accessibility levels. The major application-wise shift has been from research to clinical practice, particularly in stereotactic and functional neurosurgery, although clinical applications are still lagging behind the atlas content progress. Atlas functionality also has been relatively neglected until recently, as the management of brain data explosion requires powerful tools. We suggest that the future human brain atlas-related research and development activities shall be founded on and benefit from a standard framework containing the core virtual brain model cum the brain atlas platform general architecture.
Collapse
Affiliation(s)
- Wieslaw L Nowinski
- John Paul II Center for Virtual Anatomy and Surgical Simulation, University of Cardinal Stefan Wyszynski, Woycickiego 1/3, Block 12, room 1220, 01-938, Warsaw, Poland.
| |
Collapse
|
14
|
Holla B, Taylor PA, Glen DR, Lee JA, Vaidya N, Mehta UM, Venkatasubramanian G, Pal PK, Saini J, Rao NP, Ahuja CK, Kuriyan R, Krishna M, Basu D, Kalyanram K, Chakrabarti A, Orfanos DP, Barker GJ, Cox RW, Schumann G, Bharath RD, Benegal V. A series of five population-specific Indian brain templates and atlases spanning ages 6-60 years. Hum Brain Mapp 2020; 41:5164-5175. [PMID: 32845057 PMCID: PMC7670651 DOI: 10.1002/hbm.25182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
Anatomical brain templates are commonly used as references in neurological MRI studies, for bringing data into a common space for group‐level statistics and coordinate reporting. Given the inherent variability in brain morphology across age and geography, it is important to have templates that are as representative as possible for both age and population. A representative‐template increases the accuracy of alignment, decreases distortions as well as potential biases in final coordinate reports. In this study, we developed and validated a new set of T1w Indian brain templates (IBT) from a large number of brain scans (total n = 466) acquired across different locations and multiple 3T MRI scanners in India. A new tool in AFNI, make_template_dask.py, was created to efficiently make five age‐specific IBTs (ages 6–60 years) as well as maximum probability map (MPM) atlases for each template; for each age‐group's template–atlas pair, there is both a “population‐average” and a “typical” version. Validation experiments on an independent Indian structural and functional‐MRI dataset show the appropriateness of IBTs for spatial normalization of Indian brains. The results indicate significant structural differences when comparing the IBTs and MNI template, with these differences being maximal along the Anterior–Posterior and Inferior–Superior axes, but minimal Left–Right. For each age‐group, the MPM brain atlases provide reasonably good representation of the native‐space volumes in the IBT space, except in a few regions with high intersubject variability. These findings provide evidence to support the use of age and population‐specific templates in human brain mapping studies.
Collapse
Affiliation(s)
- Bharath Holla
- National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Paul A Taylor
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, Maryland, USA
| | - Daniel R Glen
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, Maryland, USA
| | - John A Lee
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, Maryland, USA
| | - Nilakshi Vaidya
- National Institute of Mental Health and Neuro Sciences, Bengaluru, India.,Centre for Population Neuroscience and Stratified Medicine (PONS), SGDP Centre, IoPPN, KCL, London, UK
| | | | | | - Pramod Kumar Pal
- National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Jitender Saini
- National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Naren P Rao
- National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Chirag K Ahuja
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rebecca Kuriyan
- St. John's Medical College and Research Institute, Bengaluru, India
| | - Murali Krishna
- CSI Holdsworth Memorial Hospital, Mysore, India.,Foundation for Research and Advocacy in Mental Health, Mysore, India
| | - Debashish Basu
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | - Gareth J Barker
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Robert W Cox
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, Maryland, USA
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), SGDP Centre, IoPPN, KCL, London, UK
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Vivek Benegal
- National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| |
Collapse
|
15
|
Wang G, Hu Y, Li X, Wang M, Liu C, Yang J, Jin C. Impacts of skull stripping on construction of three-dimensional T1-weighted imaging-based brain structural network in full-term neonates. Biomed Eng Online 2020; 19:41. [PMID: 32493402 PMCID: PMC7268688 DOI: 10.1186/s12938-020-00785-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Skull stripping remains a challenge for neonatal brain MR image analysis. However, little is known about the accuracy of how skull stripping affects the neonatal brain tissue segmentation and subsequent network construction. This paper therefore aimed to clarify this issue by comparing two automatic (FMRIB Software Library's Brain Extraction Tool, BET; Infant Brain Extraction and Analysis Toolbox, iBEAT) and a semiautomatic (iBEAT with manual correction) processes in constructing 3D T1-weighted imaging (T1WI)-based brain structural network. METHODS Twenty-two full-term neonates (gestational age, 37-42 weeks; boys/girls, 13/9) without abnormalities on MRI who underwent brain 3D T1WI were retrospectively recruited. Two automatic (BET and iBEAT) and a semiautomatic preprocessing (iBEAT with manual correction) workflows were separately used to perform the skull stripping. Brain tissue segmentation and volume calculation were performed by a Johns Hopkins atlas-based method. Sixty-four gray matter regions were selected as nodes; volume covariance network and its properties (clustering coefficient, Cp; characteristic path length, Lp; local efficiency, Elocal; global efficiency, Eglobal) were calculated by GRETNA. Analysis of variance (ANOVA) was used to compare the differences in the calculated volume between three workflows. RESULTS There were significant differences in volumes of 50 brain regions between the three workflows (P < 0.05). Three neonatal brain structural networks presented small-world topology. The semiautomatic workflow showed remarkably decreased Cp, increased Lp, decreased Elocal, and decreased Eglobal, in contrast to the two automatic ones. CONCLUSIONS Imperfect skull stripping indeed affected the accuracy of brain structural network in full-term neonates.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yajie Hu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
16
|
Wong TH, Shagera QA, Ryoo HG, Ha S, Lee DS. Basal and Acetazolamide Brain Perfusion SPECT in Internal Carotid Artery Stenosis. Nucl Med Mol Imaging 2020; 54:9-27. [PMID: 32206127 PMCID: PMC7062956 DOI: 10.1007/s13139-019-00633-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022] Open
Abstract
Internal carotid artery (ICA) stenosis including Moyamoya disease needs revascularization when hemodynamic insufficiency is validated. Vascular reserve impairment was the key to find the indication for endarterectomy/bypass surgery in the atherosclerotic ICA stenosis and to determine the indication, treatment effect, and prognosis in Moyamoya diseases. Vascular reserve was quantitatively assessed by 1-day split-dose I-123 IMP basal/acetazolamide SPECT in Japan or by Tc-99m HMPAO SPECT in other countries using qualitative or semi-quantitative method. We summarized the development of 1-day basal/ acetazolamide brain perfusion SPECT for ICA stenosis, both quantitative and qualitative methods, and their methodological issues regarding (1) acquisition protocol; (2) qualitative assessment, either visual or deep learning-based; (3) clinical use for atherosclerotic ICA steno-occlusive diseases and mostly Moyamoya diseases; and (4) their impact on the choice of treatment options. Trials to use CT perfusion or perfusion MRI using contrast materials or arterial spin labeling were briefly discussed in their endeavor to use basal studies alone to replace acetazolamide-challenge SPECT. Theoretical and practical issues imply that basal perfusion evaluation, no matter how much sophisticated, will not disclose vascular reserve. Acetazolamide rarely causes serious adverse reactions but included fatality, and now, we need to monitor patients closely in acetazolamide-challenge studies.
Collapse
Affiliation(s)
- Teck Huat Wong
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Qaid Ahmed Shagera
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hyun Gee Ryoo
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine Department of Radiology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Yang G, Zhou S, Bozek J, Dong HM, Han M, Zuo XN, Liu H, Gao JH. Sample sizes and population differences in brain template construction. Neuroimage 2020; 206:116318. [PMID: 31689538 PMCID: PMC6980905 DOI: 10.1016/j.neuroimage.2019.116318] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/01/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Spatial normalization or deformation to a standard brain template is routinely used as a key module in various pipelines for the processing of magnetic resonance imaging (MRI) data. Brain templates are often constructed using MRI data from a limited number of subjects. Individual brains show significant variabilities in their morphology; thus, sample sizes and population differences are two key factors that influence brain template construction. To address these influences, we employed two independent groups from the Human Connectome Project (HCP) and the Chinese Human Connectome Project (CHCP) to quantify the impacts of sample sizes and population on brain template construction. We first assessed the effect of sample size on the construction of volumetric brain templates using data subsets from the HCP and CHCP datasets. We applied a voxel-wise index of the deformation variability and a logarithmically transformed Jacobian determinant to quantify the variability associated with the template construction and modeled the brain template variability as a power function of the sample size. At the system level, the frontoparietal control network and dorsal attention network demonstrated higher deformation variability and logged Jacobian determinants, whereas other primary networks showed lower variability. To investigate the population differences, we constructed Caucasian and Chinese standard brain atlases (namely, US200 and CN200). The two demographically matched templates, particularly the language-related areas, exhibited dramatic bilaterally in supramarginal gyri and inferior frontal gyri differences in their deformation variability and logged Jacobian determinant. Using independent data from the HCP and CHCP, we examined the segmentation and registration accuracy and observed significant reduction in the performance of the brain segmentation and registration when the population-mismatched templates were used in the spatial normalization. Our findings provide evidence to support the use of population-matched templates in human brain mapping studies. The US200 and CN200 templates have been released on the Neuroimage Informatics Tools and Resources Clearinghouse (NITRC) website (https://www.nitrc.org/projects/us200_cn200/).
Collapse
Affiliation(s)
- Guoyuan Yang
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Sizhong Zhou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Hao-Ming Dong
- Department of Psychology, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Meizhen Han
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xi-Nian Zuo
- Department of Psychology, University of Chinese Academy of Sciences (UCAS), Beijing, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Key Laboratory of Brain and Education, Nanning Normal University, Nanning, China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
18
|
Pai PP, Mandal PK, Punjabi K, Shukla D, Goel A, Joon S, Roy S, Sandal K, Mishra R, Lahoti R. BRAHMA: Population specific T1, T2, and FLAIR weighted brain templates and their impact in structural and functional imaging studies. Magn Reson Imaging 2020; 70:5-21. [PMID: 31917995 DOI: 10.1016/j.mri.2019.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/18/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Differences in brain morphology across population groups necessitate creation of population-specific Magnetic Resonance Imaging (MRI) brain templates for interpretation of neuroimaging data. Variations in the neuroanatomy in a genetically heterogeneous population make the development of a population-specific brain template for the Indian subcontinent imperative. A dataset of high-resolution 3D T1, T2-weighted, and FLAIR images acquired from a group of 113 volunteers (M/F - 56/57, mean age-28.96 ± 7.80 years) are used to construct T1, T2-weighted, and FLAIR templates, collectively referred to as Indian Brain Template, "BRAHMA". A processing pipeline is developed and implemented in a MATLAB based toolbox for template construction and generation of tissue probability maps and segmentation atlases, with additional labels for deep brain regions such as the Substantia Nigra generated from the T2-weighted and FLAIR templates. The use of BRAHMA template for analysis of structural and functional neuroimaging data obtained from Indian participants, provides improved accuracy with statistically significant results over that obtained using the ICBM-152 (International Consortium for Brain Mapping) template. Our results indicate that segmentations generated on structural images are closer in volume to those obtained from registration to the BRAHMA template than to the ICBM-152. Furthermore, functional MRI data obtained for Working Memory and Finger Tapping paradigms processed using the BRAHMA template show a significantly higher percentage of the activation area than ICBM-152 in relevant brain regions, i.e. the left middle frontal gyrus, and the left and right precentral gyri, respectively. The availability of different image contrasts, tissue maps, and segmentation atlases makes the BRAHMA template a comprehensive tool for multi-modal image analysis in laboratory and clinical settings.
Collapse
Affiliation(s)
- Praful P Pai
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Pravat K Mandal
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India; Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine, Melbourne, Victoria, Australia.
| | - Khushboo Punjabi
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Deepika Shukla
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Anshika Goel
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Shallu Joon
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Saurav Roy
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Kanika Sandal
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Ritwick Mishra
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Ritu Lahoti
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| |
Collapse
|
19
|
Joel D, Persico A, Salhov M, Berman Z, Oligschläger S, Meilijson I, Averbuch A. Analysis of Human Brain Structure Reveals that the Brain "Types" Typical of Males Are Also Typical of Females, and Vice Versa. Front Hum Neurosci 2018; 12:399. [PMID: 30405373 PMCID: PMC6204758 DOI: 10.3389/fnhum.2018.00399] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
Findings of average differences between females and males in the structure of specific brain regions are often interpreted as indicating that the typical male brain is different from the typical female brain. An alternative interpretation is that the brain types typical of females are also typical of males, and sex differences exist only in the frequency of rare brain types. Here we contrasted the two hypotheses by analyzing the structure of 2176 human brains using three analytical approaches. An anomaly detection analysis showed that brains from females are almost as likely to be classified as “normal male brains,” as brains from males are, and vice versa. Unsupervised clustering algorithms revealed that common brain “types” are similarly common in females and in males and that a male and a female are almost as likely to have the same brain “type” as two females or two males are. Large sex differences were found only in the frequency of some rare brain “types.” Last, supervised clustering algorithms revealed that the brain “type(s)” typical of one sex category in one sample could be typical of the other sex category in another sample. The present findings demonstrate that even when similarity and difference are defined mathematically, ignoring biological or functional relevance, sex category (i.e., whether one is female or male), is not a major predictor of the variability of human brain structure. Rather, the brain types typical of females are also typical of males, and vice versa, and large sex differences are found only in the prevalence of some rare brain types. We discuss the implications of these findings to studies of the structure and function of the human brain.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Persico
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Salhov
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Zohar Berman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sabine Oligschläger
- Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Life Sciences, University Leipzig, Leipzig, Germany.,International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Isaac Meilijson
- School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Averbuch
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Del Maschio N, Sulpizio S, Fedeli D, Ramanujan K, Ding G, Weekes BS, Cachia A, Abutalebi J. ACC Sulcal Patterns and Their Modulation on Cognitive Control Efficiency Across Lifespan: A Neuroanatomical Study on Bilinguals and Monolinguals. Cereb Cortex 2018; 29:3091-3101. [DOI: 10.1093/cercor/bhy175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 01/17/2023] Open
Abstract
Abstract
The anterior cingulate cortex (ACC) is a key structure implicated in the regulation of cognitive control (CC). Previous studies suggest that variability in the ACC sulcal pattern—a neurodevelopmental marker unaffected by maturation or plasticity after birth—is associated with intersubject differences in CC performance. Here, we investigated whether bilingual experience modulates the effects of ACC sulcal variability on CC performance across the lifespan. Using structural MRI, we first established the distribution of the ACC sulcal patterns in a large sample of healthy individuals (N = 270) differing on gender and ethnicity. Second, a participants’ subsample (N = 157) was selected to test whether CC performance was differentially affected by ACC sulcation in bilinguals and monolinguals across age. A prevalent leftward asymmetry unaffected by gender or ethnicity was reported. Sulcal variability in the ACC predicted CC performance differently in bilinguals and monolinguals, with a reversed pattern of structure–function relationship: asymmetrical versus symmetrical ACC sulcal patterns were associated with a performance advantage in monolinguals and a performance detriment to bilinguals and vice versa. Altogether, these findings provide novel insights on the dynamic interplay between early neurodevelopment, environmental background and cognitive efficiency across age.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
| | - Simone Sulpizio
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
| | - Davide Fedeli
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
| | - Keerthi Ramanujan
- Department of Speech and Hearing Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Brendan S Weekes
- Department of Speech and Hearing Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- School of Psychological Sciences, Faculty of Dentistry, Medicine and Health Sciences, University of Melbourne, Parkville, Australia
| | - Arnaud Cachia
- Laboratory for the Psychology of Child Development and Education, Sorbonne, CNRS UMR8240, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
- Imaging Biomarkers for Brain Development and Disorders, Ste Anne Hospital, INSERM UMR894, Paris, France
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
- Department of Speech and Hearing Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
21
|
Bhalerao GV, Parlikar R, Agrawal R, Shivakumar V, Kalmady SV, Rao NP, Agarwal SM, Narayanaswamy JC, Reddy YCJ, Venkatasubramanian G. Construction of population-specific Indian MRI brain template: Morphometric comparison with Chinese and Caucasian templates. Asian J Psychiatr 2018; 35:93-100. [PMID: 29843077 DOI: 10.1016/j.ajp.2018.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Spatial normalization of brain MR images is highly dependent on the choice of target brain template. Morphological differences caused by factors like genetic and environmental exposures, generates a necessity to construct population specific brain templates. Brain image analysis performed using brain templates from Caucasian population may not be appropriate for non-Caucasian population. In this study, our objective was to construct an Indian brain template from a large population (N = 157 subjects) and compare the morphometric parameters of this template with that of Chinese-56 and MNI-152 templates. In addition, using an independent MRI data of 15 Indian subjects, we also evaluated the potential registration accuracy differences using these three templates. METHODS Indian brain template was constructed using iterative routines as per established procedures. We compared our Indian template with standard MNI-152 template and Chinese template by measuring global brain features. We also examined accuracy of registration by aligning 15 new Indian brains to Indian, Chinese and MNI templates. Furthermore, we supported our measurement protocol with inter-rater and intra-rater reliability analysis. RESULTS Our results showed that there were significant differences in global brain features of Indian template in comparison with Chinese and MNI brain templates. The results of registration accuracy analysis revealed that fewer deformations are required when Indian brains are registered to Indian template as compared to Chinese and MNI templates. CONCLUSION This study concludes that population specific Indian template is likely to be more appropriate for structural and functional image analysis of Indian population.
Collapse
Affiliation(s)
- Gaurav Vivek Bhalerao
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Rujuta Parlikar
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Rimjhim Agrawal
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Naren P Rao
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sri Mahavir Agarwal
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Y C Janardhan Reddy
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
22
|
Mikhael S, Hoogendoorn C, Valdes-Hernandez M, Pernet C. A critical analysis of neuroanatomical software protocols reveals clinically relevant differences in parcellation schemes. Neuroimage 2018; 170:348-364. [DOI: 10.1016/j.neuroimage.2017.02.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
|
23
|
Yun TJ, Sohn CH, Yoo RE, Kang KM, Choi SH, Kim JH, Park SW, Hwang M, Lebel RM. Transit time corrected arterial spin labeling technique aids to overcome delayed transit time effect. Neuroradiology 2017; 60:255-265. [PMID: 29288284 DOI: 10.1007/s00234-017-1969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE This study aimed to evaluate the usefulness of transit time corrected cerebral blood flow (CBF) maps based on multi-phase arterial spin labeling MR perfusion imaging (ASL-MRP). METHODS The Institutional Review Board of our hospital approved this retrospective study. Written informed consent was waived. Conventional and multi-phase ASL-MRPs and dynamic susceptibility contrast MR perfusion imaging (DSC-MRP) were acquired for 108 consecutive patients. Vascular territory-based volumes of interest were applied to CBF and time to peak (TTP) maps obtained from DSC-MRP and CBF maps obtained from conventional and multi-phase ASL-MRPs. The concordances between normalized CBF (nCBF) from DSC-MRP and nCBF from conventional and transition time corrected CBF maps from multi-phase ASL-MRP were evaluated using Bland-Altman analysis. In addition, the dependence of difference between nCBF (ΔnCBF) values obtained from DSC-MRP and conventional ASL-MRP (or multi-phase ASL-MRP) on TTP obtained from DSC-MRP was also analyzed using regression analysis. RESULTS The values of nCBFs from conventional and multi-phase ASL-MRPs had lower values than nCBF based on DSC-MRP (mean differences, 0.08 and 0.07, respectively). The values of ΔnCBF were dependent on TTP values from conventional ASL-MRP technique (F = 5.5679, P = 0.0384). No dependency of ΔnCBF on TTP values from multi-phase ASL-MRP technique was revealed (F = 0.1433, P > 0.05). CONCLUSION The use of transit time corrected CBF maps based on multi-phase ASL-MRP technique can overcome the effect of delayed transit time on perfusion maps based on conventional ASL-MRP.
Collapse
Affiliation(s)
- Tae Jin Yun
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul-Ho Sohn
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea. .,Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Roh-Eul Yoo
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung Mi Kang
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Hong Choi
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ji-Hoon Kim
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sun-Won Park
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | | | | |
Collapse
|
24
|
Shi L, Liang P, Luo Y, Liu K, Mok VCT, Chu WCW, Wang D, Li K. Using Large-Scale Statistical Chinese Brain Template (Chinese2020) in Popular Neuroimage Analysis Toolkits. Front Hum Neurosci 2017; 11:414. [PMID: 28860982 PMCID: PMC5562686 DOI: 10.3389/fnhum.2017.00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023] Open
Abstract
Given that the morphology of Chinese brains statistically differs from that of Caucasian, there is an urgent need to develop a Chinese brain template for neuroimaging studies in Chinese populations. Based on a multi-center dataset, we developed a statistical Chinese brain template, named as Chinese2020 (Liang et al., 2015). This new Chinese brain atlas has been validated in brain normalization and segmentation for anatomical Magnetic Resonance Imaging (MRI) studies, and is publicly available at http://www.chinese-brain-atlases.org/. In our previous study, we have demonstrated this Chinese atlas showed higher accuracy in segmentation and relatively smaller shape deformations during registration. Because the spatial normalization of functional images is mainly based on the segmentation and normalization of anatomical image, the population-specific brain atlas should also be more appropriate for functional studies involving Chinese populations. The aim of this technology report is to validate the performance of Chinsese2020 template in functional neuroimaging studies, and demonstrated that for Chinese population studies, the use of the Chinese2010 template produces more valid results. The steps of how to use the Chinese2020 template in SPM software were given in details in this technology report, and based on an example of finger tapping fMRI study, this technology report demonstrated the Chinese2020 template could improve the performance of the neuroimaging analysis of Chinese populations.
Collapse
Affiliation(s)
- Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong KongShatin, Hong Kong
| | - Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of MRI and Brain InformaticsBeijing, China.,Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong KongShatin, Hong Kong
| | - Yishan Luo
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong KongShatin, Hong Kong
| | - Kai Liu
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong KongShatin, Hong Kong
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong KongShatin, Hong Kong
| | - Winnie C W Chu
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong KongShatin, Hong Kong
| | - Defeng Wang
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong KongShatin, Hong Kong
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of MRI and Brain InformaticsBeijing, China
| |
Collapse
|
25
|
Rao NP, Jeelani H, Achalia R, Achalia G, Jacob A, Bharath RD, Varambally S, Venkatasubramanian G, K Yalavarthy P. Population differences in brain morphology: Need for population specific brain template. Psychiatry Res Neuroimaging 2017; 265:1-8. [PMID: 28478339 DOI: 10.1016/j.pscychresns.2017.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/10/2023]
Abstract
Brain templates provide a standard anatomical platform for population based morphometric assessments. Typically, standard brain templates for such assessments are created using Caucasian brains, which may not be ideal to analyze brains from other ethnicities. To effectively demonstrate this, we compared brain morphometric differences between T1 weighted structural MRI images of 27 healthy Indian and Caucasian subjects of similar age and same sex ratio. Furthermore, a population specific brain template was created from MRI images of healthy Indian subjects and compared with standard Montreal Neurological Institute (MNI-152) template. We also examined the accuracy of registration of by acquiring a different T1 weighted MRI data set and registering them to newly created Indian template and MNI-152 template. The statistical analysis indicates significant difference in global brain measures and regional brain structures of Indian and Caucasian subjects. Specifically, the global brain measurements of the Indian brain template were smaller than that of the MNI template. Also, Indian brain images were better realigned to the newly created template than to the MNI-152 template. The notable variations in Indian and Caucasian brains convey the need to build a population specific Indian brain template and atlas.
Collapse
Affiliation(s)
- Naren P Rao
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Haris Jeelani
- Electrical and Computer Engineering, University of Virginia, USA
| | | | | | - Arpitha Jacob
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | - Phaneendra K Yalavarthy
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Reprint of: Minimizing noise in pediatric task-based functional MRI; Adolescents with developmental disabilities and typical development. Neuroimage 2017. [DOI: 10.1016/j.neuroimage.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Fassbender C, Mukherjee P, Schweitzer JB. Minimizing noise in pediatric task-based functional MRI; Adolescents with developmental disabilities and typical development. Neuroimage 2017; 149:338-347. [PMID: 28130195 DOI: 10.1016/j.neuroimage.2017.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) represents a powerful tool with which to examine brain functioning and development in typically developing pediatric groups as well as children and adolescents with clinical disorders. However, fMRI data can be highly susceptible to misinterpretation due to the effects of excessive levels of noise, often related to head motion. Imaging children, especially with developmental disorders, requires extra considerations related to hyperactivity, anxiety and the ability to perform and maintain attention to the fMRI paradigm. We discuss a number of methods that can be employed to minimize noise, in particular movement-related noise. To this end we focus on strategies prior to, during and following the data acquisition phase employed primarily within our own laboratory. We discuss the impact of factors such as experimental design, screening of potential participants and pre-scan training on head motion in our adolescents with developmental disorders and typical development. We make some suggestions that may minimize noise during data acquisition itself and finally we briefly discuss some current processing techniques that may help to identify and remove noise in the data. Many advances have been made in the field of pediatric imaging, particularly with regard to research involving children with developmental disorders. Mindfulness of issues such as those discussed here will ensure continued progress and greater consistency across studies.
Collapse
Affiliation(s)
- Catherine Fassbender
- Department of Psychiatry and Behavioral Sciences, United States; UC Davis MIND Institute, United States; UC Davis Imaging Research Center, United States.
| | - Prerona Mukherjee
- Department of Psychiatry and Behavioral Sciences, United States; UC Davis MIND Institute, United States
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences, United States; UC Davis MIND Institute, United States
| |
Collapse
|
28
|
Dickie DA, Shenkin SD, Anblagan D, Lee J, Blesa Cabez M, Rodriguez D, Boardman JP, Waldman A, Job DE, Wardlaw JM. Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging. Front Neuroinform 2017; 11:1. [PMID: 28154532 PMCID: PMC5244468 DOI: 10.3389/fninf.2017.00001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022] Open
Abstract
Brain MRI atlases may be used to characterize brain structural changes across the life course. Atlases have important applications in research, e.g., as registration and segmentation targets to underpin image analysis in population imaging studies, and potentially in future in clinical practice, e.g., as templates for identifying brain structural changes out with normal limits, and increasingly for use in surgical planning. However, there are several caveats and limitations which must be considered before successfully applying brain MRI atlases to research and clinical problems. For example, the influential Talairach and Tournoux atlas was derived from a single fixed cadaveric brain from an elderly female with limited clinical information, yet is the basis of many modern atlases and is often used to report locations of functional activation. We systematically review currently available whole brain structural MRI atlases with particular reference to the implications for population imaging through to emerging clinical practice. We found 66 whole brain structural MRI atlases world-wide. The vast majority were based on T1, T2, and/or proton density (PD) structural sequences, had been derived using parametric statistics (inappropriate for brain volume distributions), had limited supporting clinical or cognitive data, and included few younger (>5 and <18 years) or older (>60 years) subjects. To successfully characterize brain structural features and their changes across different stages of life, we conclude that whole brain structural MRI atlases should include: more subjects at the upper and lower extremes of age; additional structural sequences, including fluid attenuation inversion recovery (FLAIR) and T2* sequences; a range of appropriate statistics, e.g., rank-based or non-parametric; and detailed cognitive and clinical profiles of the included subjects in order to increase the relevance and utility of these atlases.
Collapse
Affiliation(s)
- David Alexander Dickie
- Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationGlasgow, UK
| | - Susan D. Shenkin
- Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
- Geriatric Medicine Unit, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of EdinburghEdinburgh, UK
| | - Devasuda Anblagan
- Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationGlasgow, UK
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteEdinburgh, UK
| | - Juyoung Lee
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of TübingenTübingen, Germany
| | - Manuel Blesa Cabez
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteEdinburgh, UK
| | - David Rodriguez
- Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationGlasgow, UK
| | - James P. Boardman
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteEdinburgh, UK
| | - Adam Waldman
- Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
| | - Dominic E. Job
- Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationGlasgow, UK
| | - Joanna M. Wardlaw
- Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, Royal Infirmary of Edinburgh, The University of EdinburghEdinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationGlasgow, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of EdinburghEdinburgh, UK
| |
Collapse
|
29
|
Diagnostic Efficacy of Structural MRI in Patients With Mild-to-Moderate Alzheimer Disease: Automated Volumetric Assessment Versus Visual Assessment. AJR Am J Roentgenol 2017; 208:617-623. [PMID: 28075620 DOI: 10.2214/ajr.16.16894] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to compare the diagnostic efficacies of an automated volumetric assessment tool and visual assessment in the evaluation of medial temporal lobar atrophy in mild-to-moderate Alzheimer disease (AD). MATERIALS AND METHODS This retrospective study included 30 patients with mild-to-moderate AD and 25 age-matched healthy control subjects undergoing MRI with a 3D fast spoiled gradient recalled-echo sequence at 3 T. The images were processed with fully automated volumetric analysis software. To assess medial temporal lobe (MTL) atrophy, two MTL indexes, which took into account the volumes of the hippocampus and the inferior lateral ventricle, were calculated with the automated volumetric assessment software. In addition, two neuroradiologists assessed MTL atrophy visually using the Scheltens scale. ROC curve analysis was used to compare the diagnostic performances of the two methods. The weighted kappa statistic was used to assess the intrarater and interrater reliability of visual inspection. RESULTS The automated volumetric assessment tool had moderate sensitivity (63.3%) and high specificity (100%) in differentiating patients with mild-to-moderate AD from control subjects. Visual inspection showed sensitivity of 63.3% and specificity of 92.0%. The diagnostic performance was not significantly different between the two methods (p = 0.536-0.906). Intraobserver reliability for visual inspection was 0.858 and 0.902 for the two reviewers, and interobserver reliability was 0.692-0.780. CONCLUSION Both the automated volumetric assessment tool and visual inspection can be used to evaluate MTL atrophy and differentiate patients with AD from healthy individuals with good diagnostic accuracy. Thus, the automated tool can be a useful and efficient adjunct in clinical practice for evaluating MTL atrophy in the diagnosis of AD.
Collapse
|
30
|
Lee H, Yoo BI, Han JW, Lee JJ, Oh SYW, Lee EY, Kim JH, Kim KW. Construction and Validation of Brain MRI Templates from a Korean Normal Elderly Population. Psychiatry Investig 2016; 13:135-45. [PMID: 26766956 PMCID: PMC4701677 DOI: 10.4306/pi.2016.13.1.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/21/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This study aimed to construct a Korean normal elderly brain template (KNE96) using Korean elderly individuals for use in brain MRI studies and to validate it. METHODS We used high-resolution 3.0T T1 structural MR images from 96 Korean normal elderly individuals (M/F=48/48), aged 60 years or older (M=69.5±6.2 years, F=70.1±7.0 years), for constructing the KNE96 template. The KNE96 template was validated by comparing the registration-induced deformations between the KNE96 and ICBM152 templates using different MR images from 48 Korean normal elderly individuals (M/F=24/24), aged 60 years or older (M=71.5±5.9 years, F=72.8±5.1 years). We used the magnitude of displacement vectors (mag-displacement) and log of Jacobian determinants (log-Jacobian) to quantify the deformation produced during registration process to templates. RESULTS The mag-displacement and log-Jacobian of the registration were much smaller using the KNE96 template than with the ICBM152 template in most brain regions. There was a prominent difference in the significant averaged differences (SADs) of the mag-displacement and log-Jacobian between the KNE96 and ICBM152 at the superior, medial, and middle frontal gyrus, the lingual, inferior, middle, and superior occipital gyrus, and the caudate and thalamus. CONCLUSION This study suggests that templates constructed from Asian populations, such as the KNE96, may be more desirable than those from Caucasian populations, like the ICBM152, in computational neuroimaging studies that measure and compare anatomical features of the frontal and occipital lobe, thalamus and caudate.
Collapse
Affiliation(s)
- Hyunna Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Byung Il Yoo
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Medical College, Cheonan, Republic of Korea
| | - San Yeo Wool Oh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Young Lee
- Department of Psychiatry, Dankook University Medical College, Cheonan, Republic of Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Liang P, Shi L, Chen N, Luo Y, Wang X, Liu K, Mok VCT, Chu WCW, Wang D, Li K. Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults. Sci Rep 2015; 5:18216. [PMID: 26678304 PMCID: PMC4683356 DOI: 10.1038/srep18216] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023] Open
Abstract
Despite the known morphological differences (e.g., brain shape and size) in the brains of populations of different origins (e.g., age and race), the Chinese brain atlas is less studied. In the current study, we developed a statistical brain atlas based on a multi-center high quality magnetic resonance imaging (MRI) dataset of 2020 Chinese adults (18-76 years old). We constructed 12 Chinese brain atlas from the age 20 year to the age 75 at a 5 years interval. New Chinese brain standard space, coordinates, and brain area labels were further defined. The new Chinese brain atlas was validated in brain registration and segmentation. It was found that, as contrast to the MNI152 template, the proposed Chinese atlas showed higher accuracy in hippocampus segmentation and relatively smaller shape deformations during registration. These results indicate that a population-specific time varying brain atlas may be more appropriate for studies involving Chinese populations.
Collapse
Affiliation(s)
- Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.,Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.,Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
| | - Yishan Luo
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xing Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.,Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
| | - Kai Liu
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Winnie C W Chu
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Defeng Wang
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.,Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
| |
Collapse
|
32
|
Xie W, Richards JE, Lei D, Zhu H, Lee K, Gong Q. The construction of MRI brain/head templates for Chinese children from 7 to 16 years of age. Dev Cogn Neurosci 2015; 15:94-105. [PMID: 26343862 PMCID: PMC4714595 DOI: 10.1016/j.dcn.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/05/2023] Open
Abstract
Population-specific brain templates that provide detailed brain information are beneficial to both structural and functional neuroimaging research. However, age-specific MRI templates have not been constructed for Chinese or any Asian developmental populations. This study developed novel T1-weighted average brain and head templates for Chinese children from 7 to 16 years of age in two-year increments using high quality magnetic resonance imaging (MRI) and well-validated image analysis techniques. A total of 138 Chinese children (51 F/87 M) were included in this study. The internally and externally validated registrations show that these Chinese age-specific templates fit Chinese children's MR images significantly better than age-specific templates created from U.S. children, or adult templates based on either Chinese or North American adults. It implies that age-inappropriate (e.g., the Chinese56 template, the US20-24 template) and nationality-inappropriate brain templates (e.g., U.S. children's templates, the US20-24 template) do not provide optimal reference MRIs for processing MR brain images of Chinese pediatric populations. Thus, our age-specific MRI templates are the first of the kind and should be useful in neuroimaging studies with children from Chinese or other Asian populations. These templates can also serve as the foundations for the construction of more comprehensive sets of nationality-specific templates for Asian developmental populations. These templates are available for use in our database.
Collapse
Affiliation(s)
- Wanze Xie
- Department of Psychology, and Institute for Mind and Brain, University of South Carolina, United States; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China.
| | - John E Richards
- Department of Psychology, and Institute for Mind and Brain, University of South Carolina, United States
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China; Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, China.
| | - Kang Lee
- Department of Human Development and Applied Psychology, and Dr. Eric Jackman Institute of Child Study, University of Toronto, Canada
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China; Department of Psychology, School of Public Administration, Sichuan University, China
| |
Collapse
|
33
|
Kang KM, Yun TJ, Yoon BW, Jeon BS, Choi SH, Kim JH, Kim JE, Sohn CH, Han MH. Clinical utility of arterial spin-labeling as a confirmatory test for suspected brain death. AJNR Am J Neuroradiol 2015; 36:909-14. [PMID: 25572951 DOI: 10.3174/ajnr.a4209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023]
Abstract
Diagnosis of brain death is made on the basis of 3 essential findings: coma, absence of brain stem reflexes, and apnea. Although confirmatory tests are not mandatory in most situations, additional testing may be necessary to declare brain death in patients in whom results of specific components of clinical testing cannot be reliably evaluated. Recently, arterial spin-labeling has been incorporated as part of MR imaging to evaluate cerebral perfusion. Advantages of arterial spin-labeling include being completely noninvasive and providing information about absolute CBF. We retrospectively reviewed arterial spin-labeling findings according to the following modified criteria based on previously established confirmatory tests to determine brain death: 1) extremely decreased perfusion in the whole brain, 2) bright vessel signal intensity around the entry of the carotid artery to the skull, 3) patent external carotid circulation, and 4) "hollow skull sign" in a series of 5 patients. Arterial spin-labeling findings satisfied the criteria for brain death in all patients. Arterial spin-labeling imaging has the potential to be a completely noninvasive confirmatory test to provide additional information to assist in the diagnosis of brain death.
Collapse
Affiliation(s)
- K M Kang
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - T J Yun
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - B-W Yoon
- Neurology (B.-W.Y., B.S.J.) Clinical Research Center for Stroke (B.-W.Y., B.S.J.), Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - B S Jeon
- Neurology (B.-W.Y., B.S.J.) Clinical Research Center for Stroke (B.-W.Y., B.S.J.), Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - S H Choi
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - J-H Kim
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | | | - C-H Sohn
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - M H Han
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| |
Collapse
|
34
|
Fillmore PT, Phillips-Meek MC, Richards JE. Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age. Front Aging Neurosci 2015; 7:44. [PMID: 25904864 PMCID: PMC4389545 DOI: 10.3389/fnagi.2015.00044] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/15/2015] [Indexed: 11/28/2022] Open
Abstract
This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in five-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, and segmenting priors for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). It was found that age-appropriate templates provided less biased tissue classification estimates than age-inappropriate reference data and reference data based on young adult templates. This database is available for use by other investigators and clinicians for their MRI studies, as well as other types of neuroimaging and electrophysiological research.1
Collapse
Affiliation(s)
- Paul T Fillmore
- Department of Communication Sciences and Disorders, University of South Carolina Columbia, SC, USA
| | - Michelle C Phillips-Meek
- Department of Psychology, University of South Carolina Columbia, SC, USA ; Department of Psychology, Limestone College Gaffney, SC, USA
| | - John E Richards
- Department of Psychology and Institute for Mind and Brain, University of South Carolina Columbia, SC, USA
| |
Collapse
|
35
|
Xie W, Richards JE, Lei D, Lee K, Gong Q. Comparison of the brain development trajectory between Chinese and U.S. children and adolescents. Front Syst Neurosci 2015; 8:249. [PMID: 25698941 PMCID: PMC4313711 DOI: 10.3389/fnsys.2014.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023] Open
Abstract
This current study investigated brain development of Chinese and American children and adolescents from 8 to 16 years of age using structural magnetic resonance imaging (MRI) techniques. Analyses comparing Chinese and U.S. children brain/head MR images were performed to explore similarities and differences in the trajectory of brain development between these two groups. Our results revealed regional and age differences in both brain/head morphological and tissue level development between Chinese and U.S. children. Chinese children's brains and heads were shorter, wider, and taller than those of U.S. children. There were significant differences in the gray matter (GM) and white matter (WM) intensity between the two nationalities. Development trajectories for cerebral volume, GM, and several key brain structures were also distinct between these two populations.
Collapse
Affiliation(s)
- Wanze Xie
- Department of Psychology, Institute for Mind and Brain, University of South Carolina Columbia, SC, USA ; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - John E Richards
- Department of Psychology, Institute for Mind and Brain, University of South Carolina Columbia, SC, USA
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Kang Lee
- Department of Human Development and Applied Psychology, Dr. Eric Jackman Institute of Child Study, University of Toronto Toronto, ON, Canada
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| |
Collapse
|
36
|
Lee D, Kang H, Kim E, Lee H, Kim H, Kim YK, Lee Y, Lee DS. Optimal likelihood-ratio multiple testing with application to Alzheimer's disease and questionable dementia. BMC Med Res Methodol 2015; 15:9. [PMID: 25633500 PMCID: PMC4417288 DOI: 10.1186/1471-2288-15-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Background Controlling the false discovery rate is important when testing multiple hypotheses. To enhance the detection capability of a false discovery rate control test, we applied the likelihood ratio-based multiple testing method in neuroimage data and compared the performance with the existing methods. Methods We analysed the performance of the likelihood ratio-based false discovery rate method using simulation data generated under independent assumption, and positron emission tomography data of Alzheimer’s disease and questionable dementia. We investigated how well the method detects extensive hypometabolic regions and compared the results to those of the conventional Benjamini Hochberg-false discovery rate method. Results Our findings show that the likelihood ratio-based false discovery rate method can control the false discovery rate, giving the smallest false non-discovery rate (for a one-sided test) or the smallest expected number of false assignments (for a two-sided test). Even though we assumed independence among voxels, the likelihood ratio-based false discovery rate method detected more extensive hypometabolic regions in 22 patients with Alzheimer’s disease, as compared to the 44 normal controls, than did the Benjamini Hochberg-false discovery rate method. The contingency and distribution patterns were consistent with those of previous studies. In 24 questionable dementia patients, the proposed likelihood ratio-based false discovery rate method was able to detect hypometabolism in the medial temporal region. Conclusions This study showed that the proposed likelihood ratio-based false discovery rate method efficiently identifies extensive hypometabolic regions owing to its increased detection capability and ability to control the false discovery rate.
Collapse
Affiliation(s)
- Donghwan Lee
- Department of Statistics, Ewha Womans University, Seoul, Korea.
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Data Science for Knowledge Creation Research Center, Seoul National University, Seoul, Korea.
| | - Eunkyung Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, Korea.
| | - Hyekyoung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Department of Nuclear Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea.
| | - Youngjo Lee
- Data Science for Knowledge Creation Research Center, Seoul National University, Seoul, Korea. .,Department of Statistics, Seoul National University, Seoul, Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
37
|
Kim JS, Cheon GJ, Lim SM. Presurgical Mapping of Brain Tumors Using Statistical Probabilistic Anatomical Maps. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.89061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Richards JE, Xie W. Brains for all the ages: structural neurodevelopment in infants and children from a life-span perspective. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2015; 48:1-52. [PMID: 25735940 DOI: 10.1016/bs.acdb.2014.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive method to measure brain structure and function that may be applied to human participants of all ages. This chapter reviews our recent work creating a life-span Neurodevelopmental MRI Database. It provides age-specific reference data in fine-grained age intervals from 2 weeks through 89 years. The reference data include average MRI templates, segmented tissue priors, and a common stereotaxic atlas for pediatric and adult participants. The database will be useful for neuroimaging research over a wide range of ages and may be used to make life-span comparisons. The chapter reviews the application of this database to the study of neurostructural development, including a new volumetric study of segmented brain tissue over the life span. We also show how this database could be used to create "study-specific" MRI templates for special groups and apply this to the MRIs of Chinese children. Finally, we review recent use of the database in the study of brain activity in pediatric populations.
Collapse
|
39
|
Effect of delayed transit time on arterial spin labeling: correlation with dynamic susceptibility contrast perfusion magnetic resonance in moyamoya disease. Invest Radiol 2014; 48:795-802. [PMID: 23764569 DOI: 10.1097/rli.0b013e3182981137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Because arterial spin labeling (ASL) is completely noninvasive and provides absolute cerebral blood flow (CBF) information within a brief period, the technique has been increasingly used for patients with acute or chronic cerebrovascular disease. However, the effect of delayed transit time on ASL can generate errors in the quantitative estimation of CBF using ASL. Furthermore, in the clinical setting, in which transit time is uncertain, the variability of the transit time in patients reduces the validity of CBF on ASL images. Therefore, we evaluated the effect of delayed transit time on ASL images compared with dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) in patients with moyamoya disease. MATERIALS AND METHODS Arterial spin labeling and DSC perfusion MR images were acquired in 54 patients with moyamoya disease. Vascular territory and anatomical structure-based regions of interest (ROIs) were applied to the CBF and time-to-peak (TTP) maps from DSC and a CBF map using ASL. The change of the correlation coefficient (r) between normalized CBFs (nCBFs) from DSC and ASL was evaluated with categorization by the TTP. In addition, the dependence of the difference between the nCBF values from DSC and ASL on the TTP obtained using DSC was also analyzed. RESULTS The nCBF values from DSC and ASL were strongly correlated (r = 0.877 and r = 0.867 for the internal carotid artery (ICA) and middle cerebral artery territory-based ROIs, respectively; P < 0.0002 for both; r = 0.783 for the anatomical structure-based ROIs; P < 0.0084). However, correlations between nCBFs from DSC and ASL tended to be weaker when the TTP increased, with recovery when the TTP was extremely delayed (>25 seconds). The TTP delay had a positive effect on the difference between the nCBF values from the DSC and ASL for the ICA territory-based and anatomical structure-based ROIs (standardized coefficients, 0.224 for the ICA territory-based ROIs; P = 0.0410; 0.189 for the anatomical structure-based ROIs; P < 0.0084). CONCLUSIONS Our results demonstrate that the correlation between the CBF values from the ASL and DSC tends to be weaker when the transit time is more delayed, with the restoration of the strength of the correlation when the TTP is extremely delayed (>25 seconds). Understanding the effect of delayed transit time on the CBF from ASL perfusion MR in a clinical setting would facilitate the proper interpretation of ASL images.
Collapse
|
40
|
Mennes M, Jenkinson M, Valabregue R, Buitelaar JK, Beckmann C, Smith S. Optimizing full-brain coverage in human brain MRI through population distributions of brain size. Neuroimage 2014; 98:513-20. [PMID: 24747737 DOI: 10.1016/j.neuroimage.2014.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022] Open
Abstract
When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI sequences, non-wasteful FOV settings are important to achieve the best temporal and spatial resolution. In practice, however, imperfect FOV size estimation often results in partial brain coverage for a significant number of participants per study, or, alternatively, an unnecessarily large voxel-size or number of slices to guarantee full brain coverage. To provide normative FOV guidelines we estimated population distributions of brain size in the x-, y-, and z-direction using data from 14,781 individuals. Our results indicated that 11mm in the z-direction differentiate between obtaining full brain coverage for 90% vs. 99.9% of participants. Importantly, we observed that rotating the FOV to optimally cover the brain, and thus minimize the number of slices needed, effectively reduces the required inferior-superior FOV size by ~5%. For a typical adult imaging study, 99.9% of the population can be imaged with full brain coverage when using an inferior-superior FOV of 142mm, assuming optimal slice orientation and minimal within-scan head motion. By providing population distributions for brain size in the x-, y-, and z-direction we improve the potential for obtaining full brain coverage, especially in 2D-EPI sequences used in most functional and diffusion MRI studies. We further enable optimization of related imaging parameters including the number of slices, TR and total acquisition time.
Collapse
Affiliation(s)
- Maarten Mennes
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Mark Jenkinson
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Romain Valabregue
- Inserm, U975, CNRS, UMR 7225, CENIR: Centre de NeuroImagerie de Recherche, ICM Paris, France
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Christian Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Stephen Smith
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Luo Y, Shi L, Weng J, He H, Chu WCW, Chen F, Wang D. Intensity and sulci landmark combined brain atlas construction for Chinese pediatric population. Hum Brain Mapp 2014; 35:3880-92. [PMID: 24443182 DOI: 10.1002/hbm.22444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 11/07/2022] Open
Abstract
Constructing an atlas from a population of brain images is of vital importance to medical image analysis. Especially in neuroscience study, creating a brain atlas is useful for intra- and inter-population comparison. Research on brain atlas construction has attracted great attention in recent years, but the research on pediatric population is still limited, mainly due to the limited availability and the relatively low quality of pediatric magnetic resonance brain images. This article is targeted at creating a high quality representative brain atlas for Chinese pediatric population. To achieve this goal, we have designed a set of preprocessing procedures to improve the image quality and developed an intensity and sulci landmark combined groupwise registration method to align the population of images for atlas construction. As demonstrated in experiments, the newly constructed atlas can better represent the size and shape of brains of Chinese pediatric population, and show better performance in Chinese pediatric brain image analysis compared with other standard atlases.
Collapse
Affiliation(s)
- Yishan Luo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR; Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang L, Li H, Liang Y, Zhang J, Li X, Shu N, Wang YY, Zhang Z. Amnestic mild cognitive impairment: topological reorganization of the default-mode network. Radiology 2013; 268:501-14. [PMID: 23481166 DOI: 10.1148/radiol.13121573] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the topologic reorganization of the default-mode network (DMN) in patients with mild cognitive impairment (MCI) and whether, relative to healthy control subjects, patients with MCI would be more likely to show disrupted functional connectivity and altered topological configuration of the DMN during the memory task compared with that observed during the resting state. MATERIALS AND METHODS This study was approved by the institutional review board of Beijing Normal University Imaging Center for Brain Research. Written informed consent was obtained from each participant. Healthy control subjects (n = 26) and patients with amnestic MCI (aMCI) (n = 25) performed an episodic memory task and also rested while undergoing functional magnetic resonance imaging. Task-induced deactivations were identified and parcellated into different regions associated with the DMN. Functional connectivity across all pairs of regions was computed to construct the DMN architecture. Graph theoretical approaches were used to characterize topological properties of this network. RESULTS Patients with aMCI showed similar deactivation in the DMN to that observed in healthy control subjects (P > .05) but showed significantly decreased anterior-to-posterior functional connectivity only during the task (P < .05). Significant increases in local efficiency (P < .05), but not in global efficiency (P > .05), were observed in aMCI only during the task. Decreased functional connectivity was predictive of increased local efficiency (r = -0.35, P = .015). Significant correlations between these network measures and cognitive performance (P < .05) indicated their potential use as early markers to assess the risk of Alzheimer disease (AD). CONCLUSION This study suggests the early onset functional reorganization of the DMN toward a nonoptimized regularity configuration in aMCI and expands the understanding of dynamic functional reorganization in brain networks along the continuum from normal aging to AD dementia.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 19 Xinjiekouwai St, Beijing 100875, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Uchiyama HT, Seki A, Tanaka D, Koeda T, Jcs Group. A study of the standard brain in Japanese children: morphological comparison with the MNI template. Brain Dev 2013; 35:228-35. [PMID: 22669123 DOI: 10.1016/j.braindev.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 11/26/2022]
Abstract
Functional magnetic resonance imaging (MRI) studies involve normalization so that the brains of different subjects can be described using the same coordinate system. However, standard brain templates, including the Montreal Neurological Institute (MNI) template that is most frequently used at present, were created based on the brains of Western adults. Because morphological characteristics of the brain differ by race and ethnicity and between adults and children, errors are likely to occur when data from the brains of non-Western individuals are processed using these templates. Therefore, this study was conducted to collect basic data for the creation of a Japanese pediatric standard brain. Participants in this study were 45 healthy children (contributing 65 brain images) between the ages of 6 and 9 years, who had nothing notable in their perinatal and other histories and neurological findings, had normal physical findings and cognitive function, exhibited no behavioral abnormalities, and provided analyzable MR images. 3D-T1-weighted images were obtained using a 1.5-T MRI device, and images from each child were adjusted to the reference image by affine transformation using SPM8. The lengths were measured and compared with those of the MNI template. The Western adult standard brain and the Japanese pediatric standard brain obtained in this study differed greatly in size, particularly along the anteroposterior diameter and in height, suggesting that the correction rates are high, and that errors are likely to occur in the normalization of pediatric brain images. We propose that the use of the Japanese pediatric standard brain created in this study will improve the accuracy of identification of brain regions in functional brain imaging studies involving children.
Collapse
Affiliation(s)
- Hitoshi T Uchiyama
- Department of Regional Education, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8551, Japan.
| | | | | | | | | |
Collapse
|
44
|
Mandal PK, Mahajan R, Dinov ID. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. J Alzheimers Dis 2013; 31 Suppl 3:S169-88. [PMID: 22647262 DOI: 10.3233/jad-2012-120412] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural magnetic resonance imaging (MRI) provides anatomical information about the brain in healthy as well as in diseased conditions. On the other hand, functional MRI (fMRI) provides information on the brain activity during performance of a specific task. Analysis of fMRI data requires the registration of the data to a reference brain template in order to identify the activated brain regions. Brain templates also find application in other neuroimaging modalities, such as diffusion tensor imaging and multi-voxel spectroscopy. Further, there are certain differences (e.g., brain shape and size) in the brains of populations of different origin and during diseased conditions like in Alzheimer's disease (AD), population and disease-specific brain templates may be considered crucial for accurate registration and subsequent analysis of fMRI as well as other neuroimaging data. This manuscript provides a comprehensive review of the history, construction and application of brain atlases. A chronological outline of the development of brain template design, starting from the Talairach and Tournoux atlas to the Chinese brain template (to date), along with their respective detailed construction protocols provides the backdrop to this manuscript. The manuscript also provides the automated workflow-based protocol for designing a population-specific brain atlas from structural MRI data using LONI Pipeline graphical workflow environment. We conclude by discussing the scope of brain templates as a research tool and their application in various neuroimaging modalities.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neurospectroscopy and Neuroimaging Laboratory, National Brain Research Center, Gurgaon, India.
| | | | | |
Collapse
|
45
|
Xing W, Nan C, ZhenTao Z, Rong X, Luo J, Zhuo Y, DingGang S, KunCheng L. Probabilistic MRI brain anatomical atlases based on 1,000 Chinese subjects. PLoS One 2013; 8:e50939. [PMID: 23341878 PMCID: PMC3540754 DOI: 10.1371/journal.pone.0050939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Brain atlases are designed to provide a standard reference coordinate system of the
brain for neuroscience research. Existing human brain atlases are widely used to
provide anatomical references and information regarding structural characteristics of
the brain. The majority of them, however, are derived from one paticipant or small
samples of the Western population. This poses a limitation for scientific studies on
Eastern subjects. In this study, 10 new Chinese brain atlases for different ages and
genders were constructed using MR anatomical images based on HAMMER (Hierarchical
Attribute Matching Mechanism for Elastic Registration). A total of 1,000 Chinese
volunteers ranging from 18 to 70 years old participated in this study. These
population-specific brain atlases represent the basic structural characteristics of
the Chinese population. They may be utilized for basic neuroscience studies and
clinical diagnosis, including evaluation of neurological and neuropsychiatric
disorders, in Chinese patients and those from other Eastern countries.
Collapse
Affiliation(s)
- Wang Xing
- Department of Radiology, Xuanwu Hospital, Capital
Medical University, Beijing, China
| | - Chen Nan
- Department of Radiology, Xuanwu Hospital, Capital
Medical University, Beijing, China
| | - Zuo ZhenTao
- State Key Laboratory of Brain and Cognitive
Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Xue Rong
- State Key Laboratory of Brain and Cognitive
Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
- * E-mail: (LKC); (XR)
| | - Jing Luo
- State Key Laboratory of Brain and Cognitive
Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive
Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Shen DingGang
- Department of Radiology and Biomedical Research
Imaging Center, The University of North Carolina at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina
| | - Li KunCheng
- Department of Radiology, Xuanwu Hospital, Capital
Medical University, Beijing, China
- * E-mail: (LKC); (XR)
| |
Collapse
|
46
|
Effect of carotid artery stenting on cerebral blood flow: evaluation of hemodynamic changes using arterial spin labeling. Neuroradiology 2012; 55:271-81. [PMID: 23093072 DOI: 10.1007/s00234-012-1104-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The purpose of this work was to quantitatively evaluate the hemodynamic changes after carotid artery stenting (CAS) by measuring cerebral blood flow (CBF) using arterial spin labeling (ASL). METHODS Twenty sets of pre- and postprocedural CBF maps were acquired using ASL in patients who underwent CAS. Vascular territory- and anatomical structure-based regions of interest were applied to the CBF maps. Relative CBF (rCBF) was calculated by adjusting ipsilateral CBF with contralateral CBF. To assess the changes in rCBF after CAS (ΔrCBF), we calculated the following difference: [Formula: see text]. RESULTS Postprocedural CBFs were significantly higher than preprocedural CBFs for internal carotid artery and middle cerebral artery territories (P < 0.05 in both). Postprocedural rCBFs were also significantly higher than preprocedural rCBFs for internal carotid artery and middle cerebral artery territories (P < 0.05 in both). Significant correlations were observed between preprocedural rCBF and ΔrCBF for the internal carotid artery and middle cerebral artery territories (r = -0.7211, P = 0.0003 and r = -0.6427, P = 0.0022, respectively). Areas in which the ΔrCBF values were >5.00 ml 100 g⁻¹ min⁻¹ were the precentral, postcentral, middle frontal, middle temporal (caudal), superior parietal, and angular gyri. CONCLUSIONS ASL has potential as a noninvasive imaging tool for the quantitative evaluation of hemodynamic changes after CAS. CAS improves cerebral perfusion in patients with carotid artery stenosis, and patients with greater perfusion deficits prior to CAS have greater improvement in perfusion after CAS. In addition, eloquent areas show the greatest improvement in perfusion.
Collapse
|
47
|
Bai J, Abdul-Rahman MF, Rifkin-Graboi A, Chong YS, Kwek K, Saw SM, Godfrey KM, Gluckman PD, Fortier MV, Meaney MJ, Qiu A. Population differences in brain morphology and microstructure among Chinese, Malay, and Indian neonates. PLoS One 2012; 7:e47816. [PMID: 23112850 PMCID: PMC3480429 DOI: 10.1371/journal.pone.0047816] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
We studied a sample of 75 Chinese, 73 Malay, and 29 Indian healthy neonates taking part in a cohort study to examine potential differences in neonatal brain morphology and white matter microstructure as a function of ethnicity using both structural T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). We first examined the differences in global size and morphology of the brain among the three groups. We then constructed the T2-weighted MRI and DTI atlases and employed voxel-based analysis to investigate ethnic differences in morphological shape of the brain from the T2-weighted MRI, and white matter microstructure measured by fractional anisotropy derived from DTI. Compared with Malay neonates, the brains of Indian neonates' tended to be more elongated in anterior and posterior axis relative to the superior-inferior axis of the brain even though the total brain volume was similar among the three groups. Although most anatomical regions of the brain were similar among Chinese, Malay, and Indian neonates, there were anatomical variations in the spinal-cerebellar and cortical-striatal-thalamic neural circuits among the three populations. The population-related brain regions highlighted in our study are key anatomical substrates associated with sensorimotor functions.
Collapse
Affiliation(s)
- Jordan Bai
- Department of Bioengineering, National University of Singapore, Singapore, Singapore
| | | | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
| | - Yap-Seng Chong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Kenneth Kwek
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Keith M. Godfrey
- Medical Research Council Lifecourse Epidemiology Unit (University of Southampton) and Southampton NIHR Nutrition Biomedical Research Centre, Southampton, United Kingdom
| | | | - Marielle V. Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Anqi Qiu
- Department of Bioengineering, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
48
|
Compartmental modeling and simplified quantification of [¹¹C]sertraline distribution in human brain. Arch Pharm Res 2012; 35:1591-7. [PMID: 23054716 DOI: 10.1007/s12272-012-0910-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/03/2012] [Accepted: 04/30/2012] [Indexed: 12/22/2022]
Abstract
Sertraline hydrochloride (Zoloft®, Pfizer) is an antidepressant drug of the selective serotonin reuptake inhibitor (SSRI). The aims of this study were evaluating its in vivo distribution and kinetic models in human brain. Also, this study was to determine optimal scan duration of dynamic positron emission tomography (PET) for accurate [¹¹C]sertraline kinetic parameters and the feasibility of semi-quantitative approach for assessing distribution volume ratio (DVR). [¹¹C]sertraline dynamic PET and magnetic resonance imaging (MRI) scans were performed in 5 healthy males. Blood sampling were collected for the input function. Tissue time-activity curves (TAC) were obtained in 7 brain regions using MRI. Goodness-of-fit for TAC using simple tissue compartment model (2C2P) and 3-compartment models with irreversible (3C3P) and reversible (3C4P) were compared. Total distribution volume (DV) for each region of interest (ROI) and DVR were calculated. Also, ratio between the standard uptake value (SUV) of each ROI and that of cerebellum (SUVr) was computed and correlated with the DVR. Akaike information criteria analysis showed that the 2C2P was the most suitable model. Average values of K₁ (mL/min/g) and k₂ (1/min) were 0.54 and 0.012 in putamen. PET scan time longer than 50 min was required for the accurate estimation of DV. SUVr in 50-90 min was well correlated with DVR.
Collapse
|
49
|
Khullar S, Michael AM, Cahill ND, Kiehl KA, Pearlson G, Baum SA, Calhoun VD. ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks. Front Syst Neurosci 2011; 5:93. [PMID: 22110427 PMCID: PMC3218372 DOI: 10.3389/fnsys.2011.00093] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/27/2011] [Indexed: 11/27/2022] Open
Abstract
A common pre-processing challenge associated with group level fMRI analysis is spatial registration of multiple subjects to a standard space. Spatial normalization, using a reference image such as the Montreal Neurological Institute brain template, is the most common technique currently in use to achieve spatial congruence across multiple subjects. This method corrects for global shape differences preserving regional asymmetries, but does not account for functional differences. We propose a novel approach to co-register task-based fMRI data using resting state group-ICA networks. We posit that these intrinsic networks (INs) can provide to the spatial normalization process with important information about how each individual’s brain is organized functionally. The algorithm is initiated by the extraction of single subject representations of INs using group level independent component analysis (ICA) on resting state fMRI data. In this proof-of-concept work two of the robust, commonly identified, networks are chosen as functional templates. As an estimation step, the relevant INs are utilized to derive a set of normalization parameters for each subject. Finally, the normalization parameters are applied individually to a different set of fMRI data acquired while the subjects performed an auditory oddball task. These normalization parameters, although derived using rest data, generalize successfully to data obtained with a cognitive paradigm for each subject. The improvement in results is verified using two widely applied fMRI analysis methods: the general linear model and ICA. Resulting activation patterns from each analysis method show significant improvements in terms of detection sensitivity and statistical significance at the group level. The results presented in this article provide initial evidence to show that common functional domains from the resting state brain may be used to improve the group statistics of task-fMRI data.
Collapse
Affiliation(s)
- Siddharth Khullar
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Song YS, Oh SW, Kim YK, Kim SK, Wang KC, Lee DS. Hemodynamic improvement of anterior cerebral artery territory perfusion induced by bifrontal encephalo(periosteal) synangiosis in pediatric patients with moyamoya disease: a study with brain perfusion SPECT. Ann Nucl Med 2011; 26:47-57. [PMID: 22033781 DOI: 10.1007/s12149-011-0541-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/13/2011] [Indexed: 10/16/2022]
Abstract
OBJECTIVE The reinforcement of the anterior cerebral artery (ACA) territory perfusion is important for the future intellectual functioning of pediatric moyamoya disease (MMD) patients. To evaluate the hemodynamic improvement of the ACA territory, bifrontal encephalogaleo-(periosteal)synangiosis [EG(P)S] combined with encephaloduroarteriosynangiosis (EDAS) was compared with EDAS alone in pediatric MMD patients using brain perfusion SPECT. METHODS Among 36 patients (M:F = 16:20; mean age, 9.5 ± 3.0 years) who were surgically treated for MMD, EDAS was performed in 17 patients, and EDAS with bifrontal EG(P)S in 19 patients. Hemodynamic parameters consisting of basal cerebral perfusion, acetazolamide-challenge stress perfusion, and cerebrovascular reserve index were estimated using brain perfusion SPECT and probabilistic perfusion maps for the ACA and middle cerebral artery (MCA) territories. Cerebral angiography was performed to confirm revascularization. RESULTS Both the EDAS only (p = 0.04) and EDAS with EG(P)S group (p < 0.001) had significant improvements in cerebrovascular reserve of the ipsilateral MCA territory. The EDAS with EG(P)S group had significant improvements, not only in basal perfusion of the ipsilateral ACA territory (p = 0.03) but also in the cerebrovascular reserve of the bilateral ACA territories (p < 0.01). In parallel with the hemodynamic changes assessed by brain perfusion SPECT, neovascularization was noted in the ipsilateral MCA territory in both the EDAS only and EDAS with EG(P)S group, and in the ipsilateral ACA territory in the EDAS with EG(P)S group on the postoperative cerebral angiography. CONCLUSIONS EDAS with bifrontal EG(P)S induces significant improvements in the ACA and MCA territories, while EDAS generates significant improvements in the MCA territory only.
Collapse
Affiliation(s)
- Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|