1
|
Clouthier S, Rosani U, Khan A, Ding Q, Emmenegger E, Wang Z, Nalpathamkalam T, Thiruvahindrapuram B. Genomic and Epidemiological Investigations Reveal Chromosomal Integration of the Acipenserid Herpesvirus 3 Genome in Lake Sturgeon Acipenser fulvescens. Viruses 2025; 17:534. [PMID: 40284977 PMCID: PMC12031113 DOI: 10.3390/v17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
DNA sequence from a new alloherpesvirus named acipenserid herpesvirus 3 (AciHV-3) was found in sturgeon species that are vulnerable to decline globally. A study was undertaken to develop a better understanding of the virus genome and to develop diagnostic tools to support an epidemiological investigation. A 184,426 bp genome was assembled from PacBio HiFi sequences generated with DNA from a Lake Sturgeon Acipenser fulvescens gonad cell line. The AciHV-3 genome was contiguous with host chromosomal DNA and was structured with telomere-like terminal direct repeat regions, five internal direct repeat regions and a U region that included intact open reading frames encoding alloherpesvirus core proteins. Diagnostic testing conducted with a newly developed and analytically validated qPCR assay established the ubiquitous presence and high titer of AciHV-3 DNA in somatic and germline tissues from wild Lake Sturgeon in the Hudson Bay drainage basin. Phylogenetic reconstructions confirm that the monophyletic AciHV-3 lineage shares a common ancestor with AciHV-1 and that AciHV-3 taxa cluster according to their sturgeon host. The same genotype of AciHV-3 is found in disjunctive Lake Sturgeon populations within and among drainage basins. The results support the hypotheses that AciHV-3 has established latency through germline chromosomal integration, is vertically transmitted via a Mendelian pattern of inheritance, is evolving in a manner consistent with a replication competent virus and has co-evolved with its host reaching genetic fixation in Lake Sturgeon populations in central Canada.
Collapse
Affiliation(s)
- Sharon Clouthier
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padua, Italy;
| | - Arfa Khan
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Qiuwen Ding
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Eveline Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA;
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| |
Collapse
|
2
|
Costa VA, Holmes EC. Diversity, evolution, and emergence of fish viruses. J Virol 2024; 98:e0011824. [PMID: 38785422 PMCID: PMC11237817 DOI: 10.1128/jvi.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Clouthier S, Tomczyk M, Schroeder T, Klassen C, Dufresne A, Emmenegger E, Nalpathamkalam T, Wang Z, Thiruvahindrapuram B. A New Sturgeon Herpesvirus from Juvenile Lake Sturgeon Acipenser fulvescens Displaying Epithelial Skin Lesions. Pathogens 2023; 12:1115. [PMID: 37764923 PMCID: PMC10537993 DOI: 10.3390/pathogens12091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Herpesvirus infections of sturgeon pose a potential threat to sturgeon culture efforts worldwide. A new epitheliotropic herpesvirus named Acipenser herpesvirus 3 (AciHV-3) was detected in hatchery-reared Lake Sturgeon Acipenser fulvescens displaying skin lesions in central Canada. The growths were discovered in the fall, reached average prevalence levels of 0.2-40% and eventually regressed. No unusual mortality was observed. The cellular changes within the lesions included epithelial hyperplasia and were reminiscent of other herpesvirus infections. The virus was not evident in lesions examined by electron microscopy. Skin tissue homogenates from symptomatic sturgeon produced atypical cytopathic effects on a primary Lake Sturgeon cell line, and next-generation sequence analysis of the DNA samples revealed the presence of an alloherpesvirus. A new genotyping PCR assay targeting the major capsid protein sequence detected AciHV-3 in symptomatic Lake Sturgeon as well as other apparently healthy sturgeon species. Bayesian inference of phylogeny reconstructed with a concatenation of five alloherpesvirus core proteins revealed a new Alloherpesviridae lineage isomorphic with a new genus. The presence of AciHV-3 homologs in cell lines and sturgeon sequence datasets, low sequence divergence among these homologs and branching patterns within the genotyping phylogeny provide preliminary evidence of an endogenous virus lifestyle established in an ancestral sturgeon.
Collapse
Affiliation(s)
- Sharon Clouthier
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Marek Tomczyk
- Manitoba Agriculture & Resource Development Veterinary Diagnostic Services, 545 University Crescent, Winnipeg, MB R3T 5S6, Canada;
| | - Tamara Schroeder
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Cheryl Klassen
- Manitoba Hydro, 360 Portage Ave, Winnipeg, MB R3C 0G8, Canada;
| | - André Dufresne
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada;
| | - Eveline Emmenegger
- Western Fisheries Research Center, U.S. Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| |
Collapse
|
4
|
Harding EF, Russo AG, Yan GJH, Mercer LK, White PA. Revealing the uncharacterised diversity of amphibian and reptile viruses. ISME COMMUNICATIONS 2022; 2:95. [PMID: 37938670 PMCID: PMC9723728 DOI: 10.1038/s43705-022-00180-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 06/29/2023]
Abstract
Amphibians and non-avian reptiles represent a significant proportion of terrestrial vertebrates, however knowledge of their viruses is not proportional to their abundance. Many amphibians and reptiles have strict habitual environments and localised populations and are vulnerable to viral outbreaks and potential elimination as a result. We sought to identify viruses that were hidden in amphibian and reptile metatranscriptomic data by screening 235 RNA-sequencing datasets from a 122 species covering 25 countries. We identified 26 novel viruses and eight previously characterised viruses from fifteen different viral families. Twenty-five viruses had RNA genomes with identity to Arteriviridae, Tobaniviridae, Hantaviridae, Rhabdoviridae, Astroviridae, Arenaviridae, Hepeviridae, Picornaviridae, Orthomyxoviridae, Reoviridae, Flaviviridae and Caliciviridae. In addition to RNA viruses, we also screened datasets for DNA viral transcripts, which are commonly excluded from transcriptomic analysis. We identified ten DNA viruses with identity to Papillomaviridae, Parvoviridae, Circoviridae and Adomaviridae. With the addition of these viruses, we expand the global amphibian and reptile virome and identify new potentially pathogenic viruses that could challenge populations. We speculate that amphibian viruses often have simpler genomes than those in amniotes, as in the case of the Secondpapillomavirinae and Orthomyxoviridae viruses identified in this study. In addition, we find evidence of inter-family recombination in RNA viruses, and we also identify new members of the recombinant Adomaviridae family. Overall, we provide insights into the uncharacterised diversity of amphibian and reptile viruses with the aim of improving population management, treatment and conservation into the future.
Collapse
Affiliation(s)
- Emma F Harding
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Alice G Russo
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Grace J H Yan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Lewis K Mercer
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
5
|
Walker L, Subramaniam K, Viadanna PHO, Vann JA, Marcquenski S, Godard D, Kieran E, Frasca S, Popov VL, Kerr K, Davison AJ, Waltzek TB. Characterization of an alloherpesvirus from wild lake sturgeon Acipenser fulvescens in Wisconsin (USA). DISEASES OF AQUATIC ORGANISMS 2022; 149:83-96. [PMID: 35686452 DOI: 10.3354/dao03661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the spring of 2017, 2 adult lake sturgeon (LS) Acipenser fulvescens captured from the Wolf River, Wisconsin (USA), presented with multiple cutaneous plaques that, upon microscopic examination, indicated proliferative epidermitis. Ultrastructural examination of affected keratinocytes revealed particles in the nucleus having a morphology typical of herpesviruses. A degenerate PCR assay targeting the DNA polymerase catalytic subunit (pol) gene of large double-stranded DNA viruses generated amplicons of the anticipated size from skin samples, and sequences of amplicons confirmed the presence of a novel alloherpesvirus (lake sturgeon herpesvirus, LSHV) related to acipenserid herpesvirus 1 (AciHV1). The complete genome (202660 bp) of this virus was sequenced using a MiSeq System, and phylogenetic analyses substantiated the close relationship to AciHV1. A PCR assay targeting the LSHV DNA packaging terminase subunit 1 (ter1) gene demonstrated the presence of the virus in 39/42 skin lesion samples collected from wild LS captured in 2017-2019 and 2021 in 4/4 rivers in Wisconsin. Future efforts to isolate LSHV in cell culture would facilitate challenge studies to determine the disease potential of the virus.
Collapse
Affiliation(s)
- Logan Walker
- Fisheries and Aquatic Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Perry BJ, Darestani MM, Ara MG, Hoste A, Jandt JM, Dutoit L, Holmes EC, Ingram T, Geoghegan JL. Viromes of Freshwater Fish with Lacustrine and Diadromous Life Histories Differ in Composition. Viruses 2022; 14:257. [PMID: 35215850 PMCID: PMC8878276 DOI: 10.3390/v14020257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Viruses that infect fish are understudied, yet they provide important evolutionary context to the viruses that infect terrestrial vertebrates. We surveyed gill tissue meta-transcriptomes collected from two species of native freshwater fish from Aotearoa New Zealand-Retropinna retropinna and Gobiomorphus cotidianus. A total of 64 fish were used for gill tissue meta-transcriptomic sequencing, from populations with contrasting life histories-landlocked (i.e., lacustrine) and diadromous-on the South Island and Chatham Islands. We observed that both viral richness and taxonomic diversity were significantly associated with life history and host species, with lacustrine R. retropinna characterised by higher viral alpha diversity than diadromous R. retropinna. Additionally, we observed transcripts of fish viruses from 12 vertebrate host-associated virus families, and phylogenetically placed eight novel RNA viruses and three novel DNA viruses in the Astroviridae, Paramyxoviridae, Orthomyxoviridae, Rhabdoviridae, Totiviridae, Poxviridae, Alloherpesviridae, and Adintoviridae in their evolutionary contexts. These results represent an important survey of the viruses that infect two widespread native fish species in New Zealand, and provide insight useful for future fish virus surveys.
Collapse
Affiliation(s)
- Benjamin J. Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| | - Mitra Mohamadi Darestani
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; (M.M.D.); (M.G.A.); (A.H.); (J.M.J.); (L.D.); (T.I.)
| | - Motia Gulshan Ara
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; (M.M.D.); (M.G.A.); (A.H.); (J.M.J.); (L.D.); (T.I.)
| | - Amélie Hoste
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; (M.M.D.); (M.G.A.); (A.H.); (J.M.J.); (L.D.); (T.I.)
| | - Jennifer M. Jandt
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; (M.M.D.); (M.G.A.); (A.H.); (J.M.J.); (L.D.); (T.I.)
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; (M.M.D.); (M.G.A.); (A.H.); (J.M.J.); (L.D.); (T.I.)
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney 2006, Australia;
| | - Travis Ingram
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; (M.M.D.); (M.G.A.); (A.H.); (J.M.J.); (L.D.); (T.I.)
| | - Jemma L. Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
- Institute of Environmental Science and Research, Wellington 5022, New Zealand
| |
Collapse
|