1
|
Millen JL, Luyten LJ, Dieu M, Bové H, Ameloot M, Bongaerts E, Demazy C, Fransolet M, Martens DS, Renard P, Reimann B, Plusquin M, Nawrot TS, Debacq-Chainiaux F. Alterations in the placental proteome in association with the presence of black carbon particles: A discovery study. ENVIRONMENTAL RESEARCH 2024; 263:120214. [PMID: 39442658 DOI: 10.1016/j.envres.2024.120214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n = 10) or low (n = 10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p = 0.007). Thirteen proteins showed a ≥2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
Collapse
Affiliation(s)
- Joline L Millen
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Leen J Luyten
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Catherine Demazy
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Patricia Renard
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
2
|
Kilic F. The Coordinated Changes in Platelet Glycan Patterns with Blood Serotonin and Exosomes. Int J Mol Sci 2024; 25:11940. [PMID: 39596010 PMCID: PMC11593536 DOI: 10.3390/ijms252211940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The structures of glycans, specifically their terminal positions, play an important role as ligands for receptors in regulating the adhesion ability of platelets. Recent advances in our understanding of free/unbound serotonin (5-HT) in blood plasma at supraphysiological levels implicate it as one of the most profound influencers in remodeling the platelet's surface N-glycans. Proteomic analysis of the membrane vesicles identified enzymes, specifically glycosyltransferases, only on the surface of the platelets isolated from the supraphysiological level of 5-HT-containing blood plasma. However, these enzymes can only be effective on the cell surface under certain biological conditions, such as the level of their substrates, temperature, and pH of the environment. We hypothesize that exosomes released from various cells coordinate the required criteria for the enzymatic reaction on the platelet surface. The elevated plasma 5-HT level also accelerates the release of exosomes from various cells, as reported. This review summarizes the findings from a wide range of literature and proposes mechanisms to coordinate the exosomes and plasma 5-HT in remodeling the structures of N-glycans to make platelets more prone to aggregation.
Collapse
Affiliation(s)
- Fusun Kilic
- Retired Professor of Biochemistry and Molecular Cellular Biology
| |
Collapse
|
3
|
Li Q, Liu F, Ma X, Chen F, Yi Z, Du Y, Huang A, Zhao C, Wang D, Chen Y, Cao X. Proteomic Profiling of Unannotated Microproteins in Human Placenta Reveals XRCC6P1 as a Potential Negative Regulator of Translation. J Proteome Res 2024; 23:4005-4013. [PMID: 39171377 DOI: 10.1021/acs.jproteome.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Ribosome profiling and mass spectrometry have revealed thousands of previously unannotated small and alternative open reading frames (sm/alt-ORFs) that are translated into micro/alt-proteins in mammalian cells. However, their prevalence across human tissues and biological roles remains largely undefined. The placenta is an ideal model for identifying unannotated microproteins and alt-proteins due to its considerable protein diversity that is required to sustain fetal development during pregnancy. Here, we profiled unannotated microproteins and alt-proteins in human placental tissues from preeclampsia patients or healthy individuals by proteomics, identified 52 unannotated microproteins or alt-proteins, and demonstrated that five microproteins can be translated from overexpression constructs in a heterologous cell line, although several are unstable. We further demonstrated that one microprotein, XRCC6P1, associates with translation initiation factor eIF3 and negatively regulates translation when exogenously overexpressed. Thus, we revealed a hidden sm/alt-ORF-encoded proteome in the human placenta, which may advance the mechanism studies for placenta development as well as placental disorders such as preeclampsia.
Collapse
Affiliation(s)
- Qiong Li
- Department of Obstetrics and Gynecology, The First People's Hospital of Chenzhou, Chenzhou 423000, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Fanrong Liu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiaoyu Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Feifei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ziying Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangyang Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Anxin Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenyang Zhao
- Department of Obstetrics and Gynecology, The First People's Hospital of Chenzhou, Chenzhou 423000, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Da Wang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China
| | - Yanran Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiongwen Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Cao C, Saxena R, Gray KJ. Placental Origins of Preeclampsia: Insights from Multi-Omic Studies. Int J Mol Sci 2024; 25:9343. [PMID: 39273292 PMCID: PMC11395466 DOI: 10.3390/ijms25179343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Preeclampsia (PE) is a major cause of maternal and neonatal morbidity and mortality worldwide, with the placenta playing a central role in disease pathophysiology. This review synthesizes recent advancements in understanding the molecular mechanisms underlying PE, focusing on placental genes, proteins, and genetic variants identified through multi-omic approaches. Transcriptomic studies in bulk placental tissue have identified many dysregulated genes in the PE placenta, including the PE signature gene, Fms-like tyrosine kinase 1 (FLT1). Emerging single-cell level transcriptomic data have revealed key cell types and molecular signatures implicated in placental dysfunction and PE. However, the considerable variability among studies underscores the need for standardized methodologies and larger sample sizes to enhance the reproducibility of results. Proteomic profiling of PE placentas has identified numerous PE-associated proteins, offering insights into potential biomarkers and pathways implicated in PE pathogenesis. Despite significant progress, challenges such as inconsistencies in study findings and lack of validation persist. Recent fetal genome-wide association studies have identified multiple genetic loci associated with PE, with ongoing efforts to elucidate their impact on placental gene expression and function. Future directions include the integration of multi-omic data, validation of findings in diverse PE populations and clinical subtypes, and the development of analytical approaches and experimental models to study the complex interplay of placental and maternal factors in PE etiology. These insights hold promise for improving risk prediction, diagnosis, and management of PE, ultimately reducing its burden on maternal and neonatal health.
Collapse
Affiliation(s)
- Chang Cao
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn J. Gray
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Adamo KB, Goudreau AD, Corson AE, MacDonald ML, O'Rourke N, Tzaneva V. Physically active pregnancies: Insights from the placenta. Physiol Rep 2024; 12:e16104. [PMID: 38872466 PMCID: PMC11176744 DOI: 10.14814/phy2.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Physical activity (PA) positively influences pregnancy, a critical period for health promotion, and affects placental structure and function in ways previously overlooked. Here, we summarize the current body of literature examining the association between PA, placenta biology, and physiology while also highlighting areas where gaps in knowledge exist. PA during pregnancy induces metabolic changes, influencing nutrient availability and transporter expression in the placenta. Hormones and cytokines secreted during PA contribute to health benefits, with intricate interactions in pro- and anti-inflammatory markers. Extracellular vesicles and placental "-omics" data suggest that gestational PA can shape placental biology, affecting gene expression, DNA methylation, metabolite profiles, and protein regulation. However, whether cytokines that respond to PA alter placental proteomic profiles during pregnancy remains to be elucidated. The limited research on placenta mitochondria of physically active gestational parents (gesP), has shown improvements in mitochondrial DNA and antioxidant capacity, but the relationship between PA, placental mitochondrial dynamics, and lipid metabolism remains unexplored. Additionally, PA influences the placenta-immune microenvironment, angiogenesis, and may confer positive effects on neurodevelopment and mental health through placental changes, vascularization, and modulation of brain-derived neurotrophic factor. Ongoing exploration is crucial for unraveling the multifaceted impact of PA on the intricate placental environment.
Collapse
Affiliation(s)
- Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandra D Goudreau
- Department of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Abbey E Corson
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Meaghan L MacDonald
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas O'Rourke
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Hartmann S, Botha SM, Gray CM, Valdes DS, Tong S, Kaitu'u-Lino TJ, Herse F, Bergman L, Cluver CA, Dechend R, Nonn O. Can single-cell and spatial omics unravel the pathophysiology of pre-eclampsia? J Reprod Immunol 2023; 159:104136. [PMID: 37634318 DOI: 10.1016/j.jri.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Pre-eclampsia is a leading cause of maternal and fetal morbidity and mortality. Characterised by the onset of hypertension and proteinuria in the second half of pregnancy, it can lead to maternal end-organ injury such as cerebral ischemia and oedema, pulmonary oedema and renal failure, and potentially fatal outcomes for both mother and fetus. The causes of the different maternal end-organ phenotypes of pre-eclampsia and why some women develop pre-eclampsia condition early in pregnancy have yet to be elucidated. Omics methods include proteomics, genomics, metabolomics, transcriptomics. These omics techniques, previously mostly used on bulk tissue and individually, are increasingly available at a single cellular level and can be combined with each other. Multi-omics techniques on a single-cell or spatial level provide us with a powerful tool to understand the pathophysiology of pre-eclampsia. This review will explore the status of omics methods and how they can and could contribute to understanding the pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
- Sunhild Hartmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Stefan Marc Botha
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Clive M Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town 7505, South Africa
| | - Daniela S Valdes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stephen Tong
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Florian Herse
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lina Bergman
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town 7505, South Africa; Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden,; Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Catherine A Cluver
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town 7505, South Africa
| | - Ralf Dechend
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany; HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, Germany
| | - Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Li W, Liu M, Zhou M, Zhou X, Zhang D, Duan J, Zhang A, Xu B. Downregulation of SEPTIN11 inhibits endometrial epithelial cell adhesive function in patients with elevated peripheral blood natural killer cell counts. Reprod Biomed Online 2023; 47:103203. [PMID: 37349244 DOI: 10.1016/j.rbmo.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
RESEARCH QUESTION What is the underlying mechanism of IVF and embryo transfer (IVF-ET) failure in patients with elevated peripheral blood natural killer cell (pNK) counts? DESIGN Patients undergoing IVF-ET cycles for tubal obstruction or pelvic adhesion (n = 486) were assigned to three groups: high (CD56+CD16+pNK >30% [n = 49]); medium (15< CD56+CD16+pNK ≤30% [n = 211]); and normal pNK groups (5≤ CD56+CD16+pNK ≤15% [n = 226]). Their general condition, previous pregnancy history and IVF outcomes were compared. Uterine fluid and endometrial tissue from patients in the high and normal pNK groups were collected during the mid-secretory phase and studied to elucidate the molecular mechanism underlying impaired endometrial receptivity. RESULTS The highest incidence of IVF-ET cycles (P < 0.0001) and biochemical pregnancy losses (P < 0.0001), and lowest implantation and clinical pregnancy rates (both P < 0.0001), were observed in patients with pNK over 30%. No significant difference was found in the number of previous miscarriages and rate of spontaneous miscarriage in IVF outcomes. Lower Septin11 (SEPT11) expression in the uterine fluid and endometrial epithelial cells (EEC), and higher endometrial IFN-γ, was observed in patients with high pNK. Ishikawa cell and human endometrial epithelial cell (HEEC) adhesion was inhibited after SEPT11 knock-down. Elevated IFN-γ decreased the SEPT11 protein levels in Ishikawa cells and HEECs. CONCLUSIONS CD56+CD16+pNK above 30% may be a threshold for adverse IVF-ET outcomes. Low SEPT11 expression in EEC inhibits cell adhesion, which may cause impaired endometrial receptivity in patients with elevated pNK. The level of SEPT11 in mid-secretory uterine fluid could serve as a non-invasive marker to assess endometrial receptivity in these patients.
Collapse
Affiliation(s)
- Wenzhu Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingru Duan
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
9
|
Yu JH, Jung YJ, Kim MS, Cho SR, Kim YH. Differential Expression of NME4 in Trophoblast Stem-Like Cells and Peripheral Blood Mononuclear Cells of Normal Pregnancy and Preeclampsia. J Korean Med Sci 2023; 38:e128. [PMID: 37096311 PMCID: PMC10125796 DOI: 10.3346/jkms.2023.38.e128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is known to arise from insufficient trophoblast invasion as uterine spiral arteries lack remodeling. A significant reduction in placental perfusion induces an ischemic placental microenvironment due to reduced oxygen delivery to the placenta and fetus, leading to oxidative stress. Mitochondria are involved in the regulation of cellular metabolism and the production of reactive oxygen species (ROS). NME/NM23 nuceloside diphosphate kinase 4 (NME4) gene is known to have the ability to supply nucleotide triphosphate and deoxynucleotide triphosphate for replication and transcription of mitochondria. Our study aimed to investigate changes in NME4 expression in PE using trophoblast stem-like cells (TSLCs) from induced pluripotent stem cells (iPSCs) as a model of early pregnancy and peripheral blood mononuclear cells (PBMNCs) as a model of late preterm pregnancy. METHODS Transcriptome analysis using TSLCs was performed to identify the candidate gene associated with the possible pathophysiology of PE. Then, the expression of NME4 associated with mitochondrial function, p53 associated with cell death, and thioredoxin (TRX) linked to ROS were investigated through qRT-PCR, western blotting and deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) assay. RESULTS In patients with PE, NME4 was significantly downregulated in TSLCs but upregulated in PBMNCs. p53 was shown to be upregulated in TSLCs and PBMNCs of PE. In addition, western blot analysis confirmed that TRX expression had the tendency to increase in TSLCs of PE. Similarly, TUNEL analysis confirmed that the dead cells were higher in PE than in normal pregnancy. CONCLUSION Our study showed that the expression of the NME4 differed between models of early and late preterm pregnancy of PE, and suggests that this expression pattern may be a potential biomarker for early diagnosis of PE.
Collapse
Affiliation(s)
- Ji Hea Yu
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Yun Ji Jung
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Myung-Sun Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Sung-Rae Cho
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea.
| | - Young-Han Kim
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea.
| |
Collapse
|
10
|
Man AWC, Zhou Y, Xia N, Li H. Dietary supplements and vascular function in hypertensive disorders of pregnancy. Pflugers Arch 2023:10.1007/s00424-023-02810-2. [PMID: 37043045 DOI: 10.1007/s00424-023-02810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Hypertensive disorders of pregnancy are complications that can lead to maternal and infant mortality and morbidity. Hypertensive disorders of pregnancy are generally defined as hypertension and may be accompanied by other end organ damages including proteinuria, maternal organ disturbances including renal insufficiency, neurological complications, thrombocytopenia, impaired liver function, or uteroplacental dysfunction such as fetal growth restriction and stillbirth. Although the causes of these hypertensive disorders of pregnancy are multifactorial and elusive, they seem to share some common vascular-related mechanisms, including diseased spiral arteries, placental ischemia, and endothelial dysfunction. Recently, preeclampsia is being considered as a vascular disorder. Unfortunately, due to the complex etiology of preeclampsia and safety concerns on drug usage during pregnancy, there is still no effective pharmacological treatments available for preeclampsia yet. An emerging area of interest in this research field is the potential beneficial effects of dietary intervention on reducing the risk of preeclampsia. Recent studies have been focused on the association between deficiencies or excesses of some nutrients and complications during pregnancy, fetal growth and development, and later risk of cardiovascular and metabolic diseases in the offspring. In this review, we discuss the involvement of placental vascular dysfunction in preeclampsia. We summarize the current understanding of the association between abnormal placentation and preeclampsia in a vascular perspective. Finally, we evaluate several studied dietary supplementations to prevent and reduce the risk of preeclampsia, targeting placental vascular development and function, leading to improved pregnancy and postnatal outcomes.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
11
|
Kruger L, Yue G, Paquette A, Sathyanarayana S, Enquobahrie DA, Bammler TK, MacDonald J, Zhao Q, Prasad B. An optimized proteomics-based approach to estimate blood contamination and cellular heterogeneity of frozen placental tissue. Placenta 2023; 131:111-118. [PMID: 36584637 PMCID: PMC9912121 DOI: 10.1016/j.placenta.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Archived human placental tissue specimens are vital for studying placenta pathophysiology and toxicology. Proteomics analysis of placental tissue provides mechanistic and translational information, but the highly perfused and heterogenous nature of the placenta creates confounding technical variability. In this study, we developed an optimized proteomics-based approach to address the technical variability of proteomics data by normalizing blood contamination and cellular heterogeneity of archived placenta samples. METHODS Placenta samples (n = 99) were homogenized, digested using trypsin, and analyzed by liquid chromatography mass-spectrometry. Label-free quantification (LFQ) intensities of the proteins were analyzed for their correlation with blood (albumin) and placenta (aromatase) markers. Proteins that positively correlated with albumin and negatively correlated with aromatase or vice versa were considered blood and placental proteins, respectively. Next, the cellular heterogeneity of individual placenta samples was evaluated by quantifying specific cellular markers of cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, fibroblasts, Hofbauer cells, and decidual cells. RESULTS We found that placental proteins were contaminated by 41 to 85% blood proteins. Analysis of cellular markers confirmed syncytiotrophoblasts as the major cell type in placenta (i.e., 41 ± 9% of all cell types). Two samples showed distinct cell compositions with higher levels of the extravillous trophoblasts and decidual cells. DISCUSSION In summary, the optimized proteomics-based approach to estimate blood contamination and cellular heterogeneity of placental tissues has the potential to address technical variability in placenta proteomics analysis, which can be extended to other highly perfused and heterogenous tissues.
Collapse
Affiliation(s)
- Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Guihua Yue
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Alison Paquette
- Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | | | | | | | - Qi Zhao
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
12
|
Protocol for Increasing the Sensitivity of MS-Based Protein Detection in Human Chorionic Villi. Curr Issues Mol Biol 2022; 44:2069-2088. [PMID: 35678669 PMCID: PMC9164042 DOI: 10.3390/cimb44050140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
An important step in the proteomic analysis of missing proteins is the use of a wide range of tissues, optimal extraction, and the processing of protein material in order to ensure the highest sensitivity in downstream protein detection. This work describes a purification protocol for identifying low-abundance proteins in human chorionic villi using the proposed “1DE-gel concentration” method. This involves the removal of SDS in a short electrophoresis run in a stacking gel without protein separation. Following the in-gel digestion of the obtained holistic single protein band, we used the peptide mixture for further LC–MS/MS analysis. Statistically significant results were derived from six datasets, containing three treatments, each from two tissue sources (elective or missed abortions). The 1DE-gel concentration increased the coverage of the chorionic villus proteome. Our approach allowed the identification of 15 low-abundance proteins, of which some had not been previously detected via the mass spectrometry of trophoblasts. In the post hoc data analysis, we found a dubious or uncertain protein (PSG7) encoded on human chromosome 19 according to neXtProt. A proteomic sample preparation workflow with the 1DE-gel concentration can be used as a prospective tool for uncovering the low-abundance part of the human proteome.
Collapse
|
13
|
Tiensuu H, Haapalainen AM, Tissarinen P, Pasanen A, Määttä TA, Huusko JM, Ohlmeier S, Bergmann U, Ojaniemi M, Muglia LJ, Hallman M, Rämet M. Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth. BMC Med 2022; 20:141. [PMID: 35477570 PMCID: PMC9047282 DOI: 10.1186/s12916-022-02339-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Preterm birth is defined as live birth before 37 completed weeks of pregnancy, and it is a major problem worldwide. The molecular mechanisms that lead to onset of spontaneous preterm birth are incompletely understood. Prediction and evaluation of the risk of preterm birth is challenging as there is a lack of accurate biomarkers. In this study, our aim was to identify placental proteins that associate with spontaneous preterm birth. METHODS We analyzed the proteomes from placentas to identify proteins that associate with both gestational age and spontaneous labor. Next, rare and potentially damaging gene variants of the identified protein candidates were sought for from our whole exome sequencing data. Further experiments we performed on placental samples and placenta-associated cells to explore the location and function of the spontaneous preterm labor-associated proteins in placentas. RESULTS Exome sequencing data revealed rare damaging variants in SERPINA1 in families with recurrent spontaneous preterm deliveries. Protein and mRNA levels of alpha-1 antitrypsin/SERPINA1 from the maternal side of the placenta were downregulated in spontaneous preterm births. Alpha-1 antitrypsin was expressed by villous trophoblasts in the placenta, and immunoelectron microscopy showed localization in decidual fibrinoid deposits in association with specific extracellular proteins. siRNA knockdown in trophoblast-derived HTR8/SVneo cells revealed that SERPINA1 had a marked effect on regulation of the actin cytoskeleton pathway, Slit-Robo signaling, and extracellular matrix organization. CONCLUSIONS Alpha-1 antitrypsin is a protease inhibitor. We propose that loss of the protease inhibition effects of alpha-1 antitrypsin renders structures critical to maintaining pregnancy susceptible to proteases and inflammatory activation. This may lead to spontaneous premature birth.
Collapse
Affiliation(s)
- Heli Tiensuu
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Antti M Haapalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Pinja Tissarinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Tomi A Määttä
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Johanna M Huusko
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland.,Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA
| | - Steffen Ohlmeier
- Proteomics and Mass Spectrometry Core Facilities, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Ulrich Bergmann
- Proteomics and Mass Spectrometry Core Facilities, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Marja Ojaniemi
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA.,Burroughs Wellcome Fund, Research Triangle Park, North Carolina, 27709, USA
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland.
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland. .,Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| |
Collapse
|
14
|
Man AWC, Zhou Y, Lam UDP, Reifenberg G, Werner A, Habermeier A, Closs EI, Daiber A, Münzel T, Xia N, Li H. L-citrulline ameliorates pathophysiology in a rat model of superimposed preeclampsia. Br J Pharmacol 2021; 179:3007-3023. [PMID: 34935131 DOI: 10.1111/bph.15783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Preeclampsia, characterized by hypertension, proteinuria, and fetal growth restriction, is one of the leading causes of maternal and perinatal mortality. By far, there is no effective pharmacological therapy for preeclampsia. The present study was conducted to investigate the effects of L-citrulline supplementation in Dahl salt-sensitive rat, a model of superimposed preeclampsia. EXPERIMENTAL APPROACH Parental DSSR were treated with L-citrulline (2.5 g/L in drinking water) from the day of mating to the end of lactation period. Blood pressure of the rats was monitored throughout pregnancy and markers of preeclampsia were assessed. Endothelial function of the pregnant DSSR was assessed by wire myograph. KEY RESULTS L-citrulline supplementation significantly reduced maternal blood pressure, proteinuria, and levels of circulating soluble fms-like tyrosine kinase 1 in DSSR. L-citrulline improved maternal endothelial function by augmenting the production of nitric oxide in the aorta and improving endothelium-derived hyperpolarizing factor-mediated vasorelaxation in resistance arteries. L-citrulline supplementation improved placental insufficiency and fetal growth, which were associated with an enhancement of angiogenesis and reduction of fibrosis and senescence in the placentas. In addition, L-citrulline downregulated genes involved in the toll-like receptor 4 and nuclear factor-κB signaling pathway. CONCLUSION AND IMPLICATIONS This study shows that L-citrulline supplementation reduces gestational hypertension, improves placentation and fetal growth in a rat model of superimposed preeclampsia. L-citrulline supplementation may represent an effective and safe therapeutic strategy for preeclampsia that benefit both the mother and the fetus.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Uyen D P Lam
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anke Werner
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ellen I Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
15
|
Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature. Clin Proteomics 2021; 18:18. [PMID: 34372761 PMCID: PMC8351416 DOI: 10.1186/s12014-021-09324-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Placenta is a complex organ that plays a significant role in the maintenance of pregnancy health. It is a dynamic organ that undergoes dramatic changes in growth and development at different stages of gestation. In the first-trimester, the conceptus develops in a low oxygen environment that favors organogenesis in the embryo and cell proliferation and angiogenesis in the placenta; later in pregnancy, higher oxygen concentration is required to support the rapid growth of the fetus. This oxygen transition, which appears unique to the human placenta, must be finely tuned through successive rounds of protein signature alterations. This study compares placental proteome in normal first-trimester (FT) and term human placentas (TP). Methods Normal human first-trimester and term placental samples were collected and differentially expressed proteins were identified using two-dimensional liquid chromatography-tandem mass spectrometry. Results Despite the overall similarities, 120 proteins were differently expressed in first and term placentas. Out of these, 72 were up-regulated and 48 were down-regulated in the first when compared with the full term placentas. Twenty out of 120 differently expressed proteins were sequenced, among them seven showed increased (GRP78, PDIA3, ENOA, ECH1, PRDX4, ERP29, ECHM), eleven decreased (TRFE, ALBU, K2C1, ACTG, CSH2, PRDX2, FABP5, HBG1, FABP4, K2C8, K1C9) expression in first-trimester compared to the full-term placentas and two proteins exclusively expressed in first-trimester placentas (MESD, MYDGF). Conclusion According to Reactome and PANTHER softwares, these proteins were mostly involved in response to chemical stimulus and stress, regulation of biological quality, programmed cell death, hemostatic and catabolic processes, protein folding, cellular oxidant detoxification, coagulation and retina homeostasis. Elucidation of alteration in protein signature during placental development would provide researchers with a better understanding of the critical biological processes of placentogenesis and delineate proteins involved in regulation of placental function during development. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09324-y.
Collapse
|
16
|
Jaremek A, Jeyarajah MJ, Jaju Bhattad G, Renaud SJ. Omics Approaches to Study Formation and Function of Human Placental Syncytiotrophoblast. Front Cell Dev Biol 2021; 9:674162. [PMID: 34211975 PMCID: PMC8240757 DOI: 10.3389/fcell.2021.674162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Proper development of the placenta is vital for pregnancy success. The placenta regulates exchange of nutrients and gases between maternal and fetal blood and produces hormones essential to maintain pregnancy. The placental cell lineage primarily responsible for performing these functions is a multinucleated entity called syncytiotrophoblast. Syncytiotrophoblast is continuously replenished throughout pregnancy by fusion of underlying progenitor cells called cytotrophoblasts. Dysregulated syncytiotrophoblast formation disrupts the integrity of the placental exchange surface, which can be detrimental to maternal and fetal health. Moreover, various factors produced by syncytiotrophoblast enter into maternal circulation, where they profoundly impact maternal physiology and are promising diagnostic indicators of pregnancy health. Despite the multifunctional importance of syncytiotrophoblast for pregnancy success, there is still much to learn about how its formation is regulated in normal and diseased states. ‘Omics’ approaches are gaining traction in many fields to provide a more holistic perspective of cell, tissue, and organ function. Herein, we review human syncytiotrophoblast development and current model systems used for its study, discuss how ‘omics’ strategies have been used to provide multidimensional insights into its formation and function, and highlight limitations of current platforms as well as consider future avenues for exploration.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
17
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Navajas R, Corrales F, Paradela A. Quantitative proteomics-based analyses performed on pre-eclampsia samples in the 2004-2020 period: a systematic review. Clin Proteomics 2021; 18:6. [PMID: 33499801 PMCID: PMC7836571 DOI: 10.1186/s12014-021-09313-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Quantitative proteomics is an invaluable tool in biomedicine for the massive comparative analysis of protein component of complex biological samples. In the last two decades, this technique has been used to describe proteins potentially involved in the pathophysiological mechanisms of preeclampsia as well as to identify protein biomarkers that could be used with diagnostic/prognostic purposes in pre-eclampsia. RESULTS We have done a systematic review of all proteomics-based papers describing differentially expressed proteins in this disease. Searching Pubmed with the terms pre-eclampsia and proteomics, restricted to the Title/Abstract and to MeSH fields, and following manual curation of the original list, retrieved 69 original articles corresponding to the 2004-2020 period. We have only considered those results based on quantitative, unbiased proteomics studies conducted in a controlled manner on a cohort of control and pre-eclamptic individuals. The sources of biological material used were serum/plasma (n = 32), placenta (n = 23), urine (n = 9), cerebrospinal fluid (n = 2), amniotic fluid (n = 2) and decidual tissue (n = 1). Overall results were filtered based on two complementary criteria. First, we have only accounted all those proteins described in at least two (urine), three (placenta) and four (serum/plasma) independent studies. Secondly, we considered the consistency of the quantitative data, that is, inter-study agreement in the protein abundance control/pre-eclamptic ratio. The total number of differential proteins in serum/plasma (n = 559), placenta (n = 912), urine (n = 132) and other sources of biological material (n = 26), reached 1631 proteins. Data were highly complementary among studies, resulting from differences on biological sources, sampling strategies, patient stratification, quantitative proteomic analysis methods and statistical data analysis. Therefore, stringent filtering was applied to end up with a cluster of 18, 29 and 16 proteins consistently regulated in pre-eclampsia in placenta, serum/plasma and urine, respectively. The systematic collection, standardization and evaluation of the results, using diverse filtering criteria, provided a panel of 63 proteins whose levels are consistently modified in the context of pre-eclampsia.
Collapse
Affiliation(s)
- Rosana Navajas
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, Madrid, Spain
| | - Alberto Paradela
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, Madrid, Spain.
| |
Collapse
|
19
|
Nakayama M, Miyagawa H, Kuranami Y, Tsunooka-Ota M, Yamaguchi Y, Kojima-Aikawa K. Annexin A4 inhibits sulfatide-induced activation of coagulation factor XII. J Thromb Haemost 2020; 18:1357-1369. [PMID: 32145147 DOI: 10.1111/jth.14789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Factor XII (FXII) is a plasma serine protease that initiates the intrinsic pathway of blood coagulation upon contact with anionic substances, such as the sulfated glycolipid sulfatide. Annexins (ANXs) have been implicated in the regulation of the blood coagulation reaction by binding to anionic surfaces composed of phospholipids and sulfated glycoconjugates, but their physiological importance is only partially understood. OBJECTIVE To test the hypothesis that ANXs are involved in suppressing the intrinsic pathway initiated by sulfatide, we examined the effect of eight recombinant ANX proteins on the intrinsic coagulation reaction and their sulfatide binding activities. METHODS Recombinant ANXs were prepared in Escherichia coli expression systems and their anticoagulant effects on the intrinsic pathway initiated by sulfatide were examined using plasma clotting assay and chromogenic assay. ANXA4 active sites were identified by alanine scanning and fold deletion in the core domain. RESULTS AND CONCLUSIONS We found that ANXA3, ANXA4, and ANXA5 strongly inhibited sulfatide-induced plasma coagulation. Wild-type and mutated ANXA4 were used to clarify the molecular mechanism involved in inhibition. ANXA4 inhibited sulfatide-induced auto-activation of FXII to FXIIa and the conversion of its natural substrate FXI to FXIa but showed no effect on the protease activity of FXIIa or FXIa. Alanine scanning showed that substitution of the Ca2+ -binding amino acid residue in the fourth fold of the core domain of ANXA4 reduced anticoagulant activity, and deletion of the entire fourth fold of the core domain resulted in complete loss of anticoagulant activity.
Collapse
Affiliation(s)
- Moeka Nakayama
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Program for Leading Graduate Schools, Ochanomizu University, Tokyo, Japan
| | - Hitomi Miyagawa
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yumiko Kuranami
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Miyuki Tsunooka-Ota
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yoshiki Yamaguchi
- Synthetic Cellular Chemistry Laboratory, RIKEN, Saitama, Japan
- Laboratory of Pharmaceutical Physical Chemistry, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kyoko Kojima-Aikawa
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
20
|
Abstract
Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.
Collapse
|
21
|
Li X, Fang Y. Bioinformatics identification of potential genes and pathways in preeclampsia based on functional gene set enrichment analyses. Exp Ther Med 2019; 18:1837-1844. [PMID: 31410145 PMCID: PMC6676190 DOI: 10.3892/etm.2019.7749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/02/2019] [Indexed: 11/05/2022] Open
Abstract
Preeclampsia is a complication of pregnancy characterized by new-onset hypertension and proteinuria of gestation, with serious consequences for mother and infant. Although a vast amount of research has been performed on the pathogenesis of preeclampsia, the underlying mechanisms of this multisystemic disease have remained to be fully elucidated. Data were retrieved from Gene Expression Omnibus database GSE40182 dataset. After data preprocessing, differentially expressed genes of placental cells cultured in vitro from preeclampsia and normal pregnancy were determined and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify the associated pathways. Furthermore, functional principal component analysis (FPCA) was used to calculate the corresponding F-value of each gene. In order to further study the key signaling pathways of preeclampsia, an elastic-net regression model and the Mann-Whitney U (MWU) test were used to estimate the weight of the signaling pathways. Finally, a co-expression network was generated and hub genes were identified based on the topological features. A total of 134 pathways with a role in preeclampsia were identified. The gene expression data of placenta cells cultured in vitro for different durations were determined and F-values of genes were estimated using the FPCA model. The top 1,000 genes were identified as the differentially expressed genes and subjected to further analysis by elastic-net regression and MWU test. Two key signaling pathways were different between the preeclampsia and control groups, namely hsa05142 Chagas disease and hsa05204 Chemical carcinogenesis. Among the genes involved in these two key pathways, 13 hub genes were identified from the co-expression network. Clustering analysis demonstrated that depending on these hub genes, it was possible to divide the sample into four distinct groups based on different incubation time. The top 3 candidates were Toll-like receptor 2 (TLR2), glutathione S-transferase omega 1 (GSTO1) and mitogen-activated protein kinase 13 (MAPK13). TLR2 and associated pathways are known to be closely associated with preeclampsia, indirectly demonstrating the applicability of the analytic process applied. However, the role of GSTO1 and MAPK13 in preeclampsia has remained poorly investigated, and elucidation thereof may be a worthwhile endeavor. The present study may provide a basis for exploring potential novel genes and pathways as therapeutic targets for preeclampsia.
Collapse
Affiliation(s)
- Xue Li
- Department of Obstetrics, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Yanning Fang
- Department of Obstetrics, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| |
Collapse
|
22
|
Exposure of trophoblast cells to fine particulate matter air pollution leads to growth inhibition, inflammation and ER stress. PLoS One 2019; 14:e0218799. [PMID: 31318865 PMCID: PMC6638881 DOI: 10.1371/journal.pone.0218799] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Ambient air pollution is considered a major environmental health threat to pregnant women. Our previous work has shown an association between exposure to airborne particulate matter (PM) and an increased risk of developing pre-eclamspia. It is now recognized that many pregnancy complications are due to underlying placental dysfunction, and this tissue plays a pivotal role in pre-eclamspia. Recent studies have shown that PM can enter the circulation and reach the human placenta but the effects of PM on human placental function are still largely unknown. In this work we investigated the effects of airborne PM on trophoblast cells. Human, first trimester trophoblast cells (HTR-8/SV) were exposed to urban pollution particles (Malmö PM2.5; Prague PM10) for up to seven days in vitro and were analysed for uptake, levels of hCGβ and IL-6 secretion and proteomic analysis. HTR-8/SVneo cells rapidly endocytose PM within 30 min of exposure and particles accumulate in the cell in perinuclear vesicles. High doses of Prague and Malmö PM (500-5000 ng/ml) significantly decreased hCGβ secretion and increased IL-6 secretion after 48 h exposure. Exposure to PM (50 ng/ml) for 48h or seven days led to reduced cellular growth and altered protein expression. The differentially expressed proteins are involved in networks that regulate cellular processes such as inflammation, endoplasmic reticulum stress, cellular survival and molecular transport pathways. Our studies suggest that trophoblast cells exposed to low levels of urban PM respond with reduced growth, oxidative stress, inflammation and endoplasmic reticulum stress after taking up the particles by endocytosis. Many of the dysfunctional cellular processes ascribed to the differentially expressed proteins in this study, are similar to those described in PE, suggesting that low levels of urban PM may disrupt cellular processes in trophoblast cells. Many of the differentially expressed proteins identified in this study are involved in inflammation and may be potential biomarkers for PE.
Collapse
|
23
|
Corbacho-Alonso N, Rodríguez-Sánchez E, Martin-Rojas T, Mouriño-Alvarez L, Sastre-Oliva T, Hernandez-Fernandez G, Padial LR, Ruilope LM, Ruiz-Hurtado G, Barderas MG. Proteomic investigations into hypertension: what's new and how might it affect clinical practice? Expert Rev Proteomics 2019; 16:583-591. [PMID: 31195841 DOI: 10.1080/14789450.2019.1632197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Hypertension is a multifactorial disease that has, thus far, proven to be a difficult target for pharmacological intervention. The application of proteomic strategies may help to identify new biomarkers for the early diagnosis and prompt treatment of hypertension, in order to control blood pressure and prevent organ damage. Areas covered: Advances in proteomics have led to the discovery of new biomarkers to help track the pathophysiological processes implicated in hypertension. These findings not only help to better understand the nature of the disease, but will also contribute to the clinical needs for a timely diagnosis and more precise treatment. In this review, we provide an overview of new biomarkers identified in hypertension through the application of proteomic techniques, and we also discuss the difficulties and challenges in identifying biomarkers in this clinical setting. We performed a literature search in PubMed with the key words 'hypertension' and 'proteomics', and focused specifically on the most recent literature on the utility of proteomics in hypertension research. Expert opinion: There have been several promising biomarkers of hypertension identified by proteomics, but too few have been introduced to the clinic. Thus, further investigations in larger cohorts are necessary to test the feasibility of this strategy for patients. Also, this emerging field would profit from more collaboration between clinicians and researchers.
Collapse
Affiliation(s)
- N Corbacho-Alonso
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos (HNP), SESCAM , Toledo , Spain
| | - E Rodríguez-Sánchez
- b Cardiorenal Translational Laboratory , Instituto de Investigación i+12, Hospital Universitario 12 de Octubre , Madrid , Spain
| | - T Martin-Rojas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos (HNP), SESCAM , Toledo , Spain
| | - L Mouriño-Alvarez
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos (HNP), SESCAM , Toledo , Spain
| | - T Sastre-Oliva
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos (HNP), SESCAM , Toledo , Spain
| | - G Hernandez-Fernandez
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos (HNP), SESCAM , Toledo , Spain
| | - L R Padial
- c Department of Cardiology , Hospital Virgen de la Salud, SESCAM , Toledo , Spain
| | - L M Ruilope
- b Cardiorenal Translational Laboratory , Instituto de Investigación i+12, Hospital Universitario 12 de Octubre , Madrid , Spain.,d Department of Preventive Medicine and Public Health, School of Medicine , Universidad Autónoma de Madrid/IdiPAZ and CIBER in Epidemiology and Public Health (CIBERESP) , Madrid , Spain.,e School of Doctoral Studies and Research , Universidad Europea de Madrid , Madrid , Spain
| | - G Ruiz-Hurtado
- b Cardiorenal Translational Laboratory , Instituto de Investigación i+12, Hospital Universitario 12 de Octubre , Madrid , Spain
| | - M G Barderas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos (HNP), SESCAM , Toledo , Spain
| |
Collapse
|
24
|
Tarca AL, Romero R, Benshalom-Tirosh N, Than NG, Gudicha DW, Done B, Pacora P, Chaiworapongsa T, Panaitescu B, Tirosh D, Gomez-Lopez N, Draghici S, Hassan SS, Erez O. The prediction of early preeclampsia: Results from a longitudinal proteomics study. PLoS One 2019; 14:e0217273. [PMID: 31163045 PMCID: PMC6548389 DOI: 10.1371/journal.pone.0217273] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of gestation) and to determine whether the prediction performance is affected by disease severity and presence of placental lesions consistent with maternal vascular malperfusion (MVM) among cases. STUDY DESIGN This longitudinal case-control study included 90 patients with a normal pregnancy and 33 patients with early preeclampsia. Two to six maternal plasma samples were collected throughout gestation from each woman. The abundance of 1,125 proteins was measured using high-affinity aptamer-based proteomic assays, and data were modeled using linear mixed-effects models. After data transformation into multiples of the mean values for gestational age, parsimonious linear discriminant analysis risk models were fit for each gestational-age interval (8-16, 16.1-22, 22.1-28, 28.1-32 weeks). Proteomic profiles of early preeclampsia cases were also compared to those of a combined set of controls and late preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via bootstrap. RESULTS We found that 1) multi-protein models at 16.1-22 weeks of gestation predicted early preeclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predictors at this gestational age; 2) at 22.1-28 weeks of gestation, lower abundance of placental growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A, were the best predictors of the subsequent development of early preeclampsia (81% sensitivity, FPR = 10%); 3) at 28.1-32 weeks of gestation, the sensitivity of multi-protein models was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion molecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at 22.1-28 weeks of gestation differentiated women who subsequently developed early preeclampsia from those who had a normal pregnancy or developed late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia with placental MVM lesions than for the entire early preeclampsia group (90% versus 71% at 16.1-22 weeks; 87% versus 81% at 22.1-28 weeks; and 90% versus 85% at 28.1-32 weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1-22 weeks). CONCLUSION We have presented herein a catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes. The sensitivity of maternal plasma protein models for early preeclampsia is higher in women with underlying vascular placental disease and in those with a severe phenotype.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Maternity Clinic, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Dereje W. Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dan Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sorin Draghici
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
25
|
Sun X, Qu T, He X, Yang X, Guo N, Mao Y, Xu X, Sun X, Zhang X, Wang W. Screening of differentially expressed proteins from syncytiotrophoblast for severe early-onset preeclampsia in women with gestational diabetes mellitus using tandem mass tag quantitative proteomics. BMC Pregnancy Childbirth 2018; 18:437. [PMID: 30404616 PMCID: PMC6223002 DOI: 10.1186/s12884-018-2066-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have revealed that women with gestational diabetes mellitus (GDM) have an increased risk of developing preeclampsia (PE). The possible reason is the abnormal lipid metabolism caused by GDM that leads to dysfunction of vascular endothelial cells and atherosclerosis, resulting in the onset of PE. However, studies focusing on the pathogenesis of PE in syncytiotrophoblast of GDM patients are lacking. This study aimed to compare differentially expressed proteins from syncytiotrophoblast between women with GDM and women with GDM with subsequently developed PE. METHODS Syncytiotrophoblast samples were obtained from pregnant women immediately after delivery. To explore the protein expression changes of syncytiotrophoblast that might explain the pathogenesis of PE in women with GDM, quantitative proteomics was performed using tandem mass tag (TMT) isobaric tags and liquid chromatography-tandem mass spectrometry. Bioinformatics analysis was performed to enrich the biological processes that these differentially expressed proteins were involved in. RESULTS A total of 28,234 unique peptides and 4140 proteins were identified in all samples. Among them, 23 differentially expressed proteins were identified between patients with GDM and patients with GDM with subsequently developed PE. Therein, 11 proteins were upregulated and 12 proteins were downregulated. Two relative proteins (FLT1 and PABPC4) were independently verified using immunoblotting analysis. Bioinformatic results indicated that the onset of PE in patients with GDM is a multifactorial disorder, involving factors such as apoptosis, transcriptional misregulation, oxidative stress, lipid metabolism, cell infiltration and migration, and angiogenesis. CONCLUSION These results indicated that the inadequacy of endometrium infiltration, angiogenic disorder, and oxidative stress in syncytiotrophoblast are more likely to occur in patients with GDM and may be the potential mechanisms leading to such patients secondarily developing severe early-onset PE.
Collapse
Affiliation(s)
- Xiaotong Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Tao Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, China
| | - Xiyan He
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Xueping Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Nan Guo
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Mao
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Xianghong Xu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuehong Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Weihua Wang
- Houston Fertility Laboratory, Houston, TX USA
| |
Collapse
|
26
|
Haapalainen AM, Karjalainen MK, Daddali R, Ohlmeier S, Anttonen J, Määttä TA, Salminen A, Mahlman M, Bergmann U, Mäkikallio K, Ojaniemi M, Hallman M, Rämet M. Expression of CPPED1 in human trophoblasts is associated with timing of term birth. J Cell Mol Med 2018; 22:968-981. [PMID: 29193784 PMCID: PMC5783879 DOI: 10.1111/jcmm.13402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Understanding of timing of human parturition is incomplete. Therefore, we carried out proteomic analyses of full-term placentas from uncomplicated pregnancies to identify protein signatures associated with the onset of spontaneous delivery. We found quantitative associations of 10 proteins with spontaneous term birth, evident either in the basal or in the chorionic plates or in both. Additional 18 proteins were associated according to the location within placenta indicating local variations in protein amounts. Calcineurin-like phosphoesterase domain-containing 1 (CPPED1), a phosphatase previously suggested dephosphorylating AKT1/PKB, was one of the identified proteins. qRT-PCR revealed the mRNA level of CPPED1 was higher in elective caesarean deliveries than in spontaneous births, while immunohistochemistry showed CPPED1 in cytotrophoblasts, syncytiotrophoblasts and extravillous trophoblasts. Noteworthy, phosphorylation status of AKT1 did not differ between placentas from elective caesarean and spontaneous deliveries. Additionally, analyses of samples from infants indicated that single-nucleotide polymorphisms rs11643593 and rs8048866 of CPPED1 were associated with duration of term pregnancy. Finally, post-transcriptional silencing of CPPED1 in cultured HTR8/SVneo cells by siRNAs affected gene expression in pathways associated with inflammation and blood vessel development. We postulate that functions regulated by CPPED1 in trophoblasts at choriodecidual interphase have a role in the induction of term labour, but it may be independent of AKT1.
Collapse
Affiliation(s)
- Antti M. Haapalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Minna K. Karjalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ravindra Daddali
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Steffen Ohlmeier
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Julia Anttonen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Tomi A. Määttä
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Annamari Salminen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mari Mahlman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ulrich Bergmann
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Kaarin Mäkikallio
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Obstetrics and GynecologyOulu University HospitalOuluFinland
- Department of Obstetrics and GynecologyTurku University Hospital and University of TurkuTurkuFinland
| | - Marja Ojaniemi
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
- BioMediTech Institute and Faculty of Medical and Life SciencesUniversity of TampereTampereFinland
| |
Collapse
|
27
|
The role of cellular senescence in ageing of the placenta. Placenta 2017; 52:139-145. [DOI: 10.1016/j.placenta.2017.01.116] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/25/2022]
|