1
|
Rached RD, Helfenstein T, Kim AH, Da Costa TR, Araújo RL. Mesenchymal Stem Cell Therapy for Superior Gluteal Nerve Injury Post-hip Arthroplasty: A Case Report. Cureus 2025; 17:e79088. [PMID: 40109801 PMCID: PMC11920847 DOI: 10.7759/cureus.79088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 03/22/2025] Open
Abstract
Peripheral nerve injuries, such as axonal injury of the superior gluteal nerve, are rare but debilitating complications that can occur after hip arthroplasty. This case report describes the use of adipose-derived mesenchymal stem cells (MSCs) to treat an axonal injury of the superior gluteal nerve in a 71-year-old patient. After conventional rehabilitation failed, MSC infiltration was chosen and performed with ultrasound (US) guidance. Two months later, the patient showed normalization of electromyography (EMG), indicating full nerve recovery, along with significant improvement in neuropathic pain. The patient also demonstrated a 55% increase in maximum torque and a 9% increase in power during right hip extension in isokinetic evaluation, resulting in improvement of muscle strength and functionality. This case highlights the potential of MSCs in promoting nerve regeneration, suggesting that this approach may accelerate nerve recovery and improve short-term clinical outcomes. Although the results are promising, further studies are needed to confirm the efficacy and safety of this treatment in a larger population. This integrated model of cell therapy and physical rehabilitation represents a significant advance in recovering from complex nerve injuries.
Collapse
Affiliation(s)
- Roberto D Rached
- Physical Medicine and Rehabilitation, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, BRA
| | - Thomas Helfenstein
- Physical Medicine and Rehabilitation, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, BRA
| | - Angela H Kim
- Physical Medicine and Rehabilitation, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, BRA
| | - Thadeu R Da Costa
- Physical Medicine and Rehabilitation, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, BRA
| | - Ricardo L Araújo
- Physical Medicine and Rehabilitation, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, BRA
| |
Collapse
|
2
|
Saleem S, Rehman A, Akbar A, Ali AI, Jadoon SK, Khattak MI, Mehraj A. Meta-Analysis of the Global Mortality Rate Due to Infection in Burn Patients Admitted for Plastic Surgery. Cureus 2024; 16:e67425. [PMID: 39310591 PMCID: PMC11415252 DOI: 10.7759/cureus.67425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Burn patients are generally prone to infection, which causes the patient's condition to be even worse. However, there is no study regarding the difference between the mortality rate of infected and non-infected patients. Therefore, the aim was to identify and compare the global mortality rate between infected and non-infected patients who were admitted to plastic surgery units. We searched PubMed, ScienceDirect, and Google Scholar and finally included five articles for this meta-analysis. We determined the odds ratio (OR) value by forest plot and assessed the study bias by a funnel plot. We also analyzed the quality and heterogeneity. The OR was determined as 0.43 (95%CI: 0.07-2.60), indicating a higher mortality rate in infected burn patients as compared to non-infected patients. The funnel plot showed no significant study bias. The quality of the studies was assessed high as well, and the heterogeneity was determined significant (I2>75%). The sensitivity analysis with the fixed effect model reconfirmed our main outcome. However, as a study limitation, we could not specifically determine the impact of strain-specific infection on the mortality rate and could not find more relevant research regarding this issue. We conclude that the overall non-infected burn patient mortality rate is lower as compared to the infected burn patients; however, non-infected patients can be prone to death if the burn degree is higher, the respiratory organ is injured, or the treatment is poor or delayed.
Collapse
Affiliation(s)
- Shahan Saleem
- Cosmetic, Reconstructive and Burn Surgery, Jinnah Burn and Reconstructive Surgery Center, Lahore, PAK
| | - Ayesha Rehman
- Surgery, Divisional Headquarters Teaching Hospital, Mirpur, PAK
| | - Amna Akbar
- Emergency and Accident, District Headquarter Hospital, Muzaffarabad, PAK
| | - Amir Iqbal Ali
- General Surgery, Combined Military Hospitals, Muzaffarabad, PAK
| | | | | | - Adnan Mehraj
- Surgery, Azad Jammu Kashmir Medical College, Muzaffarabad, PAK
| |
Collapse
|
3
|
de Araújo RS, Mussalem MGVB, Carrijo GS, Bani JVDF, Ferreira LM. Adipose Tissue Derivatives in Peripheral Nerve Regeneration after Transection: A Systematic Review. Bioengineering (Basel) 2024; 11:697. [PMID: 39061779 PMCID: PMC11274242 DOI: 10.3390/bioengineering11070697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration. OBJECTIVES This study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions. METHODOLOGY A systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded. RESULTS Out of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles. CONCLUSIONS This review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques.
Collapse
Affiliation(s)
- Rafael Silva de Araújo
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| | | | | | - João Victor de Figueiredo Bani
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| | - Lydia Masako Ferreira
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| |
Collapse
|
4
|
Fukui M, Lai F, Hihara M, Mitsui T, Matsuoka Y, Sun Z, Kunieda S, Taketani S, Odaka T, Okuma K, Kakudo N. Activation of cell adhesion and migration is an early event of platelet-rich plasma (PRP)-dependent stimulation of human adipose-derived stem/stromal cells. Hum Cell 2024; 37:181-192. [PMID: 37787969 DOI: 10.1007/s13577-023-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Stem cell therapy is a promising treatment in regenerative medicine. Human adipose-derived stem/stromal cells (hASCs), a type of mesenchymal stem cell, are easy to harvest. In plastic and aesthetic surgery, hASC may be applied in the treatment of fat grafting, wound healing, and scar remodeling. Platelet-rich plasma (PRP) contains various growth factors, including platelet-derived growth factor (PDGF), which accelerates wound healing. We previously reported that PRP promotes the proliferation of hASC via multiple signaling pathways, and we evaluated the effect of PRP on the stimulation of hASC adhesion and migration, leading to the proliferation of these cells. When hASCs were treated with PRP, AKT, ERK1/2, paxillin and RhoA were rapidly activated. PRP treatment led to the formation of F-actin stress fibers. Strong signals for integrin β1, paxillin and RhoA at the cell periphery of RPR-treated cells indicated focal adhesion. PRP promoted cell adhesion and movement of hASC, compared with the control group. Imatinib, an inhibitor of the PDGF receptor tyrosine kinase, inhibited the promotion of PRP-dependent cell migration. PDGF treatment of hASCs also stimulated cell adhesion and migration but to a lesser extent than PRP treatment. PRP promoted the adhesion and the migration of hASC, mediated by the activation of AKT in the integrin signaling pathway. PRP treatment was more effective than PDGF treatment in enhancing cell migration. Thus, the ability of PRPs to promote migration of hASC to enhance cell growth is evident.
Collapse
Affiliation(s)
- Michika Fukui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan.
| | - Fangyuan Lai
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Masakatsu Hihara
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Toshihito Mitsui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Yuki Matsuoka
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Zhongxin Sun
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Sakurako Kunieda
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Shigeru Taketani
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Tokifumi Odaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
5
|
Cicione C, Vadalà G, Di Giacomo G, Tilotta V, Ambrosio L, Russo F, Zampogna B, Cannata F, Papalia R, Denaro V. Micro-fragmented and nanofat adipose tissue derivatives: In vitro qualitative and quantitative analysis. Front Bioeng Biotechnol 2023; 11:911600. [PMID: 36733959 PMCID: PMC9887143 DOI: 10.3389/fbioe.2023.911600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction: Adipose tissue is widely exploited in regenerative medicine thanks to its trophic properties, mainly based on the presence of adipose-derived stromal cells. Numerous devices have been developed to promote its clinical use, leading to the introduction of one-step surgical procedures to obtain minimally manipulated adipose tissue derivatives. However, only a few studies compared their biological properties. This study aimed to characterize micro-fragmented (MAT) and nanofat adipose tissue (NAT) obtained with two different techniques. Methods: MAT, NAT and unprocessed lipoaspirate were collected from surgical specimens. RNA extraction and collagenase isolation of stromal vascular fraction (SVF) were performed. Tissue sections were analysed by histological and immunohistochemical (collagen type I, CD31, CD34 and PCNA) staining to assess tissue morphology and cell content. qPCR was performed to evaluate the expression of stemness-related (SOX2, NANOG and OCT3/4), extracellular matrix (COL1A1) and inflammatory genes (IL1β, IL6 and iNOS). Furthermore, multilineage differentiation was assessed following culture in adipogenic and osteogenic media and staining with Oil Red O and Alizarin red. ASC immunophenotype was assessed by flow cytometric analysis of CD90, CD105, CD73 and CD45. Results: Histological and immunohistochemical results showed an increased amount of stroma and a reduction of adipocytes in MAT and NAT, with the latter displaying the highest content of collagen type I, CD31, CD34 and PCNA. From LA to MAT and NAT, an increasing expression of NANOG, SOX2, OCT3/4, COL1A1 and IL6 was noted, while no significant differences in terms of IL1β and iNOS emerged. No statistically significant differences were noted between NAT and SVF in terms of stemness-related genes, while the latter demonstrated a significantly higher expression of stress-related markers. SVF cells derived from all three samples (LA, MAT, and NAT) showed a similar ASC immunoprofile as well as osteogenic and adipogenic differentiation. Discussion: Our results showed that both MAT and NAT techniques allowed the rapid isolation of ASC-rich grafts with a high anabolic and proliferative potential. However, NAT showed the highest levels of extracellular matrix content, replicating cells, and stemness gene expression. These results may provide precious clues for the use of adipose tissue derivatives in the clinical setting.
Collapse
Affiliation(s)
- Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy,*Correspondence: Gianluca Vadalà,
| | - Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Luca Ambrosio
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabrizio Russo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Biagio Zampogna
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Cannata
- Operative Research Unit of Endocrinology and Diabetes, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rocco Papalia
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
6
|
Liu W, Shi K, Zhu X, Zhao H, Zhang H, Jones A, Liu L, Li G. Adipose Tissue-derived Stem cells in Plastic and Reconstructive Surgery: A Bibliometric Study. Aesthetic Plast Surg 2021; 45:679-689. [PMID: 31980863 DOI: 10.1007/s00266-020-01615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Due to the evolving nature of the applications of adipose tissue-derived stem cells (ADSCs) and the rapidly growing body of scientific literature, it is difficult to generate a manual compilation and systematic review of ADSCs in plastic and reconstructive surgery. METHODS Bibliographic records were retrieved from the Web of Science Core Collection and analyzed with CiteSpace. RESULTS We retrieved 691 publications and their references. We identified 52 research categories. Interdisciplinary studies were common. The journals clustered into 13 subnetworks. The top institutions were Stanford University; University of Pittsburgh; University of Tokyo; University of California, Los Angeles; University of California, Davis; New York University; Tulane University; and University of Michigan. National Institutes of Health and National Natural Science Foundation of China provided the most generous financial support. Studies clustered into 22 topics. Emerging trends may include improvement of fat grafting, and application of ADSCs in wound healing, scleroderma, and facial rejuvenation. CONCLUSION The present study provides a panoramic view of ADSCs in plastic and reconstructive surgery. Analysis of journals, institutions, and grants could help researchers in different ways. Researchers may consider the emerging trends when deciding the direction of their study. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke Shi
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xuran Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongyan Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Andrew Jones
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, 97239, USA
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guangshuai Li
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
7
|
He X, Zhang J, Luo L, Shi J, Hu D. New Progress of Adipose-derived Stem Cells in the Therapy of Hypertrophic Scars. Curr Stem Cell Res Ther 2020; 15:77-85. [PMID: 31483236 DOI: 10.2174/1574888x14666190904125800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/30/2022]
Abstract
Burns are a global public health issue of great concern. The formation of scars after burns and physical dysfunction of patients remain major challenges in the treatment of scars. Regenerative medicine based on cell therapy has become a hot topic in this century. Adipose-derived stem cells (ADSCs) play an important role in cellular therapy and have become a promising source of regenerative medicine and wound repair transplantation. However, the anti-scarring mechanism of ADSCs is still unclear yet. With the widespread application of ADSCs in medical, we firmly believe that it will bring great benefits to patients with hypertrophic scars.
Collapse
Affiliation(s)
- Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| |
Collapse
|
8
|
Capin L, Abbassi N, Lachat M, Calteau M, Barratier C, Mojallal A, Bourgeois S, Auxenfans C. Encapsulation of Adipose-Derived Mesenchymal Stem Cells in Calcium Alginate Maintains Clonogenicity and Enhances their Secretory Profile. Int J Mol Sci 2020; 21:E6316. [PMID: 32878250 PMCID: PMC7504546 DOI: 10.3390/ijms21176316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are well known for their secretory potential, which confers them useful properties in cell therapy. Nevertheless, this therapeutic potential is reduced after transplantation due to their short survival in the human body and their migration property. This study proposes a method to protect cells during and after injection by encapsulation in microparticles of calcium alginate. Besides, the consequences of encapsulation on ASC proliferation, pluripotential, and secretome were studied. Spherical particles with a mean diameter of 500 µm could be obtained in a reproducible manner with a viability of 70% after 16 days in vitro. Moreover, encapsulation did not alter the proliferative properties of ASCs upon return to culture nor their differentiation potential in adipocytes, chondrocytes, and osteocytes. Concerning their secretome, encapsulated ASCs consistently produced greater amounts of interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared to monolayer cultures. Encapsulation therefore appears to enrich the secretome with transforming growth factor β1 (TGF-β1) and macrophage inflammatory protein-1β (MIP-1β) not detectable in monolayer cultures. Alginate microparticles seem sufficiently porous to allow diffusion of the cytokines of interest. With all these cytokines playing an important role in wound healing, it appears relevant to investigate the impact of using encapsulated ASCs on the wound healing process.
Collapse
Affiliation(s)
- Lucille Capin
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Nacira Abbassi
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Maëlle Lachat
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Marie Calteau
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Cynthia Barratier
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Ali Mojallal
- Service de chirurgie plastique, reconstructrice et esthétique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France;
- Univ Lyon, Université Claude Bernard-Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Céline Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| |
Collapse
|
9
|
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V, Berindan-Neagoe I. Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics 2020; 12:E402. [PMID: 32354024 PMCID: PMC7284545 DOI: 10.3390/pharmaceutics12050402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.
Collapse
Affiliation(s)
- Raluca Munteanu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Angelo V. Paradiso
- Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France
| | - Ioana Berindan-Neagoe
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW It has been increasingly common to use adipose tissue for regenerative and reconstructive purposes. Applications of autologous fat transfer and different stem cell therapies have significant limitations and adipose tissue engineering may have the potential to be an important strategy in the reconstruction of large tissue defects. A better understanding of adipogenesis will help to develop strategies to make adipose tissue more effective for repairing volumetric defects. RECENT FINDINGS We provide an overview of the current applications of adipose tissue transfer and cellular therapy methods for soft tissue reconstruction, cellular physiology, and factors influencing adipogenesis, and adipose tissue engineering. Furthermore, we discuss mechanical properties and vascularization strategies of engineered adipose tissue, and its potential applications in the clinical settings. SUMMARY Autologous fat tissue transfer is the standard of care technique for the majority of surgeons; however, high resorption rates, poor perfusion within a large volume fat graft and widely inconsistent graft survival are the main limitations. Adipose tissue engineering is a promising field to reach the first goal of producing adipose tissue which has more predictable survival and higher graft retention rates. Advancements of scaffold and vascularization strategies will contribute to metabolically and functionally more relevant adipose tissue engineering.
Collapse
|
11
|
The Role of Adipose-Derived Stem Cells, Dermal Regenerative Templates, and Platelet-Rich Plasma in Tissue Engineering-Based Treatments of Chronic Skin Wounds. Stem Cells Int 2020; 2020:7056261. [PMID: 32399048 PMCID: PMC7199611 DOI: 10.1155/2020/7056261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The continuous improvements in the field of both regenerative medicine and tissue engineering have allowed the design of new and more efficacious strategies for the treatment of chronic or hard-to-heal skin wounds, which represent heavy burden, from a medical and economic point of view. These novel approaches are based on the usage of three key methodologies: stem cells, growth factors, and biomimetic scaffolds. These days, the adipose tissue can be considered the main source of multipotent mesenchymal stem cells, especially adipose-derived stem cells (ASCs). ASCs are easily accessible from various fat depots and show an intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. ASCs can be found in fat grafts, historically used in the treatment of chronic wounds, and have been evaluated as such in both animal models and human trials, to exploit their capability of accelerating wound closure and inducing a correct remodeling of the newly formed fibrovascular tissue. Since survival and fitness of ASCs need to be improved, they are now employed in conjunction with advanced wound dressings, together with dermal regenerative templates and platelet-rich plasma (as a source of growth and healing factors). In this work, we provide an overview of the current knowledge on the topic, based on existing studies and on our own experience.
Collapse
|
12
|
Stepwise Adipogenesis of Decellularized Cellular Extracellular Matrix Regulates Adipose Tissue-Derived Stem Cell Migration and Differentiation. Stem Cells Int 2019; 2019:1845926. [PMID: 31781233 PMCID: PMC6875313 DOI: 10.1155/2019/1845926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/31/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Microenvironmental factors can modulate the cellular status of adipose tissue-derived stem cells (ASCs). In response to microenvironmental changes, cells can remodel extracellular matrix (ECM) proteins, which play an important role in regulating cell behaviors. During adipogenic differentiation, ECM components secreted from ASCs remodel dramatically. To evaluate the role of stepwise adipogenesis-induced cellular secretion of ECM on the behavior of ASCs, we cultured ASCs in growth and adipogenic media, and ECM secreted from cells was characterized and decellularized. The ASCs were then reseeded on decellularized ECM (d-ECM) to determine the regulatory effects of ECM on cellular behaviors. During adipogenesis, cell-secreted ECM underwent remodeling characterized by conversion from fibronectin-rich ECM to laminin-rich ECM. The cellular status of ASCs was tested after reseeding on decellularized ECM. When reseeded on growth d-ECM, ASCs exhibited greater migration ability. In contrast, ASCs seeded on adipogenic d-ECM underwent adipogenic differentiation. In addition, integrin subunit αv and integrins α6 and α7 were detected at significantly greater levels in ASCs cultured on growth and adipogenic d-ECM, respectively, suggesting that integrins play an important role in ASC migration and adipogenesis. This study demonstrated that stepwise adipogenesis-induced ECM production plays an important role in ASC migration and differentiation. In addition, this study provided a strategy to achieve precise regulation of stem cell function in adipose tissue engineering.
Collapse
|
13
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
14
|
Mesenchymal Stem Cells-Potential Applications in Kidney Diseases. Int J Mol Sci 2019; 20:ijms20102462. [PMID: 31109047 PMCID: PMC6566143 DOI: 10.3390/ijms20102462] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells constitute a pool of cells present throughout the lifetime in numerous niches, characteristic of unlimited replication potential and the ability to differentiate into mature cells of mesodermal tissues in vitro. The therapeutic potential of these cells is, however, primarily associated with their capabilities of inhibiting inflammation and initiating tissue regeneration. Owing to these properties, mesenchymal stem cells (derived from the bone marrow, subcutaneous adipose tissue, and increasingly urine) are the subject of research in the settings of kidney diseases in which inflammation plays the key role. The most advanced studies, with the first clinical trials, apply to ischemic acute kidney injury, renal transplantation, lupus and diabetic nephropathies, in which beneficial clinical effects of cells themselves, as well as their culture medium, were observed. The study findings imply that mesenchymal stem cells act predominantly through secreted factors, including, above all, microRNAs contained within extracellular vesicles. Research over the coming years will focus on this secretome as a possible therapeutic agent void of the potential carcinogenicity of the cells.
Collapse
|
15
|
Lee JS, Eo P, Kim MC, Kim JB, Jin HK, Bae JS, Jeong JH, Park HY, Yang JD. Effects of Stromal Vascular Fraction on Breast Cancer Growth and Fat Engraftment in NOD/SCID Mice. Aesthetic Plast Surg 2019; 43:498-513. [PMID: 30635686 DOI: 10.1007/s00266-018-01304-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND To overcome unpredictable fat graft resorption, cell-assisted lipotransfer using stromal vascular fraction (SVF) has been introduced. However, its effect on cancer growth stimulation and its oncological safety are debatable. We investigated the effect of SVF on adjacent breast cancer and transplanted fat in a mouse model. METHODS A breast cancer xenograft model was constructed by injecting 2 × 106 MDA-MB-231-luc breast cancer cells into the right lower back of 40 NOD/SCID mice. Two weeks later, cancer size was sorted according to signal density using an in vivo optical imaging system, and 36 mice were included. Human fat was extracted from the abdomen, and SVFs were isolated using a component isolator. The mice were divided into four groups: A, controls; B, injected with 30 μl SVF; C, injected with 0.5 ml fat and 30 μl saline; group D, injected with 0.5 ml fat and 30 μl SVF. Magnetic resonance imaging and three-dimensional micro-computed tomography volumetric analysis were performed at 4 and 8 weeks. RESULTS Tumor volume was 43.6, 42.3, 48.7, and 42.4 mm3 at the initial time point and 6780, 5940, 6080, and 5570 mm3 at 8 weeks in groups A, B, C, and D, respectively. Fat graft survival volume after 8 weeks was 49.32% and 62.03% in groups C and D, respectively. At 2-month follow-up after fat grafting in the xenograft model, SVF injection showed an increased fat survival rate and did not increase the adjacent tumor growth significantly. CONCLUSION Fat grafting with SVF yields satisfactory outcome in patients who undergo breast reconstruction surgery. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Joon Seok Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea
| | - PilSeon Eo
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea
| | | | - Jae Bong Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Jae-Hwan Jeong
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Ho Yong Park
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Jung Dug Yang
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea.
| |
Collapse
|
16
|
Zimoch J, Padial JS, Klar AS, Vallmajo-Martin Q, Meuli M, Biedermann T, Wilson CJ, Rowan A, Reichmann E. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater 2018; 70:129-139. [PMID: 29454158 DOI: 10.1016/j.actbio.2018.01.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
Molecular and mechanical interactions with the 3D extracellular matrix are essential for cell functions such as survival, proliferation, migration, and differentiation. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. This is a synthetic, thermo-responsive and stress-stiffening material synthesized via polymerization of the corresponding monomers using a nickel perchlorate as a catalyst. It can be tailored to meet various demands of cells by modulating its stiffness and through the decoration of the polymer with short GRGDS peptides using copper free click chemistry. These peptides make the hydrogels biocompatible by mimicking the binding sites of certain integrins. This study focuses on the optimization of the PIC polymer properties for efficient cell, tissue and organ development. Screening for the optimal stiffness of the hydrogel and the ideal concentration of the GRGDS ligand conjugated with the polymer, enabled cell proliferation, migration and differentiation of various primary cell types of human origin. We demonstrate that fibroblasts, endothelial cells, adipose-derived stem cells and melanoma cells, do survive, thrive and differentiate in optimized PIC hydrogels. Importantly, these hydrogels support the spontaneous formation of complex structures like blood capillaries in vitro. Additionally, we utilized the thermo-responsive properties of the hydrogels for a rapid and gentle recovery of viable cells. Finally, we show that organotypic structures of human origin grown in PIC hydrogels can be successfully transplanted subcutaneously onto immune-compromised rats, on which they survive and integrate into the surrounding tissue. STATEMENT OF SIGNIFICANCE Molecular and mechanical interactions with the surrounding environment are essential for cell functions. Although 2D culture systems greatly contributed to our understanding of complex biological phenomena, they cannot substitute for crucial interaction that take place in 3D. 3D culture systems aim to overcome limitations of the 2D cultures and answer new questions about cell functions. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. They are synthetic and can be tailor to meet certain experimental demands. Additionally, they are characterized by strain-stiffening, a feature crucial for cell behaviour, but rare in hydrogels. Their thermos-responsive properties enable quick recovery of the cells by a simple procedure of lowering the temperature.
Collapse
Affiliation(s)
- Jakub Zimoch
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland
| | - Joan Simó Padial
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, the Netherlands; Noviotech B.V., Molenveldlaan 43, 6523 RJ Nijmegen, the Netherlands
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland
| | - Queralt Vallmajo-Martin
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital Zurich, Schmelzbergstr. 12, 8091 Zurich, Switzerland
| | - Martin Meuli
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland
| | | | - Alan Rowan
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, the Netherlands
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland.
| |
Collapse
|
17
|
Conese M, Carbone A, Beccia E, Angiolillo A. The Fountain of Youth: A Tale of Parabiosis, Stem Cells, and Rejuvenation. Open Med (Wars) 2017; 12:376-383. [PMID: 29104943 PMCID: PMC5662775 DOI: 10.1515/med-2017-0053] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Transfusion (or drinking) of blood or of its components has been thought as a rejuvenation method since ancient times. Parabiosis, the procedure of joining two animals so that they share each others blood circulation, has revitalized the concept of blood as a putative drug. Since 2005, a number of papers have reported the anti-ageing effect of heterochronic parabiosis, which is joining an aged mouse to a young partner. The hallmark of aging is the decline of regenerative properties in most tissues, partially attributed to impaired function of stem and progenitor cells. In the parabiosis experiments, it was elegantly shown that factors derived from the young systemic environment are able to activate molecular signaling pathways in hepatic, muscle or neural stem cells of the old parabiont leading to increased tissue regeneration. Eventually, further studies have brought to identify some soluble factors in part responsible for these rejuvenating effects, including the chemokine CCL11, the growth differentiation factor 11, a member of the TGF-β superfamily, and oxytocin. The question about giving whole blood or specific factors in helping rejuvenation is open, as well as the mechanisms of action of these factors, deserving further studies to be translated into the life of (old) human beings.
Collapse
Affiliation(s)
- Massimo Conese
- Biomedical Research Center "E. Altomare", Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, c/o Ospedali Riuniti, Via L. Pinto 1, 71122, Tel.: +39 0881 588014; ;Foggia, Italy
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elisa Beccia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.,Dipartimento di Medicina e Scienze della Salute "V. Tiberio", University of Molise, Campobasso, Italy
| | - Antonella Angiolillo
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
18
|
Ghanavati Z, Orazizadeh M, Bayati V, Abbaspour MR, Khorsandi L, Mansouri E, Neisi N. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells. CELL JOURNAL 2016; 18:289-301. [PMID: 27602310 PMCID: PMC5011316 DOI: 10.22074/cellj.2016.4553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/28/2015] [Indexed: 12/17/2022]
Abstract
Objective The organotypic co-culture is a well-known technique to examine cellular
interactions and their roles in stem cell proliferation and differentiation. This study
aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation
of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co-
culture technique.
Materials and Methods In this experimental research study, rat DFs and ASCs were
isolated and cultured separately on electrospun polycaprolactone (PCL) matrices.
The PCL matrices seeded by ASCs were superimposed on to the matrices seeded
by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL
matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we
assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin
protein by immunofluorescence in the differentiated keratinocyte-like cells from co-
culture and control groups. Keratinocyte-like cell morphologies were also observed
by scanning electron microscopy (SEM).
Results The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com-
pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells
of both groups by immunofluorescence. SEM observation of the co-culture groups showed
that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape,
considered characteristic of keratinocytes.
Conclusion The 3D organotypic co-culture bilayered construct that consisted of DFs and
ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture
might be useful for epidermal differentiation of stem cells for future applications in skin
regeneration.
Collapse
Affiliation(s)
- Zeinab Ghanavati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Early Intervention with Highly Condensed Adipose-Derived Stem Cells for Complicated Wounds Following Filler Injections. Aesthetic Plast Surg 2016; 40:428-34. [PMID: 27102776 PMCID: PMC4870297 DOI: 10.1007/s00266-016-0636-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/28/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND A rise in cosmetic procedures has seen the use of fillers become more prevalent. Complications resulting from use of fillers have prompted introduction of various medical and surgical interventions. Recently, stem cell therapies have become more widely used as a new treatment option for tissue repair and regeneration. METHODS We utilized adipose-derived stem cells (ASCs) for tissue regeneration in patients with filler-related complications such as necrosis. All 12 patients were treated with ASCs and some patients had additional treatment. After relief of symptoms, wound surface area was compared in terms of pixel numbers and scar condition was evaluated using the Vancouver Scar Scale (VSS). RESULTS In general, we achieved satisfactory resolution of filler-related complications in a short period of time without serious side effects. The average number of days from stem cell treatment to symptom relief was 7.3 days. The proportion of wound surface area from photographic record was 4.39 % before treatment, decreasing considerably to 1.01 % following treatment. Last, the VSS showed almost all patients scored below 3, with two patients receiving scores of 7 and 8; the average score was 2.78 (range from 0 to 8). CONCLUSIONS ASCs are a new treatment option for post-filler injection wounds such as necrosis. Using stem cells, we were able to obtain satisfactory results in a short period of time without complications requiring surgical procedures. We suggest stem cell injections could be used as the first option for treatment of complications from filler injections. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
20
|
Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz) 2016; 64:443-454. [PMID: 27178663 PMCID: PMC5085986 DOI: 10.1007/s00005-016-0394-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Recent development in stem cell isolation methods and expansion under laboratory conditions create an opportunity to use those aforementioned cells in tissue engineering and regenerative medicine. Particular attention is drawn towards mesenchymal stem cells (MSCs) being multipotent progenitors exhibiting several unique characteristics, including high proliferation potential, self-renewal abilities and multilineage differentiation into cells of mesodermal and non-mesodermal origin. High abundance of MSCs found in adipose tissue makes it a very attractive source of adult stem cells for further use in regenerative medicine applications. Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials. Lack of a single, universal stem cell marker, patient-to-patient variability, heterogeneity of ASC population combined with multiple widely different protocols of cell isolation and expansion hinder the ability to precisely identify and analyze biological properties of stem cells. The above issues contribute to conflicting data reported in literature. We will review the comprehensive information concerning characteristic features of ASCs. We will also review the regenerative potential and clinical application based on various clinical trials.
Collapse
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.
| | - Natalia Gurtowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Joanna Olkowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Lukasz Kazmierski
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Malgorzata Maj
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.,Department of Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
21
|
Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells. Stem Cells Int 2016; 2016:5786257. [PMID: 26977158 PMCID: PMC4764745 DOI: 10.1155/2016/5786257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.
Collapse
|
22
|
Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L, Maccario R, Dominici M, De Silvestri A, Andreatta E, Costanzo F, Mantelli M, Ingo D, Piccinno S, Calcaterra V. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med 2015; 13:219. [PMID: 26152232 PMCID: PMC4495634 DOI: 10.1186/s12967-015-0580-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
Objective Mesenchymal stromal cells
(MSCs) expanded in vitro have been proposed as a potential therapy for congenital or acquired skin defects in pediatrics. The aim of this pre-clinical study was to investigate the effects of intradermal injections of MSC in experimental cutaneous wound repair comparing allogeneic and autologous adipose stem cells (ASCs) and autologous bone marrow-mesenchymal stromal cells (BM-MSCs). Methods Mesenchymal stromal cells were in vitro expanded from adipose and BM tissues of young female New Zealand rabbits. MSCs were characterized for plastic adhesion, surface markers, proliferation and differentiation capacity. When an adequate number of cells (ASCs 10 × 106 and BM-MSCs 3 × 106, because of their low rate of proliferation) was reached, two skin wounds were surgically induced in each animal. The first was topically treated with cell infusions, the second was used as a control. The intradermal inoculation included autologous or allogeneic ASCs or autologous BM-MSCs. For histological examination, animals were sacrificed and wounds were harvested after 11 and 21 days of treatment. Results Rabbit ASCs were isolated and expanded in vitro with relative abundance, cells expressed typical surface markers (CD49e, CD90 and CD29). Topically, ASC inoculation provided more rapid wound healing than BM-MSCs and controls. Improved re-epithelization, reduced inflammatory infiltration and increased collagen deposition were observed in biopsies from wounds treated with ASCs, with the best result in the autologous setting. ASCs also improved restoration of skin architecture during wound healing. Conclusion The use of ASCs may offer a promising solution to treat extended wounds. Pre-clinical studies are however necessary to validate the best skin regeneration technique, which could be used in pediatric surgical translational research.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonia Icaro Cornaglia
- Histology and Embryology Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy.
| | - Monica Osti
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Piero Romano
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Luigi Avolio
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Rita Maccario
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Annalisa De Silvestri
- Biometry and Clinical Epidemiology Unit, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Erika Andreatta
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Federico Costanzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Daniela Ingo
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Serena Piccinno
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Valeria Calcaterra
- Pediatric Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Kim DY, Ji YH, Kim DW, Dhong ES, Yoon ES. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue. J Korean Med Sci 2014; 29 Suppl 3:S193-200. [PMID: 25473209 PMCID: PMC4248005 DOI: 10.3346/jkms.2014.29.s3.s193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/12/2014] [Indexed: 01/17/2023] Open
Abstract
Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.
Collapse
Affiliation(s)
- Deok-Yeol Kim
- Department of Plastic and Reconstructive Surgery, Korea University College of Medicine, Seoul, Korea
| | - Yi-Hwa Ji
- Medical Science Research Center, Ansan Hospital, Korea University Medical Center, Ansan, Korea
| | - Deok-Woo Kim
- Department of Plastic and Reconstructive Surgery, Korea University College of Medicine, Seoul, Korea
| | - Eun-Sang Dhong
- Department of Plastic and Reconstructive Surgery, Korea University College of Medicine, Seoul, Korea
| | - Eul-Sik Yoon
- Department of Plastic and Reconstructive Surgery, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|