1
|
Eisenlord ME, Agnew MV, Winningham M, Lobo OJ, Vompe AD, Wippel B, Friedman CS, Harvell CD, Burge CA. High infectivity and waterborne transmission of seagrass wasting disease. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240663. [PMID: 39113773 PMCID: PMC11303036 DOI: 10.1098/rsos.240663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Pathogen transmission pathways are fundamental to understanding the epidemiology of infectious diseases yet are challenging to estimate in nature, particularly in the ocean. Seagrass wasting disease (SWD), caused by Labyrinthula zosterae, impacts seagrass beds worldwide and is thought to be a contributing factor to declines; however, little is known about natural transmission of SWD. In this study, we used field and laboratory experiments to test SWD transmission pathways and temperature sensitivity. To test transmission modes in nature, we conducted three field experiments out-planting sentinel Zostera marina shoots within and adjacent to natural Z. marina beds (20 ± 5 and 110 ± 5 m from bed edge). Infection rates and severity did not differ among outplant locations, implicating waterborne transmission. The infectious dose of L. zosterae through waterborne exposure was assessed in a controlled laboratory experiment. The dose to 50% disease was 6 cells ml-1 and did not differ with the temperatures tested (7.5°C and 15°C). Our results show L. zosterae is transmissible through water without direct contact with infected plants. Understanding the transmission dynamics of this disease in the context of changing ocean conditions will improve Z. marina protection and restoration in critical coastal habitats worldwide.
Collapse
Affiliation(s)
- Morgan E. Eisenlord
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - M. Victoria Agnew
- Institute of Marine Environmental Technology, University of Maryland Baltimore County, Baltimore, MD21202, USA
| | - Miranda Winningham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - Olivia J. Lobo
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - Alex D. Vompe
- Department of Microbiology, Oregon State University, Corvallis, OR97331, USA
| | - Bryanda Wippel
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA98195, USA
| | - Carolyn S. Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA98195, USA
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - Colleen A. Burge
- Institute of Marine Environmental Technology, University of Maryland Baltimore County, Baltimore, MD21202, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD21201, USA
- California Department of Fish & Wildlife, University of California, Davis Bodega Marine Laboratory, Bodega Bay, CA94923, USA
| |
Collapse
|
2
|
Bustin SA. Improving the quality of quantitative polymerase chain reaction experiments: 15 years of MIQE. Mol Aspects Med 2024; 96:101249. [PMID: 38290180 DOI: 10.1016/j.mam.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
The quantitative polymerase chain reaction (qPCR) is fundamental to molecular biology. It is not just a laboratory technique, qPCR is a bridge between research and clinical practice. Its theoretical foundations guide the design of experiments, while its practical implications extend to diagnostics, treatment, and research advancements in the life sciences, human and veterinary medicine, agriculture, and forensics. However, the accuracy, reliability and reproducibility of qPCR data face challenges arising from various factors associated with experimental design, execution, data analysis and inadequate reporting details. Addressing these concerns, the Minimum Information for the Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines have emerged as a cohesive framework offering a standardised set of recommendations that describe the essential information required for assessing qPCR experiments. By emphasising the importance of methodological rigour, the MIQE guidelines have made a major contribution to improving the trustworthiness, consistency, and transparency of many published qPCR results. However, major challenges related to awareness, resources, and publication pressures continue to affect their consistent application.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, CM1 1SQ, UK.
| |
Collapse
|
3
|
Geraci-Yee S, Collier JL, Allam B. A Microcosm Experiment Reveals the Temperature-Sensitive Release of Mucochytrium quahogii (=QPX) from Hard Clams and Pallial Fluid as a Stable QPX Reservoir. Microorganisms 2024; 12:241. [PMID: 38399645 PMCID: PMC10892119 DOI: 10.3390/microorganisms12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Mucochytrium quahogii, also known as QPX or Quahog Parasite Unknown, is the causative agent of QPX disease in the hard clam (Mercenaria mercenaria). Host-pathogen-environment interactions between M. quahogii, the hard clam, and temperature were explored in a microcosm experiment. Hard clams were housed in individual tanks with sterile seawater under two temperature regimes: low (13 °C) temperature, which is thought to be optimal for QPX disease development, and high (20 °C) temperature, which has been shown to promote "healing" of QPX-infected clams. Hard clam tissue, pallial fluid, seawater, and shell biofilms were collected and assayed for M. quahogii. The release of M. quahogii from naturally infected live hard clams into seawater was detected only in the low temperature treatment, suggesting that temperature influences the release of potentially infectious cells. M. quahogii was commonly found in hard clam pallial fluid, even after 9 weeks in the lab, suggesting pallial fluid is a stable reservoir of M. quahogii within its primary host and that M. quahogii is not a transient component of the hard clam microbiota. Overall, results support a host-specific relationship and that M. quahogii is a commensal member of the hard clam microbiota, supporting its classification as an opportunistic pathogen.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, NY 11794, USA (J.L.C.)
| |
Collapse
|
4
|
Bauschlicher SN, Weitzman CL, Martinez V, Tracy C, Alvarez‐Ponce D, Sandmeier FC. Assessing spatial distribution, genetic variants, and virulence of pathogen Mycoplasma agassizii in threatened Mojave desert tortoises. Ecol Evol 2023; 13:e10173. [PMID: 37284665 PMCID: PMC10239689 DOI: 10.1002/ece3.10173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/23/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Mojave desert tortoises (Gopherus agassizii), a threatened species under the US Endangered Species Act, are long-lived reptiles that experience a chronic respiratory disease. The virulence of primary etiologic agent, Mycoplasma agassizii, remains poorly understood, but it exhibits temporal and geographic variability in causing disease outbreaks in host tortoises. Multiple attempts to culture and characterize the diversity of M. agassizii have had minimal success, even though this opportunistic pathogen chronically persists in nearly every population of Mojave desert tortoises. The current geographic range and the molecular mechanisms of virulence of the type-strain, PS6T, are unknown, and the bacterium is thought to have low-to-moderate virulence. We designed a quantitative polymerase chain reaction (qPCR) targeting three putative virulence genes annotated on the PS6T genome as exo-α-sialidases, enzymes which facilitate growth in many bacterial pathogens. We tested 140 M. agassizii-positive DNA samples collected from 2010 to 2012 across the range of Mojave desert tortoises. We found evidence of multiple-strain infections within hosts. We also found the prevalence of these sialidase-encoding genes to be highest in tortoise populations surrounding southern Nevada, the area from which PS6T was originally isolated. We found a general pattern of loss or reduced presence of sialidase among strains, even within a single host. However, in samples that were positive for any of the putative sialidase genes, one particular gene (528), was positively associated with bacterial loads of M. agassizii and may act as a growth factor for the bacterium. Our results suggest three evolutionary patterns: (1) high levels of variation, possibly due to neutral changes and chronic persistence, (2) a trade-off between moderate virulence and transmission, and (3) selection against virulence in environmental conditions known to be physiologically stressful to the host. Our approach of quantifying genetic variation via qPCR represents a useful model of studying host-pathogen dynamics.
Collapse
Affiliation(s)
| | - Chava L. Weitzman
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthwest TerritoryAustralia
| | - Victoria Martinez
- Department of BiologyColorado State University – PuebloPuebloColoradoUSA
| | | | | | | |
Collapse
|
5
|
Hu G, Huang K, Zhou W, Wang R, Zhao W, Zou H, Li W, Wu S, Li M, Wang G. Comparison of droplet digital PCR and real-time quantitative PCR for quantitative detection of the parasitic ciliate Ichthyophthirius multifiliis in the water environment. JOURNAL OF FISH DISEASES 2023; 46:357-367. [PMID: 36606558 DOI: 10.1111/jfd.13749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Ichthyophthiriasis, caused by the parasitic ciliate Ichthyophthirius multifiliis (Ich), is considered one of the most harmful diseases affecting freshwater fish globally. It can cause mass mortalities of fish in intensive farming systems. In such systems, it is thus necessary to detect and quantify the number of Ich in the water so that control measures can be implemented before Ichthyophthiriasis breaks out. In recent years, molecular diagnostic methods have become increasingly important in aquaculture. Real-time quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) have become robust assays for detecting pathogens. In this study, a set of specific primers and a TaqMan-minor groove binder probe targeting the small-subunit rDNA (SSU rDNA) of Ich were developed. They were used in qPCR and ddPCR assays to compare the performance of these two different methods in quantitatively detecting Ich. After optimizing the reaction conditions, both qPCR and ddPCR assays were found to have high linearity and quantitative correlations for standard plasmid DNA. When used for the detection of Ich eDNA in water samples, the qPCR assay had a wider detection range, making it a suitable method to screen for the prevalence of Ichthyophthiriasis. However, the ddPCR approach had higher sensitivity, which would help provide advance notice of the disease in complex water environmental samples.
Collapse
Affiliation(s)
- Guangran Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weitian Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Runqiu Wang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Weishan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenxiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shangong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guitang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Proteomic and Transcriptomic Responses Enable Clams to Correct the pH of Calcifying Fluids and Sustain Biomineralization in Acidified Environments. Int J Mol Sci 2022; 23:ijms232416066. [PMID: 36555707 PMCID: PMC9781830 DOI: 10.3390/ijms232416066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Seawater pH and carbonate saturation are predicted to decrease dramatically by the end of the century. This process, designated ocean acidification (OA), threatens economically and ecologically important marine calcifiers, including the northern quahog (Mercenaria mercenaria). While many studies have demonstrated the adverse impacts of OA on bivalves, much less is known about mechanisms of resilience and adaptive strategies. Here, we examined clam responses to OA by evaluating cellular (hemocyte activities) and molecular (high-throughput proteomics, RNASeq) changes in hemolymph and extrapallial fluid (EPF-the site of biomineralization located between the mantle and the shell) in M. mercenaria continuously exposed to acidified (pH ~7.3; pCO2 ~2700 ppm) and normal conditions (pH ~8.1; pCO2 ~600 ppm) for one year. The extracellular pH of EPF and hemolymph (~7.5) was significantly higher than that of the external acidified seawater (~7.3). Under OA conditions, granulocytes (a sub-population of hemocytes important for biomineralization) were able to increase intracellular pH (by 54% in EPF and 79% in hemolymph) and calcium content (by 56% in hemolymph). The increased pH of EPF and hemolymph from clams exposed to high pCO2 was associated with the overexpression of genes (at both the mRNA and protein levels) related to biomineralization, acid-base balance, and calcium homeostasis, suggesting that clams can use corrective mechanisms to mitigate the negative impact of OA.
Collapse
|
7
|
Geraci-Yee S, Collier JL, Allam B. Mucochytrium quahogii (=QPX) Is a Commensal, Opportunistic Pathogen of the Hard Clam ( Mercenaria mercenaria): Evidence and Implications for QPX Disease Management. J Fungi (Basel) 2022; 8:1128. [PMID: 36354895 PMCID: PMC9695251 DOI: 10.3390/jof8111128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 09/16/2024] Open
Abstract
Mucochytrium quahogii, commonly known as QPX (Quahog Parasite Unknown), is the causative agent of QPX disease in hard clams (Mercenaria mercenaria), but poor understanding of the relationship between host and pathogen has hindered effective management. To address this gap in knowledge, we conducted a two-year study quantifying the distribution and abundance of M. quahogii in hard clam tissue, pallial fluid, and the environment. M. quahogii was broadly distributed in clams and the environment, in areas with and without a known history of QPX disease. M. quahogii in clams was not strongly related to M. quahogii in the environment. M. quahogii was always present in either the tissue or pallial fluid of each clam, with an inverse relationship between the abundance in the two anatomical locations. This study suggests that the sediment-water interface and clam pallial fluid are environmental reservoirs of M. quahogii and that there is a host-specific relationship between M. quahogii and the hard clam, supporting its classification as a commensal, opportunistic pathogen. There appears to be minimal risk of spreading QPX disease to naïve clam populations because M. quahogii is already present and does not appear to be causing disease in hard clam populations in locations unfavorable for pathogenesis.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|