1
|
Kwon OS, Noh SG, Park SH, Andtbacka RHI, Hyngstrom JR, Richardson RS. Ageing and endothelium-mediated vascular dysfunction: the role of the NADPH oxidases. J Physiol 2023; 601:451-467. [PMID: 36416565 PMCID: PMC9898184 DOI: 10.1113/jp283208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to determine the isoform-specific role of the NADPH oxidases (NOX) in the endothelium-mediated vascular dysfunction associated with ageing. Endothelium-dependent [intraluminal flow- and acetylcholine (ACh)-induced] vasodilatation in human skeletal muscle feed arteries (SMFAs) of young (24 ± 1 years, n = 16), middle aged (45 ± 1 years, n = 18) and old (76 ± 2 years, n = 21) subjects was assessed in vitro with and without the inhibition of NOX1 (ML090), NOX2 (gp91) and NOX4 (plumbagin). To identify the role of nitric oxide (NO) bioavailability in these responses, NO synthase blockade (l-NG -monomethyl arginine citrate) was utilized. SMFA NOX1, NOX2 and NOX4 protein expression was determined by western blotting. Age related endothelium-dependent vasodilatory dysfunction was evident in response to flow (young: 69 ± 3; middle aged: 51 ± 3; old: 27 ± 3%, P < 0.05) and ACh (young: 89 ± 2; middle aged: 72 ± 3; old: 45 ± 4%, P < 0.05). NOX1 inhibition had no effect on SMFA vasodilatation, whereas NOX2 inhibition restored flow- and ACh-induced vasodilatation in the middle aged and the old SMFAs (middle aged + gp91: 69 ± 3; 86 ± 3, old + gp91: 65 ± 5; 83 ± 2%, P < 0.05) and NOX4 inhibition tended to restore these vasodilatory responses in these two groups, but neither achieved statistical significance (P ≈ 0.06). l-NG -monomethyl arginine citrate negated the restorative effects of NOX2 and NOX4 blockade. Only NOX2 and NOX4 protein expression was significantly greater in the two older groups and inversely related to vascular function (r = 0.48 to 0.93, P < 0.05). NOX2 and, to a lesser extent, NOX4 appear to play an important, probably NO-mediated, role in age-related endothelial dysfunction. KEY POINTS: The present study aimed to determine the isoform-specific role of the NADPH oxidases (NOX) in the endothelium-mediated vascular dysfunction associated with ageing. Age related endothelium-dependent vasodilatory dysfunction was evident in skeletal muscle feed arteries in response to both flow and acetylcholine. NOX2 inhibition (gp91) restored endothelium-dependent vasodilatation in the middle aged and the old skeletal muscle feed arteries, and NOX4 inhibition (plumbagin) tended to restore these vasodilatory responses in these two groups. Nitric oxide synthase inhibition negated the restorative effects of NOX2 and NOX4 blockade. NOX2 and NOX4 protein expression was significantly greater in the two older groups and inversely related to vascular function. NOX2 and, to a lesser extent, NOX4 appear to play an important, probably nitric oxide-mediated, role in age-related endothelial dysfunction and could be important therapeutic targets to maintain vascular health with ageing.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery & Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Sung Gi Noh
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Robert H. I. Andtbacka
- Formerly at Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT, US
| | - John R. Hyngstrom
- Formerly at Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT, USA
| | - Russell S. Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int J Mol Sci 2023; 24:ijms24032245. [PMID: 36768567 PMCID: PMC9916750 DOI: 10.3390/ijms24032245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.
Collapse
|
3
|
Touyz RM, Anagnostopoulou A, Camargo LL, Rios FJ, Montezano AC. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease. Antioxid Redox Signal 2019; 30:1027-1040. [PMID: 30334629 PMCID: PMC6354601 DOI: 10.1089/ars.2018.7583] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE NADPH oxidases (Noxs), of which there are seven isoforms (Nox1-5, Duox1/Duox2), are professional oxidases functioning as reactive oxygen species (ROS)-generating enzymes. ROS are signaling molecules important in physiological processes. Increased ROS production and altered redox signaling in the vascular system have been implicated in the pathophysiology of cardiovascular diseases, including hypertension, and have been attributed, in part, to increased Nox activity. Recent Advances: Nox1, Nox2, Nox4, and Nox5 are expressed and functionally active in human vascular cells. While Nox1, Nox2, and Nox4 have been well characterized in models of cardiovascular disease, little is known about Nox5. This may relate to the lack of experimental models because rodents lack NOX5. However, recent studies have advanced the field by (i) elucidating mechanisms of Nox5 regulation, (ii) identifying Nox5 variants, (iii) characterizing Nox5 expression, and (iv) discovering the Nox5 crystal structure. Moreover, studies in human Nox5-expressing mice have highlighted a putative role for Nox5 in cardiovascular disease. CRITICAL ISSUES Although growing evidence indicates a role for Nox-derived ROS in cardiovascular (patho)physiology, the exact function of each isoform remains unclear. This is especially true for Nox5. FUTURE DIRECTIONS Future directions should focus on clinically relevant studies to discover the functional significance of Noxs, and Nox5 in particular, in human health and disease. Two important recent studies will impact future directions. First, Nox5 is the first Nox to be crystallized. Second, a genome-wide association study identified Nox5 as a novel blood pressure-associated gene. These discoveries, together with advancements in Nox5 biology and biochemistry, will facilitate discovery of drugs that selectively target Noxs to interfere in uncontrolled ROS generation.
Collapse
Affiliation(s)
- Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Livia L. Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francisco J. Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Augusto C. Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury. Mediators Inflamm 2016; 2016:4387031. [PMID: 27721575 PMCID: PMC5046015 DOI: 10.1155/2016/4387031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/25/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Aldosterone (Aldo) is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER) stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA), and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo.
Collapse
|
5
|
Kigawa Y, Miyazaki T, Lei XF, Kim-Kaneyama JR, Miyazaki A. Functional Heterogeneity of Nadph Oxidases in Atherosclerotic and Aneurysmal Diseases. J Atheroscler Thromb 2016; 24:1-13. [PMID: 27476665 PMCID: PMC5225127 DOI: 10.5551/jat.33431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NADPH oxidases (NOX) are enzymes that catalyze the production of reactive oxygen species (ROS). Four species of NOX catalytic homologs (NOX1, NOX2, NOX4, and NOX5) are reportedly expressed in vascular tissues. The pro-atherogenic roles of NOX1, NOX2, and their organizer protein p47phox were manifested, and it was noted that the hydrogen peroxide-generating enzyme NOX4 possesses atheroprotective effects. Loss of NOX1 or p47phox appears to ameliorate murine aortic dissection and subsequent aneurysmal diseases; in contrast, the ablation of NOX2 exacerbates the aneurysmal diseases. It is possible that the loss of NOX2 activates inflammatory cascades in macrophages in the lesions. Roles of NOX5 in vascular functions are currently undetermined, owing to the absence of this enzyme in rodents and the limitation of the experimental procedure. Thus, it is possible that the NOX family of enzymes exhibits heterogeneity in the atherosclerotic diseases. In this aspect, subtype-selective NOX inhibitor may be promising when NOX systems serve as a molecular target for atherosclerotic and aneurysmal diseases.
Collapse
Affiliation(s)
- Yasuyoshi Kigawa
- Division of Endocrinology and Metabolism, Showa University Fujigaoka Hospital
| | | | | | | | | |
Collapse
|
6
|
Haller H, Bertram A, Stahl K, Menne J. Finerenone: a New Mineralocorticoid Receptor Antagonist Without Hyperkalemia: an Opportunity in Patients with CKD? Curr Hypertens Rep 2016; 18:41. [DOI: 10.1007/s11906-016-0649-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res 2016; 1637:146-153. [DOI: 10.1016/j.brainres.2016.02.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/29/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
8
|
Ousmaal MEF, Martínez MC, Andriantsitohaina R, Chabane K, Gaceb A, Mameri S, Giaimis J, Baz A. Increased monocyte/neutrophil and pro-coagulant microparticle levels and overexpression of aortic endothelial caveolin-1β in dyslipidemic sand rat, Psammomys obesus. J Diabetes Complications 2016; 30:21-9. [PMID: 26597597 DOI: 10.1016/j.jdiacomp.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023]
Abstract
AIMS To compare the effects of a high-energy diet (HED) with those of a low-energy diet (LED) on biochemical parameters, microparticle (MP) subpopulations and endothelial caveolin-1 (cav-1) protein expression in Psammomys obesus (P. obesus). METHODS After 12weeks of feeding with either the HED or LED, fasting plasma glucose and lipid parameters were measured using an enzymatic colorimetric kit while serum insulin concentration was determined with radioimmunoassay kits. MP subpopulations and cav-1 protein expression were quantified using flow cytometry and western blot analysis, respectively. RESULTS We observed that the HED caused a marked increase in lipid parameters, even in normoglycemic P. obesus. The total number of circulating MPs and the numbers of platelet-, leukocyte-, and erythrocyte-derived MPs were unaltered in the HED group. However, the HED induced increases in the numbers of monocytes/neutrophils and procoagulant MPs and a decrease in the endothelial MP levels. Cav-1β protein expression and reactive oxygen species production were increased in the vascular endothelium of HED-treated P. obesus. CONCLUSION From these findings, it is indicated that the HED exerts deleterious effects on the vascular system by increasing the monocyte/neutrophil and procoagulant MP levels, which may lead to cav-1β protein overexpression in dyslipidemic P. obesus.
Collapse
Affiliation(s)
- Mohamed El Fadel Ousmaal
- Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria; Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria.
| | - M Carmen Martínez
- INSERM U1063- Stress Oxydant et Pathologies Métaboliques, Université d'Angers, France.
| | | | - Kahina Chabane
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria.
| | - Abderahim Gaceb
- INSERM U1063- Stress Oxydant et Pathologies Métaboliques, Université d'Angers, France.
| | - Saâdia Mameri
- Laboratory of Anatomopathology, Mustapha Bacha Hospital, Algiers, Algeria.
| | - Jean Giaimis
- UMR Qualisud- Faculty of Pharmacy, University of Montpellier I, Montpellier, France.
| | - Ahsene Baz
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria.
| |
Collapse
|
9
|
MUTLU E, İLHAN S, ONAT E, KARA M, ŞAHNA E. The effects of novokinin, an AT2 agonist, on blood pressure, vascular responses, and levels of ADMA, NADPH oxidase, and Rho kinase in hypertension induced by NOS inhibition and salt. Turk J Med Sci 2016; 46:1249-57. [DOI: 10.3906/sag-1502-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 10/04/2015] [Indexed: 11/03/2022] Open
|
10
|
Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. J Hypertens 2015; 32:1815-21. [PMID: 24991871 DOI: 10.1097/hjh.0000000000000259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES An elevated plasma aldosterone level is an independent cardiovascular risk factor. Although excess aldosterone promotes cardiovascular disease, no studies have examined the effect of increased plasma aldosterone on the cerebral circulation. A major source of vascular reactive oxygen species (ROS) during cardiovascular disease is the NADPH oxidases. Because Nox2-containing NADPH oxidase (Nox2 oxidase) is highly expressed in the cerebral endothelium, we postulated that it might contribute to ROS generation and vascular dysfunction in response to aldosterone. Here, we examined the effect of aldosterone and Nox2 oxidase on ROS production and endothelial dysfunction in the cerebral circulation, and whether the effects of aldosterone are exacerbated in aged mice. METHODS AND RESULTS In adult (average age ∼24-25 weeks) wild-type and Nox2-deficient (Nox2(/y)) mice, neither vehicle nor aldosterone (0.28 mg/kg per day for 14 days) affected blood pressure (measured using tail-cuff). By contrast, aldosterone treatment reduced dilation of the basilar artery (measured using myography) to the endothelium-dependent agonist acetylcholine in wild-type mice (P < 0.05), but had no such effect in Nox2(/y) mice (P > 0.05). Aldosterone increased basal and phorbol dibutyrate-stimulated superoxide production (measured using L-012-enhanced chemiluminesence) in cerebral arteries from wild-type but not from Nox2(/y) mice. In aged wild-type mice (average age ∼70 weeks), aldosterone treatment increased blood pressure, but had a similar effect on cerebral artery superoxide levels as in adult wild-type mice. CONCLUSION These data indicate that Nox2 oxidase mediates aldosterone-induced increases in ROS production and endothelial dysfunction in cerebral arteries from adult mice independently of blood pressure changes. Aldosterone-induced hypertension is augmented during aging.
Collapse
|
11
|
Even SEL, Dulak-Lis MG, Touyz RM, Nguyen Dinh Cat A. Crosstalk between adipose tissue and blood vessels in cardiometabolic syndrome: implication of steroid hormone receptors (MR/GR). Horm Mol Biol Clin Investig 2015; 19:89-101. [PMID: 25390018 DOI: 10.1515/hmbci-2014-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/06/2014] [Indexed: 11/15/2022]
Abstract
Crosstalk between adipose tissue and blood vessels is vital to vascular homeostasis and is disturbed in cardiovascular and metabolic diseases such as hypertension, diabetes and obesity. Cardiometabolic syndrome (CMS) refers to the clustering of obesity-related metabolic disorders such as insulin resistance, glucose and lipid profile alterations, hypertension and cardiovascular diseases. Mechanisms underlying these associations remain unclear. Adipose tissue associated with the vasculature [known as perivascular adipose tissue (PVAT)] has been shown to produce myriads of adipose tissue-derived substances called adipokines, including hormones, cytokines and reactive oxygen species (ROS), which actively participate in the regulation of vascular function and local inflammation by endocrine and/or paracrine mechanisms. As a result, the signaling from PVAT to the vasculature is emerging as a potential therapeutic target for obesity and diabetes-related vascular dysfunction. Accumulating evidence supports a shift in our understanding of the crucial role of elevated plasma levels of aldosterone in obesity, promoting insulin resistance and hypertension. In obesity, aldosterone/mineralocorticoid receptor (MR) signaling induces an abnormal secretion of adipokines, ROS production and systemic inflammation, which in turn contribute to impaired insulin signaling, reduced endothelial-mediated vasorelaxation, and associated cardiovascular abnormalities. Thus, aldosterone excess exerts detrimental metabolic and vascular effects that participate to the development of the CMS and its associated cardiovascular abnormalities. In this review, we focus on the physiopathological roles of corticosteroid receptors in the interplay between PVAT and the vasculature, which underlies their potential as key regulators of vascular function.
Collapse
|
12
|
Queisser N, Schupp N. Aldosterone, oxidative stress, and NF-κB activation in hypertension-related cardiovascular and renal diseases. Free Radic Biol Med 2012; 53:314-27. [PMID: 22609249 DOI: 10.1016/j.freeradbiomed.2012.05.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023]
Abstract
The mineralocorticoid aldosterone regulates electrolyte and fluid balance and is involved in blood pressure homoeostasis. Classically, it binds to its intracellular mineralocorticoid receptor to induce expression of proteins influencing the reabsorption of sodium and water in the distal nephron. Aldosterone gained special attention when large clinical studies showed that blocking its receptor in patients with cardiovascular diseases reduced their mortality. These patients present increased plasma aldosterone levels. The exact mechanisms of the potential toxic effects of aldosterone leading to cardiovascular damage are not known yet. The observation of reduced nitric oxide bioavailability in hyperaldosteronism implied the generation of oxidative stress by aldosterone. Subsequent studies confirmed the increase of oxidative stress markers in patients with chronic heart failure and in animal models of hyperaldosteronism. The effects of reactive oxygen species have been related to the activation of transcription factors, such as NF-κB. This review summarizes the present-day knowledge of aldosterone-induced oxidative stress and NF-κB activation in humans and different experimental models.
Collapse
Affiliation(s)
- Nina Queisser
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | | |
Collapse
|
13
|
Muehlfelder M, Arias-Loza PA, Fritzemeier KH, Pelzer T. Both estrogen receptor subtypes, ERα and ERβ, prevent aldosterone-induced oxidative stress in VSMC via increased NADPH bioavailability. Biochem Biophys Res Commun 2012; 423:850-6. [PMID: 22713467 DOI: 10.1016/j.bbrc.2012.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Activation of vascular mineralocorticoid (MR) or estrogen receptors (ER) exerts opposing effects on vascular remodeling. As we have previously shown, activation of either estrogen receptor subtype, ERα or ERβ, is fully sufficient to attenuate vascular remodeling in aldosterone salt-treated rats. To further elucidate the underlying mechanism(s) we tested the hypothesis that ER and MR activation might differentially modulate vascular reactive oxygen species (ROS) generation. In support of this concept, aldosterone increased ROS generation in vascular smooth muscle cells as determined by quantitative dihydroethidium fluorescence microscopy. Co-treatment with the selective ERα agonist 16α-LE2, the selective ERβ agonist 8β-VE2 or the non-selective ER agonist 17β-estradiol (E2) significantly reduced aldosterone-induced ROS generation. The pure ER antagonist ICI 182,780 completely blocked these salutary effects of E2, 16α-LE2 and 8β-VE2. Activation of ERα or ERβ fully blocked the reduction of intracellular nicotinamide adenine dinucleotide phosphate (NADPH) levels observed in aldosterone treated vascular smooth muscle cells. Intracellular NADPH levels were closely associated with expression and activity of the NADPH generating enzyme glucose-6-phosphate dehydrogenase. In conclusion, estrogens attenuate the detrimental vascular effects of excessive MR activation at least in part by preventing the depletion of intracellular NADPH levels.
Collapse
|
14
|
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110:1364-90. [PMID: 22581922 PMCID: PMC3365576 DOI: 10.1161/circresaha.111.243972] [Citation(s) in RCA: 612] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
15
|
Young MJ, Rickard AJ. Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis. Mol Cell Endocrinol 2012; 350:248-55. [PMID: 21930186 DOI: 10.1016/j.mce.2011.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 02/06/2023]
Abstract
For 50 years aldosterone has been thought to act primarily on epithelia to regulate fluid and electrolyte homeostasis. Mineralocorticoid receptors (MR), however, are also expressed in nonepithelial tissues such as the heart and vascular smooth muscle. Recently pathophysiologic effects of nonepithelial MR activation by aldosterone have been demonstrated, in the context of inappropriate mineralocorticoid for salt status, including coronary vascular inflammation and cardiac fibrosis. Consistent with experimental studies, clinical trials (RALES, EPHESUS), have demonstrated a reduced mortality and morbidity when MR antagonists are included in the treatment of moderate-severe heart failure. The pathogenesis of MR-mediated cardiovascular disease is a complex, multifactorial process that involves loss of vascular reactivity, hypertension, inflammation of the vasculature and end organs (heart and kidney), oxidative stress and tissue fibrosis (cardiac and renal). This review will discuss the mechanisms by which MR, located in the various cell types that comprise the heart, plays a central role in the development of cardiomyocyte failure, tissue inflammation, remodelling and hypertension.
Collapse
Affiliation(s)
- Morag J Young
- Prince Henry's Institute of Medical Research, Department of Physiology, Monash University, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
16
|
Wingler K, Hermans JJR, Schiffers P, Moens A, Paul M, Schmidt HHHW. NOX1, 2, 4, 5: counting out oxidative stress. Br J Pharmacol 2012; 164:866-83. [PMID: 21323893 PMCID: PMC3195911 DOI: 10.1111/j.1476-5381.2011.01249.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For decades, oxidative stress has been discussed as a key mechanism of endothelial dysfunction and cardiovascular disease. However, attempts to validate and exploit this hypothesis clinically by supplementing antioxidants have failed. Nevertheless, this does not disprove the oxidative stress hypothesis. As a certain degree of reactive oxygen species (ROS) formation appears to be physiological and beneficial. To reduce oxidative stress therapeutically, two alternative approaches are being developed. One is the repair of key signalling components that are compromised by oxidative stress. These include uncoupled endothelial nitric oxide (NO) synthase and oxidized/heme-free NO receptor soluble guanylate cyclase. A second approach is to identify and effectively inhibit the relevant source(s) of ROS in a given disease condition. A highly likely target in this context is the family of NADPH oxidases. Animal models, including NOX knockout mice and new pharmacological inhibitors of NADPH oxidases have opened up a new era of oxidative stress research and have paved the way for new cardiovascular therapies.
Collapse
Affiliation(s)
- K Wingler
- Department of Pharmacology & Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Xiao D, Huang X, Yang S, Zhang L. Antenatal nicotine induces heightened oxidative stress and vascular dysfunction in rat offspring. Br J Pharmacol 2012; 164:1400-9. [PMID: 21777225 DOI: 10.1111/j.1476-5381.2011.01437.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Antenatal nicotine exposure causes aberrant vascular reactivity and increased blood pressure in adult male rat offspring in a sex-dependent manner. The present study tested the hypothesis that maternal nicotine administration increases the production of reactive oxygen species resulting in the vascular hypertensive reactivity in male offspring. EXPERIMENTAL APPROACH Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps throughout the gestation. The vascular oxidative damage and dysfunction were determined in 5-month-old male offspring. Contraction studies were performed on isolated aortas and their expression of NADPH oxidase (Nox2)/gp91 and nox4 determined by Western blot analysis. In addition, oxidative damage in the vessel wall was determined by measuring malondialdehyde concentrations, vascular superoxide production and SOD activity. KEY RESULTS Antenatal nicotine significantly increased angiotensin II-induced arterial contractions in the offspring. The exaggerated vascular contractions were inhibited by both apocynin (a Nox inhibitor) and tempol (a SOD mimetic) in a concentration-dependent manner. In addition, ACh-induced relaxations were impaired in aortas isolated from the nicotine-treated offspring, which were restored by both apocynin and tempol in a concentration-dependent manner. The nicotine treatment significantly decreased the superoxide dismutase activity and increased malondialdehyde, superoxide and nitrotyrosine protein levels in the vascular wall. Consistently, antenatal nicotine exposure significantly enhanced the protein expression of NADPH oxidase Nox2/gp91, but not Nox4 in the aorta. CONCLUSIONS AND IMPLICATIONS The present findings suggest that antenatal nicotine exposure results in the programming of heightened oxidative stress and vascular hypertensive reactivity via a Nox2-dependent mechanism, leading to an increased risk of hypertension in adult offspring.
Collapse
Affiliation(s)
- Daliao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
18
|
Nariai T, Fujita K, Mori M, Katayama S, Hori S, Matsui K. Antihypertensive and cardiorenal protective effects of SM-368229, a novel mineralocorticoid receptor antagonist, in aldosterone/salt-treated rats. Pharmacology 2012; 89:44-52. [PMID: 22302095 DOI: 10.1159/000335559] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to evaluate the effects of SM-368229, a novel mineralocorticoid receptor (MR) antagonist, on the blood pressure and cardiorenal injury markers in aldosterone/salt-treated hypertensive rats, in comparison to those of spironolactone (SPI). Uninephrectomized rats, given 1% NaCl to drink, were infused with aldosterone (0.75 μg/h, s.c.). In experiment 1, SM-368229 (10, 30 mg/kg) or SPI (100 mg/kg) were administered for 14 days immediately after aldosterone/salt loading. In experiment 2, SM-368229 (10 mg/kg) or SPI (100 mg/kg) were administered for 10 days after 10 days of aldosterone/salt loading. In both experiments, SM-368229 prevented the increase in systolic blood pressure, heart/kidney weights, and urinary protein/N-acetyl-β-D- glucosaminidase excretion caused by aldosterone infusion. In real-time polymerase chain reaction analysis, SM-368229 abolished aldosterone-induced gene expression levels for inflammatory, fibrosis and oxidative stress markers in hearts and kidneys. The antihypertensive effect of SM-368229 (30 mg/kg) was superior to that of SPI, and the antihypertensive and cardiorenal protective effects of SM-368229 (10 mg/kg) were similar to those of SPI (100 mg/kg) in both experiments. These results clearly demonstrated that SM-368229 strongly attenuated the progression of hypertension and exerted cardiorenal protection in aldosterone/salt-treated hypertensive rats.
Collapse
Affiliation(s)
- Tetsuro Nariai
- Pharmacology, Dainippon Sumitomo Pharma Co., Osaka, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 2011; 51:1289-301. [PMID: 21777669 PMCID: PMC3163726 DOI: 10.1016/j.freeradbiomed.2011.06.033] [Citation(s) in RCA: 634] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of cross talk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain conditions may stimulate NADPH oxidases. This cross talk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production, which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension, and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions.
Collapse
Affiliation(s)
- Sergey Dikalov
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 2009; 30:653-61. [PMID: 19910640 DOI: 10.1161/atvbaha.108.181610] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species are ubiquitous signaling molecules in biological systems. Four members of the NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species in the vasculature: Nox1, Nox2, Nox4, and Nox5. Signaling cascades triggered by stresses, hormones, vasoactive agents, and cytokines control the expression and activity of these enzymes and of their regulatory subunits, among which p22phox, p47phox, Noxa1, and p67phox are present in blood vessels. Vascular Nox enzymes are also regulated by Rac, ClC-3, Poldip2, and protein disulfide isomerase. Multiple Nox subtypes, simultaneously present in different subcellular compartments, produce specific amounts of superoxide, some of which is rapidly converted to hydrogen peroxide. The identity and location of these reactive oxygen species, and of the enzymes that degrade them, determine their downstream signaling pathways. Nox enzymes participate in a broad array of cellular functions, including differentiation, fibrosis, growth, proliferation, apoptosis, cytoskeletal regulation, migration, and contraction. They are involved in vascular pathologies such as hypertension, restenosis, inflammation, atherosclerosis, and diabetes. As our understanding of the regulation of these oxidases progresses, so will our ability to alter their functions and associated pathologies.
Collapse
Affiliation(s)
- Bernard Lassègue
- Emory University School of Medicine, Division of Cardiology, 1639 Pierce Drive, WMB 319, Atlanta, GA 30322, USA
| | | |
Collapse
|
21
|
Kelly KA, Li X, Tan Z, VanGilder RL, Rosen CL, Huber JD. NOX2 inhibition with apocynin worsens stroke outcome in aged rats. Brain Res 2009; 1292:165-72. [PMID: 19635468 DOI: 10.1016/j.brainres.2009.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
This study utilized middle cerebral artery occlusion (MCAO) with tissue plasminogen activator (tPA) to assess inhibition of the NOX2 isoform of NADPH oxidase on brain injury and functional recovery in aged rats. Effects of NOX2 on the degree of brain injury and functional recovery following MCAO and tPA reperfusion was assessed in young adult and aged rats. Rats received apocynin (NOX2 inhibitor; 5 mg/kg) or saline 30 min prior to MCAO. At 24 h following MCAO, blood-brain barrier permeability (BBB), stroke infarct volume, edema formation, and oxidative damage were measured. Apocynin treatment in aged rats increased mortality rate and failed to improve functional outcome, total infarct volume, edema formation, and BBB permeability. Aged rats displayed increased BBB permeability to sucrose in the contralateral hemisphere following MCAO and diminished antioxidant capacity in the brain as compared to young adult rats. We conclude that inhibition of NOX2 in the aged rat exacerbates stroke injury and diminishes functional outcome. These results suggest age is an important factor in stroke damage and more rigorous examination of apocynin as a therapeutic agent for treatment of stroke must be done.
Collapse
Affiliation(s)
- Kimberly A Kelly
- Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, PO Box 9530, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|