1
|
Ghadin N, Yusof NAM, Syarul Nataqain B, Raston NHA, Low CF. Selection and characterization of ssDNA aptamer targeting Macrobrachium rosenbergii nodavirus capsid protein: A potential capture agent in gold-nanoparticle-based aptasensor for viral protein detection. JOURNAL OF FISH DISEASES 2024; 47:e13892. [PMID: 38014615 DOI: 10.1111/jfd.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
The giant freshwater prawn holds a significant position as a valuable crustacean species cultivated in the aquaculture industry, particularly well-known and demanded among the Southeast Asian countries. Aquaculture production of this species has been impacted by Macrobrachium rosenbergii nodavirus (MrNV) infection, which particularly affects the larvae and post-larvae stages of the prawn. The infection has been recorded to cause mortality rates of up to 100% among the affected prawns. A simple, fast, and easy to deploy on-site detection or diagnostic method is crucial for early detection of MrNV to control the disease outbreak. In the present study, novel single-stranded DNA aptamers targeting the MrNV capsid protein were identified using the systematic evolution of ligands by exponential enrichment (SELEX) approach. The aptamer was then conjugated with the citrate-capped gold nanoparticles (AuNPs), and the sensitivity of this AuNP-based aptasensor for the detection of MrNV capsid protein was evaluated. Findings revealed that the aptamer candidate, APT-MrNV-CP-1 was enriched throughout the SELEX cycle 4, 9, and 12 with the sequence percentage of 1.76%, 9.09%, and 12.42%, respectively. The conjugation of APT-MrNV-CP-1 with citrate-capped AuNPs exhibited the highest sensitivity in detecting the MrNV capsid protein, where the presence of 62.5 nM of the viral capsid protein led to a significant agglomeration of the AuNPs. This study demonstrated the practicality of an AuNP-based aptasensor for disease diagnosis, particularly for detecting MrNV infection in giant freshwater prawns.
Collapse
Affiliation(s)
- Norazli Ghadin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nur Afiqah Md Yusof
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Gangnonngiw W, Bunnontae M, Phiwsaiya K, Senapin S, Dhar AK. In experimental challenge with infectious clones of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV), MrNV alone can cause mortality in freshwater prawn (Macrobrachium rosenbergii). Virology 2019; 540:30-37. [PMID: 31734381 DOI: 10.1016/j.virol.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
To overcome the lack of immortal shrimp cell lines for shrimp viral research, we constructed and tested DNA infectious clones of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) often found together in freshwater prawn (M. rosenbergii) exhibiting white tail disease (WTD). Full-length cDNAs of MrNV and XSV genomic RNA were individually inserted into the baculovirus pFastBacDUAL shuttle vector. Individual Sf9 (insect cell line) transfection resulted in production of RNA (RT-PCR) and capsid proteins (immunofluorescence) for both viruses. Presence of respective virions was confirmed by density gradient purification followed by RT-PCR and transmission electron microscopy. Infectivity was by tested in immersion-challenge tests with M. rosenbergii post-larvae (PL) using both semi-purified viruses, individually or combined, and confirmed by histological analysis (morphology and immunofluorescence) and quantitative RT-PCR. Mortality accompanied by WTD lesions occurred with MrNV alone or in combination with XSV but not with XSV alone, despite its replication.
Collapse
Affiliation(s)
- Warachin Gangnonngiw
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong 1, Klong Luang, Pratum Thani, 12120, Thailand.
| | - Malinee Bunnontae
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Kornsunee Phiwsaiya
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong 1, Klong Luang, Pratum Thani, 12120, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong 1, Klong Luang, Pratum Thani, 12120, Thailand
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, University of Arizona, Building 90, 1117 E. Lowell St., Tucson, AZ, 85718, USA
| |
Collapse
|
3
|
Sirikharin R, Utairungsee T, Srisala J, Roytrakul S, Thitamadee S, Sritunyalucksana K. Cell surface transglutaminase required for nodavirus entry into freshwater prawn hemocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 89:108-116. [PMID: 30928665 DOI: 10.1016/j.fsi.2019.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/06/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
To identify molecules involved in Macrobrachium rosenbergii nodavirus (MrNV) entry into hemocytes of the giant freshwater prawn M. rosenbergii, biotinylated prawn hemocyte membrane proteins were prepared, purified and separated by SDS-PAGE. The proteins were blotted on the nitrocellulose membrane before incubation with the MrNV capsid protein (MrNV-CP) by a VOPBA technique. Subsequent mass spectrometry and analysis of immune-reactive bands represent putative binding partners including transglutaminase (TG), actin, α2-macroglobulin, α1-tubulin, F1-ATP synthase β-subunit and a currently uncharacterized protein. The sequence of TG has been characterized and found 5 amino acids differences to a previously reported MrTG (ADX99580), mainly at its N-terminal part and thus, we named it MrTGII (KM008611). Recombinant MrTGII was prepared to produce a polyclonal antibody against it, which was successfully revealed the presence of MrTGII (100 kDa) in prawn hemocyte lysates. Using the pentylamine-biotin incorporation assay, an acyl transfer reaction was observed when hemocyte lysates were added to solutions containing MrNV-CP, suggesting that hemocyte MrTG could use MrNV-CP as the substrate. The expression levels of MrTGII were changed during the course of MrNV infection. By using immunostaining technique, location of MrTGII on the hemocyte surface was confirmed. Specific interaction between MrTGII with MrNV-CP in a dose-dependent manner was confirmed by in vitro ELISA assay. The highest binding activity of MrNV-CP was found with the N-terminal portion of the protein. In vitro neutralization using anti-MrTGII antibody resulted in inhibition of MrNV attachment to the hemocyte surface, accompanied by a dramatic reduction in viral replication. This is the first time that crustacean TG has been shown to be involved in viral entry, in addition to its roles in blood clotting and haematopoiesis.
Collapse
Affiliation(s)
- Ratchanok Sirikharin
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Tanatchaporn Utairungsee
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Jiraporn Srisala
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genomic Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Siripong Thitamadee
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Yong CY, Yeap SK, Omar AR, Tan WS. Advances in the study of nodavirus. PeerJ 2017; 5:e3841. [PMID: 28970971 PMCID: PMC5622607 DOI: 10.7717/peerj.3841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Somrit M, Watthammawut A, Chotwiwatthanakun C, Weerachatyanukul W. The key molecular events during Macrobrachium rosenbergii nodavirus (MrNV) infection and replication in Sf9 insect cells. Virus Res 2016; 223:1-9. [PMID: 27327530 PMCID: PMC7126520 DOI: 10.1016/j.virusres.2016.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023]
Abstract
The successful infection and replication of MrNV in Sf9 cells should facilitate long-term and in-depth investigation of MrNV infection pathway. MrNV internalization favors caveolin (CAV)-mediated pathway which can be halted and reactivated by genistein and okadaic acid. Replication of MrNV (at 72 h p.i.) resulted in cytopathic effects (CPE) and multiplication of virion number in the infected cells.
In this study we demonstrated that Macrobrachium rosenbergii nodavirus (MrNV) was able to internalize and replicate in Sf9 insect cells, with levels of infection altered by substances affecting the caveolin-(CAV) mediated endocytosis pathway. The use of Sf9 cells for efficient MrNV replication and propagation was demonstrated by confocal microscopy and PCR amplification, through which early viral binding and internalization were initially detectable at 30 min post-infection; whereas at 72 h, the distinguishable sign of late-MrNV infection was observable as the gradual accumulation of a cytopathic effect (CPE) in the cells, ultimately resulting in cellular disruption. Moreover, during the early period of infection, the MrNV signals were highly co-localized with CAV1 signals of the CAV-mediated endocytosis pathway. The use of genistein as an inhibitor of the CAV-mediated endocytosis pathway significantly reduced MrNV and CAV1 co-localization, and also reduced the levels of MrNV infection in Sf9 cells as shown by PCR and ELISA. Moreover, the addition of the pathway agonist okadaic acid not only recovered but also augmented both the levels of MrNV co-localization with CAV1 and of Sf9 infection in the presence of genistein inhibition; therefore demonstrating that MrNV infection in Sf9 cells was associated with the CAV-mediated endocytosis pathway machinery.
Collapse
Affiliation(s)
- Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Atthaboon Watthammawut
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Wang CS, Chang CY, Wen CM. Developing immunological methods for detecting Macrobrachium rosenbergii nodavirus and extra small virus using a recombinant protein preparation. JOURNAL OF FISH DISEASES 2016; 39:715-727. [PMID: 26263892 DOI: 10.1111/jfd.12404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) have been identified as the causative agents for white tail disease (WTD) of M. rosenbergii. In this study, the gene sequences encoding MrNV and XSV capsid proteins were separately ligated into the pGEX-4T-3 expression vector and transformed into Escherichia coli. After induction, glutathione-S-transferase (GST)-tagged MrNV and XSV fusion proteins were obtained with molecular masses of 68 and 43 kDa, respectively. Specific polyclonal antibodies for MrNV and XSV against viral recombinant proteins and infected prawn tissues were verified using Western blotting. According to immunodot blot assay results, the detection sensitivities of antibodies were approximately 5 ng μL(-1) for both recombinant proteins GST-MrNV and GST-XSV. In additional, MrNV and XSV were detected at dilution levels of 1:2560 and 1:640 in the infected prawn tissues, respectively. No cross-reactions with white spot syndrome virus or grouper nervous necrosis virus were observed using immunodot blot assays. MrNV and XSV in infected muscle tissues were detected using immunohistochemistry. Although the detection limit of the immunodot blot assay was lower than that of nested reverse transcription polymerase chain reaction, these polyclonal antibodies can be useful for confirming MrNV and XSV infections in field tests.
Collapse
Affiliation(s)
- C-S Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - C-Y Chang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - C-M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Youngcharoen S, Senapin S, Lertwimol T, Longyant S, Sithigorngul P, Flegel TW, Chaivisuthangkura P. Interaction study of a novel Macrobrachium rosenbergii effector caspase with B2 and capsid proteins of M. rosenbergii nodavirus reveals their roles in apoptosis. FISH & SHELLFISH IMMUNOLOGY 2015; 45:534-542. [PMID: 25982399 DOI: 10.1016/j.fsi.2015.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Apoptosis is an essential immune response to protect invertebrates from virus infected cells. In shrimp, virus infection has been reported to induce apoptosis. Macrobrachium rosenbergii (Mr) was considered to be a disease-resistant host when compared to penaeid shrimps. Caspase-3 was classified as an executioner caspase which played a key role in virus-induced apoptosis. In this study, an effector caspase gene of M. rosenbergii (Mrcasp) was cloned and characterized. The open reading frame (ORF) of Mrcasp was 957 nucleotide encoding 318 amino acid with a deduced molecular mass of 35.87 kDa. RT-PCR analysis showed the presence of Mrcasp in all examined tissues. The phylogenetic tree indicated that Mrcasp was closely related with caspase 3 of shrimp. The functions of the Mrcasp, B2 and capsid proteins of M. rosenbergii nodavirus (MrNV) were assayed in Sf-9 cells. The results showed that Mrcasp induce apoptotic morphology cells; however, capsid protein of MrNV could inhibit apoptotic cells whereas B2 could neither induce nor inhibit apoptotic cells by DAPI staining. The protein interaction between Mrcasp and viral MrNV structure revealed that Mrcasp did not bind to B2 or capsid protein whereas B2 and capsid proteins could bind directly to each other. This study reported a novel sequence of a full-length Mrcasp and its functional studies indicated that Mrcasp could induce apoptotic cells. Our data is the first report demonstrating the direct protein-protein interaction between capsid protein and B2 protein of MrNV.
Collapse
Affiliation(s)
- Supak Youngcharoen
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand.
| | - Tareerat Lertwimol
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Timothy W Flegel
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| |
Collapse
|
8
|
Franz CJ, Renshaw H, Frezal L, Jiang Y, Félix MA, Wang D. Orsay, Santeuil and Le Blanc viruses primarily infect intestinal cells in Caenorhabditis nematodes. Virology 2013; 448:255-64. [PMID: 24314656 DOI: 10.1016/j.virol.2013.09.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022]
Abstract
The discoveries of Orsay, Santeuil and Le Blanc viruses, three viruses infecting either Caenorhabditis elegans or its relative Caenorhabditis briggsae, enable the study of virus-host interactions using natural pathogens of these two well-established model organisms. We characterized the tissue tropism of infection in Caenorhabditis nematodes by these viruses. Using immunofluorescence assays targeting proteins from each of the viruses, and in situ hybridization, we demonstrate viral proteins and RNAs localize to intestinal cells in larval stage Caenorhabditis nematodes. Viral proteins were detected in one to six of the 20 intestinal cells present in Caenorhabditis nematodes. In Orsay virus-infected C. elegans, viral proteins were detected as early as 6h post-infection. The RNA-dependent RNA polymerase and capsid proteins of Orsay virus exhibited different subcellular localization patterns. Collectively, these observations provide the first experimental insights into viral protein expression in any nematode host, and broaden our understanding of viral infection in Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Carl J Franz
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
9
|
Longyant S, Senapin S, Sanont S, Wangman P, Chaivisuthangkura P, Rukpratanporn S, Sithigorngul P. Monoclonal antibodies against extra small virus show that it co-localizes with Macrobrachium rosenbergii nodavirus. DISEASES OF AQUATIC ORGANISMS 2012; 99:197-205. [PMID: 22832718 DOI: 10.3354/dao02482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The capsid protein (CP) gene of extra small virus (XSV) expressed in Escherichia coli as a 42 kDa glutathione S-transferase (GST)-fusion protein (GST-XCP) or a 20 kDa His6-fusion protein (His6-XCP) were purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), combined, and used to immunize Swiss mice to produce monoclonal antibodies (MAbs). Using dot blot, Western blot, and immunohistochemistry (IHC) methods, 4 MAbs specific to the XSV CP detected XSV in the freshwater prawn Macrobrachium rosenbergii without cross-reaction to host proteins or to proteins of Macrobrachium rosenbergii nodavirus (MrNV) or 5 of the most pathogenic viruses of penaeid shrimp. In dot blots, the combined MAbs could detect down to ~10 to 20 fmol µl-1 of purified GST-XCP protein, which was somewhat more sensitive compared to any single MAb. Used in conjunction with an MrNV-specific MAb, white tail disease (WTD) was diagnosed more effectively. However, the sensitivity at which the combined 4 MAbs detected XSV CP was 1000-fold lower than XSV RNA detected by RT-PCR. IHC analysis of M. rosenbergii tissue sections using the MAbs showed XSV infection to co-localize at variable loads with MrNV infection in heart and muscle cells as well as cells of connective tissues in the hepatopancreas. Since XSV histopathology remained prominent in tissues of some prawns in which MAb reactivity for MrNV was low compared to MAb reactivity for XSV, XSV might play some role in WTD severity.
Collapse
Affiliation(s)
- Siwaporn Longyant
- Department of Biology, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | | | | | | | | | |
Collapse
|