1
|
Wáng YXJ. An explanation for the triphasic dependency of apparent diffusion coefficient (ADC) on T2 relaxation time: the multiple T2 compartments model. Quant Imaging Med Surg 2025; 15:3779-3791. [PMID: 40235750 PMCID: PMC11994528 DOI: 10.21037/qims-2025-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 04/17/2025]
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Trimble C, Sørland K, Wu C, Riel M, Bathen T, Elschot M, Cloos M. Incorporating Spatial and Spectral Saturation Modules Into MR Fingerprinting. NMR IN BIOMEDICINE 2025; 38:e70000. [PMID: 39865307 PMCID: PMC11771585 DOI: 10.1002/nbm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/11/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
In this work, we introduce spatial and chemical saturation options for artefact reduction in magnetic resonance fingerprinting (MRF) and assess their impact on T1 and T2 mapping accuracy. An existing radial MRF pulse sequence was modified to enable spatial and chemical saturation. Phantom experiments were performed to demonstrate flow artefact reduction and evaluate the accuracy of the T1 and T2 maps. As an in vivo demonstration, MRF of the prostate was performed on an asymptomatic volunteer using saturation modules to reduce flow-related artefacts. T1, T2 and B1 + maps obtained with and without saturation modules were compared. Application of spatial saturation in prostate MRF reduced streaking artefacts from the femoral vessels. When saturation is enabled T1 accuracy is preserved, and T2 accuracy remains acceptable up to approximately 100 ms. Chemical and spatial saturation can be incorporated into MRF sequences with limited impact on T1 accuracy. Further sequence optimisation may be needed to accurately estimate long T2 components. Spatial saturation modules have potential in prostate MRF applications as a means to reduce flow-related artefacts.
Collapse
Affiliation(s)
- Christopher G. Trimble
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Kaia I. Sørland
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
| | - Chia‐Yin Wu
- Centre for Advanced ImagingThe University of QueenslandSt LuciaQueenslandAustralia
- ARC Training Centre for Innovation on Biomedical Imaging Technology (CIBIT)The University of QueenslandSt LuciaQueenslandAustralia
- School of Electrical Engineering and Computer ScienceThe University of QueenslandSt LuciaQueenslandAustralia
| | - Max H. C. van Riel
- Computational Imaging Group for MR Diagnostics and Therapy, Department of RadiotherapyUMC UtrechtUtrechtThe Netherlands
| | - Tone F. Bathen
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Mattijs Elschot
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Martijn A. Cloos
- Centre for Advanced ImagingThe University of QueenslandSt LuciaQueenslandAustralia
- ARC Training Centre for Innovation on Biomedical Imaging Technology (CIBIT)The University of QueenslandSt LuciaQueenslandAustralia
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour12 Radboud UniversityNijmegenNetherlands
| |
Collapse
|
3
|
Kang Z, Margolis DJ, Tian Y, Li Q, Wang S, Wang L. Clinical-imaging metrics for the diagnosis of prostate cancer in PI-RADS 3 lesions. Urol Oncol 2024; 42:371.e1-371.e10. [PMID: 38969546 DOI: 10.1016/j.urolonc.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE To explore the feasibility and efficacy of clinical-imaging metrics in the diagnosis of prostate cancer (PCa) and clinically significant prostate cancer (csPCa) in prostate imaging-reporting and data system (PI-RADS) category 3 lesions. METHODS A retrospective analysis was conducted on lesions diagnosed as PI-RADS 3. They were categorized into benign, non-csPCa and csPCa groups. Apparent diffusion coefficient (ADC), T2-weighted imaging signal intensity (T2WISI), coefficient of variation of ADC and T2WISI, prostate-specific antigen density (PSAD), ADC density (ADCD), prostate-specific antigen lesion volume density (PSAVD) and ADC lesion volume density (ADCVD) were measured and calculated. Univariate and multivariate analyses were used to identify risk factors associated with PCa and csPCa. Receiver operating characteristic curve (ROC) and decision curves were utilized to assess the efficacy and net benefit of independent risk factors. RESULTS Among 202 patients, 133 had benign prostate disease, 25 non-csPCa and 44 csPCa. Age, PSA and lesion location showed no significant differences (P > 0.05) among the groups. T2WISI and coefficient of variation of ADC (ADCcv) were independent risk factors for PCa in PI-RADS 3 lesions, yielding an area under the curve (AUC) of 0.68. ADC was an independent risk factor for csPCa in PI-RADS 3 lesions, yielding an AUC of 0.65. Decision curve analysis showed net benefit for patients at certain probability thresholds. CONCLUSIONS T2WISI and ADCcv, along with ADC, respectively showed considerable promise in enhancing the diagnosis of PCa and csPCa in PI-RADS 3 lesions.
Collapse
Affiliation(s)
- Zhen Kang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Daniel J Margolis
- Department of Radiology, Weill Cornell Medicine/ New York Presbyterian, New York, NY, USA
| | - Ye Tian
- Department of Urology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Qiubai Li
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lee Y, Yoon S, Paek M, Han D, Choi MH, Park SH. Advanced MRI techniques in abdominal imaging. Abdom Radiol (NY) 2024; 49:3615-3636. [PMID: 38802629 DOI: 10.1007/s00261-024-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Magnetic resonance imaging (MRI) is a crucial modality for abdominal imaging evaluation of focal lesions and tissue properties. However, several obstacles, such as prolonged scan times, limitations in patients' breath-hold capacity, and contrast agent-associated artifacts, remain in abdominal MR images. Recent techniques, including parallel imaging, three-dimensional acquisition, compressed sensing, and deep learning, have been developed to reduce the scan time while ensuring acceptable image quality or to achieve higher resolution without extending the scan duration. Quantitative measurements using MRI techniques enable the noninvasive evaluation of specific materials. A comprehensive understanding of these advanced techniques is essential for accurate interpretation of MRI sequences. Herein, we therefore review advanced abdominal MRI techniques.
Collapse
Affiliation(s)
- Yoonhee Lee
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Sungjin Yoon
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | | | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Moon Hyung Choi
- Department of Radiology, Catholic University of Korea Eunpyeong St Mary's Hospital, Seoul, Republic of Korea
| | - So Hyun Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
5
|
Sørland KI, Trimble CG, Wu CY, Bathen TF, Elschot M, Cloos MA. Reducing femoral flow artefacts in radial magnetic resonance fingerprinting of the prostate using region-optimised virtual coils. NMR IN BIOMEDICINE 2024; 37:e5136. [PMID: 38514929 DOI: 10.1002/nbm.5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
High acceleration factors in radial magnetic resonance fingerprinting (MRF) of the prostate lead to strong streak-like artefacts from flow in the femoral blood vessels, possibly concealing important anatomical information. Region-optimised virtual (ROVir) coils is a beamforming-based framework to create virtual coils that maximise signal in a region of interest while minimising signal in a region of interference. In this study, the potential of removing femoral flow streak artefacts in prostate MRF using ROVir coils is demonstrated in silico and in vivo. The ROVir framework was applied to radial MRF k-space data in an automated pipeline designed to maximise prostate signal while minimising signal from the femoral vessels. The method was tested in 15 asymptomatic volunteers at 3 T. The presence of streaks was visually assessed and measurements of whole prostate T1, T2 and signal-to-noise ratio (SNR) with and without streak correction were examined. In addition, a purpose-built simulation framework in which blood flow through the femoral vessels can be turned on and off was used to quantitatively evaluate ROVir's ability to suppress streaks in radial prostate MRF. In vivo it was shown that removing selected ROVir coils visibly reduces streak-like artefacts from the femoral blood flow, without increasing the reconstruction time. On average, 80% of the prostate SNR was retained. A similar reduction of streaks was also observed in silico, while the quantitative accuracy of T1 and T2 mapping was retained. In conclusion, ROVir coils efficiently suppress streaking artefacts from blood flow in radial MRF of the prostate, thereby improving the visual clarity of the images, without significant sacrifices to acquisition time, reconstruction time and accuracy of quantitative values. This is expected to help enable T1 and T2 mapping of prostate cancer in clinically viable times, aiding differentiation between prostate cancer from noncancer and healthy prostate tissue.
Collapse
Affiliation(s)
- Kaia I Sørland
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christopher G Trimble
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hostpital, Trondheim, Norway
| | - Chia-Yin Wu
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation on Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, Queensland, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hostpital, Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hostpital, Trondheim, Norway
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation on Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Byun H, Han D, Chun HJ, Lee SW. Multiparametric quantification of T1 and T2 relaxation time of bone metastasis in comparison with red or fatty bone marrow using magnetic resonance fingerprinting. Skeletal Radiol 2024; 53:1071-1080. [PMID: 38041749 DOI: 10.1007/s00256-023-04521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVES To assess the T1 and T2 values of bone marrow lesions in spine and pelvis derived from magnetic resonance fingerprinting (MRF) and to evaluate the differences in values among bone metastasis, red marrow and fatty marrow. METHODS Sixty patients who underwent lumbar spine and pelvic MRI with magnetic resonance fingerprinting were retrospectively included. Among eligible patients, those with bone metastasis, benign red marrow deposition and normal fatty marrow were identified. Two radiologists independently measured the T1 and T2 values from metastatic bone lesions, fatty marrow, and red marrow deposition on three-dimensional-magnetic resonance fingerprinting. Intergroup comparison and interobserver agreement were analyzed. RESULTS T1 relaxation time was significantly higher in osteoblastic metastasis than in red marrow (1674.6 ± 436.3 vs 858.7 ± 319.5, p < .001). Intraclass correlation coefficients for T1 and T2 values were 0.96 (p < 0.001) and 0.83 (p < 0.001), respectively. T2 relaxation time of osteoblastic metastasis and red marrow deposition had no evidence of a difference (osteoblastic metastasis, 57.9 ± 25.0 vs red marrow, 58.0 ± 34.4, p = 0.45), as were the average T2 values of osteolytic metastasis and red marrow deposition (osteolytic metastasis, 45.3 ± 15.1 vs red marrow, 58.0 ± 34.4, p = 0.63). CONCLUSIONS We report the feasibility of three-dimensional-magnetic resonance fingerprinting based quantification of bone marrow to differentiate bone metastasis from red marrow. Simultaneous T1 and T2 quantification of metastasis and red marrow deposition was possible in spine and pelvis and showed significant different values with excellent inter-reader agreement. ADVANCE IN KNOWLEDGE T1 values from three-dimensional-magnetic resonance fingerprinting might be a useful quantifier for evaluating bone marrow lesions.
Collapse
Affiliation(s)
- Hokyun Byun
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil Ro, Eunpyeong-Gu, Seoul, Republic of Korea
| | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Ho Jong Chun
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, Republic of Korea.
| | - Sheen-Woo Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil Ro, Eunpyeong-Gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Choi MH, Lee YJ, Han D, Kim DH. Quantitative Analysis of Prostate MRI: Correlation between Contrast-Enhanced Magnetic Resonance Fingerprinting and Dynamic Contrast-Enhanced MRI Parameters. Curr Oncol 2023; 30:10299-10310. [PMID: 38132384 PMCID: PMC10743035 DOI: 10.3390/curroncol30120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
This research aimed to assess the relationship between contrast-enhanced (CE) magnetic resonance fingerprinting (MRF) values and dynamic contrast-enhanced (DCE) MRI parameters including (Ktrans, Kep, Ve, and iAUC). To evaluate the correlation between the MRF-derived values (T1 and T2 values, CE T1 and T2 values, T1 and T2 change) and DCE-MRI parameters and the differences in the parameters between prostate cancer and noncancer lesions in 68 patients, two radiologists independently drew regions-of-interest (ROIs) at the focal prostate lesions. Prostate cancer was identified in 75% (51/68) of patients. The CE T2 value was significantly lower in prostate cancer than in noncancer lesions in the peripheral zone and transition zone. Ktrans, Kep, and iAUC were significantly higher in prostate cancer than noncancer lesions in the peripheral zone (p < 0.05), but not in the transition zone. The CE T1 value was significantly correlated with Ktrans, Ve, and iAUC in prostate cancer, and the CE T2 value was correlated to Ve in noncancer. Some CE MRF values are different between prostate cancer and noncancer tissues and correlate with DCE-MRI parameters. Prostate cancer and noncancer tissues may have different characteristics regarding contrast enhancement.
Collapse
Affiliation(s)
- Moon-Hyung Choi
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea;
| | - Young-Joon Lee
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea;
| | - Dongyeob Han
- Siemens Healthineers Ltd., Seoul 06620, Republic of Korea;
| | - Dong-Hyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea;
| |
Collapse
|
8
|
Wáng YXJ, Ma FZ. A tri-phasic relationship between T2 relaxation time and magnetic resonance imaging (MRI)-derived apparent diffusion coefficient (ADC). Quant Imaging Med Surg 2023; 13:8873-8880. [PMID: 38106328 PMCID: PMC10722059 DOI: 10.21037/qims-23-1342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Yi Xiang J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fu-Zhao Ma
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Gaur S, Panda A, Fajardo JE, Hamilton J, Jiang Y, Gulani V. Magnetic Resonance Fingerprinting: A Review of Clinical Applications. Invest Radiol 2023; 58:561-577. [PMID: 37026802 PMCID: PMC10330487 DOI: 10.1097/rli.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Magnetic resonance fingerprinting (MRF) is an approach to quantitative magnetic resonance imaging that allows for efficient simultaneous measurements of multiple tissue properties, which are then used to create accurate and reproducible quantitative maps of these properties. As the technique has gained popularity, the extent of preclinical and clinical applications has vastly increased. The goal of this review is to provide an overview of currently investigated preclinical and clinical applications of MRF, as well as future directions. Topics covered include MRF in neuroimaging, neurovascular, prostate, liver, kidney, breast, abdominal quantitative imaging, cardiac, and musculoskeletal applications.
Collapse
Affiliation(s)
- Sonia Gaur
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Ananya Panda
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Jesse Hamilton
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Yun Jiang
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Vikas Gulani
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
10
|
de Oliveira Correia ET, Qiao PL, Griswold MA, Chen Y, Bittencourt LK. Magnetic resonance fingerprinting based comprehensive quantification of T1 and T2 values of the background prostatic peripheral zone: Correlation with clinical and demographic features. Eur J Radiol 2023; 164:110883. [PMID: 37209463 DOI: 10.1016/j.ejrad.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE To quantify and assess the distribution of MR fingerprinting (MRF)-derived T1 and T2 values of the whole prostatic peripheral zone (PZ), and perform subgroup analyses according to clinical and demographic features. METHOD One hundred and twenty-four patients with prostate MR exams and MRF-based T1 and T2 maps of the prostatic apex, mid gland, and base were identified from our database and included. Regions of interest encompassing the right and left lobes of the PZ were drawn for each axial slice on the T2 map and copied to the T1 map. Clinical data were obtained from medical records. Kruskal-Wallis test was used for assessing differences between subgroups and the Spearman coefficient was used for assessing any correlations. RESULTS Mean T1 and T2 values were 1941 and 88 ms, respectively, for the whole-gland, 1884 and 83 ms for the apex, 1974 and 92 ms for the mid-gland, 1966 and 88 ms for the base. T1 values were weakly negatively correlated with PSA values, while T1 and T2 values were weakly positively correlated with prostate weight and moderately positively correlated with PZ width. Finally, patients with PI-RADS 1 scores had higher T1 and T2 values of the whole PZ, compared with those with scores 2-5. CONCLUSION Mean T1 and T2 values of the background PZ of the whole gland were 1941 ± 313 and 88 ± 39 ms, respectively. Among clinical and demographic factors, there was a significant positive correlation between T1 and T2 values and PZ width.
Collapse
Affiliation(s)
| | - Peter L Qiao
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Mark A Griswold
- University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Yong Chen
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Leonardo Kayat Bittencourt
- University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Vaupel P, Piazena H. Strong correlation between specific heat capacity and water content in human tissues suggests preferred heat deposition in malignant tumors upon electromagnetic irradiation. Int J Hyperthermia 2022; 39:987-997. [DOI: 10.1080/02656736.2022.2067596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut Piazena
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporative Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Lo WC, Panda A, Jiang Y, Ahad J, Gulani V, Seiberlich N. MR fingerprinting of the prostate. MAGMA (NEW YORK, N.Y.) 2022; 35:557-571. [PMID: 35419668 PMCID: PMC10288492 DOI: 10.1007/s10334-022-01012-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/03/2023]
Abstract
Multiparametric magnetic resonance imaging (mpMRI) has been adopted as the key tool for detection, localization, characterization, and risk stratification of patients suspected to have prostate cancer. Despite advantages over systematic biopsy, the interpretation of prostate mpMRI has limitations including a steep learning curve, leading to considerable interobserver variation. There is growing interest in clinical translation of quantitative imaging techniques for more objective lesion assessment. However, traditional mapping techniques are slow, precluding their use in the clinic. Magnetic resonance fingerprinting (MRF) is an efficient approach for quantitative maps of multiple tissue properties simultaneously. The T1 and T2 values obtained with MRF have been validated with phantom studies as well as in normal volunteers and patients. Studies have shown that MRF-derived T1 and T2 along with ADC values are all significant independent predictors in the differentiation between normal prostate tissue and prostate cancer, and hold promise in differentiating low and intermediate/high-grade cancers. This review seeks to introduce the basics of the prostate MRF technique, discuss the potential applications of prostate MRF for the characterization of prostate cancer, and describes ongoing areas of research.
Collapse
Affiliation(s)
- Wei-Ching Lo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Siemens Medical Solutions USA, Boston, Massachusetts, USA
| | - Ananya Panda
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Yun Jiang
- Department of Radiology, University of Michigan, University of Michigan Health System, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - James Ahad
- Case Western Reserve University, Cleveland, OH, USA
| | - Vikas Gulani
- Department of Radiology, University of Michigan, University of Michigan Health System, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, University of Michigan Health System, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
13
|
Lee YS, Choi MH, Lee YJ, Han D, Kim DH. Magnetic resonance fingerprinting in prostate cancer before and after contrast enhancement. Br J Radiol 2022; 95:20210479. [PMID: 34415785 PMCID: PMC8978224 DOI: 10.1259/bjr.20210479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To assess the apparent diffusion coefficient (ADC) values and the T1 and T2 values derived from nonenhanced (NE) and contrast-enhanced (CE) magnetic resonance fingerprinting (MRF) in the prostate gland and to evaluate differences in values among prostate cancer, the normal peripheral zone (PZ) and the normal transition zone (TZ). METHODS Fifty-seven patients (median age, 73 years; range, 48-86) with prostate cancer who underwent multiparametric MRI including NE and CE MRF were included in this study. T1 and T2 values were extracted from NE and CE MRF, respectively. Five quantitative values (the ADC, NE T1, NE T2, CE T1 and CE T2 values) were measured in three areas: prostate cancer, PZ and TZ. We compared the values among the three areas and evaluated the differences between NE MRF and CE MRF values. RESULTS ADC values and MRF-derived values were significantly higher in PZ than prostate cancer or TZ (p < 0.001). TZ had a significantly lower CE T1 but significantly higher values of the other variables than prostate cancer (p < 0.001). The T1 values in all three areas and the T2 values in prostate cancer and TZ were significantly lower on CE MRF than on NE MRF (p < 0.001). CONCLUSIONS Quantitative analysis of NE and CE MRI can be conducted by using the MRF technique. The ADC value and the T1 and T2 values from CE MRF and NE MRF were found to be significantly different between prostate cancer and normal prostate tissue. ADVANCES IN KNOWLEDGE The T1 and T2 values from contrast-enhanced MR fingerprinting are significantly different between prostate cancer and normal prostate tissue.
Collapse
Affiliation(s)
- Young Sub Lee
- Department of Hospital Pathology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Joon Lee
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dongyeob Han
- Siemens Healthineers Ltd., Seoul, Republic of Korea
| | - Dong-Hyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
14
|
Choi IY, Yeom SK. Editorial for "Value of T2 Mapping MRI for Prostate Cancer Detection and Classification". J Magn Reson Imaging 2022; 56:423-424. [PMID: 35014109 DOI: 10.1002/jmri.28058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- In Young Choi
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan, Republic of Korea
| | - Suk Keu Yeom
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan, Republic of Korea
| |
Collapse
|
15
|
Choi MH, Lee SW, Kim HG, Kim JY, Oh SW, Han D, Kim DH. 3D MR fingerprinting (MRF) for simultaneous T1 and T2 quantification of the bone metastasis: Initial validation in prostate cancer patients. Eur J Radiol 2021; 144:109990. [PMID: 34638082 DOI: 10.1016/j.ejrad.2021.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the feasibility of using 3-dimensional MRF for bone marrow evaluation in the field of view of prostate MRI for T1 and T2 quantification of prostate cancer bone metastases, as well as comparing it to the ADC value. METHODS In this retrospective study, 30 prostate MRIs were included: 14 cases with prostate cancer bone metastasis and 16 cases without prostate cancer (control). MRF was obtained twice before (nonenhanced [NE] MRF) and after contrast injection (contrast-enhanced [CE] MRF), and T1 and T2 maps were generated from each MRF. Two radiologists independently drew regions of interest (ROIs) on the MRF maps and the ADC maps. Mann-Whitney U tests and the area under the receiver operating characteristic curve (AUROC) evaluated the two-reader means of T1, T2 and ADC values between bone metastasis and normal bone. RESULTS There were 83 ROIs, including 39 bone metastases and 44 normal bone. The two-reader average ADC, NE T2 and CE T2 values were significantly lower and NE T1 and CE T1 values were significantly higher in metastatic bone compared with normal bone (P < 0.001). The AUROC of the ADC was lowest (0.685), which was significantly lower than those of NE T1 (1.0, P = 0.001), NE T2 (0.932, P = 0.004), and CE T2 (0.876, P = 0.031). CONCLUSION MRF to assess the pelvic bone during a prostate gland evaluation provides a reliable parametric map for skeletal work-up. With higher diagnostic performance than the ADC value, NE MRF is a potential alternative for quantifying bone marrow metastases in prostate cancer patients.
Collapse
Affiliation(s)
- Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheen-Woo Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hyun Gi Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jee Young Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se Won Oh
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dongyeob Han
- Siemens Healthineers Ltd., Seoul, Republic of Korea
| | - Dong-Hyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Ding H, Velasco C, Ye H, Lindner T, Grech-Sollars M, O’Callaghan J, Hiley C, Chouhan MD, Niendorf T, Koh DM, Prieto C, Adeleke S. Current Applications and Future Development of Magnetic Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer. Cancers (Basel) 2021; 13:4742. [PMID: 34638229 PMCID: PMC8507535 DOI: 10.3390/cancers13194742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring, and management in common clinical settings. However, inadequate quantitative analyses in MRI continue to limit its full potential and these often have an impact on clinicians' judgments. Magnetic resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative parameters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment, technical difficulties such as undesirable processing time or lack of motion robustness are limiting further implementations of MRF in clinical oncology. This review summarises the latest findings and technology developments for the use of MRF in cancer management and suggests possible future implications of MRF in characterizing tumour heterogeneity and response assessment.
Collapse
Affiliation(s)
- Hao Ding
- Imperial College School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Huihui Ye
- State Key Laboratory of Modern Optical instrumentation, Zhejiang University, Hangzhou 310027, China;
| | - Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| | - Matthew Grech-Sollars
- Department of Medical Physics, Royal Surrey NHS Foundation Trust, Surrey GU2 7XX, UK;
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - James O’Callaghan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Crispin Hiley
- Cancer Research UK, Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK;
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Manil D. Chouhan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck, Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SM2 5NG, UK;
- Department of Radiology, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Sola Adeleke
- High Dimensional Neurology Group, Queen’s Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Oncology, Guy’s & St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|