1
|
Wang C, Oishi K, Kobayashi T, Fujii K, Horii M, Fushida N, Kitano T, Maeda S, Ikawa Y, Komuro A, Hamaguchi Y, Matsushita T. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. Int J Mol Sci 2024; 25:6133. [PMID: 38892317 PMCID: PMC11172923 DOI: 10.3390/ijms25116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Kyosuke Oishi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tadahiro Kobayashi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Ko Fujii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Motoki Horii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Natsumi Fushida
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tasuku Kitano
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Shintaro Maeda
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Yuichi Ikawa
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Akito Komuro
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| |
Collapse
|
2
|
Korhan P, Bağırsakçı E, Islakoğlu YÖ, Solmaz G, Sarıkaya B, Nart D, Yılmaz F, Atabey N. MASLD-mimicking microenvironment drives an aggressive phenotype and represses IDH2 expression in hepatocellular carcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim: Hepatocellular carcinoma (HCC) in patients with Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD) is expected to be a significant public health issue in the near future. Therefore, understanding the tumor microenvironment interactions in MASLD-induced HCC is crucial, and the development of relevant preclinical models is needed. Hence, we aimed to determine the effects of a MASLD-mimicking microenvironment (ME) on the aggressiveness of HCC cells and identify target genes that drive HCC by developing a 3D-in vitro co-culture system.
Methods: A 3D co-culture system mimicking the MASLD-ME was created with LX-2 liver stellate cells embedded in 3D collagen gel in the lower and SNU-449 HCC cells on the upper parts of Boyden chambers, and cells were grown in an optimized metabolic medium (MM). The effects of NAFLD-ME on motility, sphere formation, proliferation, and cell cycle of SNU-449 cells were tested by Boyden chamber, 3D sphere formation, XTT, and Flow cytometry, respectively. The protein expression/activation profiles of motile SNU-449 cells that passed the membrane toward NAFLD-ME or control condition were investigated using a multiplex protein profiling system DigiWest and confirmed with RT-PCR, WB, and Flow cytometry. IDH2 levels were examined in primary human HCC and adjacent liver tissues by IHC and in TCGA and CPTAC cohorts by bioinformatics tools.
Results: MM treatment increased fat accumulation, motility, and spheroid formation of both SNU-449 and LX-2 cells. MASLD-ME induced activation of LX2 cells, leading to the formation of bigger colonies with many intrusions compared to related controls. DigiWest analysis showed that metabolism-related proteins such as IDH2 were the most affected molecules in SNU-449 cells that migrated toward the MASLD-ME compared to those that migrated toward the control condition. Downregulation of IDH2 expression was confirmed in SNU-449 cells grown in MASLD-ME, in primary HCC tumor samples by IHC, and in HCC patient cohorts by bioinformatics analysis.
Conclusion: This study reports the potential involvement of MASLD-ME in the downregulation of IDH2 expression and promoted motility and colonization capacity of HCC cells. The 3D MASLD model presented in this study may be useful in investigating the mechanistic roles of MASLD-ME in HCC.
Collapse
|
3
|
Wang C, Li Y, Li H, Zhang Y, Ying Z, Wang X, Zhang T, Zhang W, Fan Z, Li X, Ma J, Pan X. Disruption of FGF Signaling Ameliorates Inflammatory Response in Hepatic Stellate Cells. Front Cell Dev Biol 2020; 8:601. [PMID: 32793588 PMCID: PMC7387415 DOI: 10.3389/fcell.2020.00601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is a well-documented event that fibroblast growth factors (FGFs) regulate liver development and homeostasis in autocrine, paracrine, and endocrine manners via binding and activating FGF receptors (FGFRs) tyrosine kinase in hepatocytes. Recent research reveals that hepatic stellate cells (HSCs) play a fundamental role in liver immunology. However, how FGF signaling in HSCs regulates liver inflammation remains unclear. Here, we report that FGF promoted NF-κB signaling, an inflammatory pathway, in human HSCs, which was associated with FGFR1 expression. Both FGF and NF-κB signaling in HSCs were compromised by FGFR1 tyrosine kinase inhibitor. After stimulating HSCs with proinflammatory cytokines, expression of multiple FGF ligands was significantly increased. However, disruption of FGF signaling with FGFR inhibitors prominently reduced the apoptosis, inflammatory response, NF-κB nuclear translocation, and expression of matrix metalloproteinase-9 (MMP-9) induced by TNFα in HSCs. Interestingly, FGF21 significantly alleviated the inflammation responses in the concanavalin A (Con A)-induced acutely injured liver. Unlike canonic FGFs that elicit signals through activating the FGFR–heparan sulfate complex, FGF21 activates the FGFR–KLB complex and elicits a different set of signals. Therefore, the finding here indicates the urgency of developing pathway-specific inhibitors that only suppress canonical FGF, but not non-canonical FGF21, signaling for alleviating inflammation in the liver, which is presented in all stages of diseased liver.
Collapse
Affiliation(s)
- Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuelong Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhangguo Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuye Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Dewidar B, Meyer C, Dooley S, Meindl-Beinker N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019; 8:cells8111419. [PMID: 31718044 PMCID: PMC6912224 DOI: 10.3390/cells8111419] [Citation(s) in RCA: 514] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-β is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-β has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-β and its upstream and downstream regulatory mechanisms will help to design better TGF-β based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-β signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-β on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-β. Finally, we discuss new approaches to target the TGF-β pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.
Collapse
Affiliation(s)
- Bedair Dewidar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527 Tanta, Egypt
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Correspondence: ; Tel.: +49-621-383-4983; Fax: +49-621-383-1467
| |
Collapse
|
5
|
Tang JD, Lampe KJ. From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomed Mater 2018; 13:034103. [DOI: 10.1088/1748-605x/aaa4c3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Peterová E, Podmolíková L, Řezáčová M, Mrkvicová A. Fibroblast Growth Factor-1 Suppresses TGF-β-Mediated Myofibroblastic Differentiation of Rat Hepatic Stellate Cells. ACTA MEDICA (HRADEC KRÁLOVÉ) 2017; 59:124-132. [PMID: 28440215 DOI: 10.14712/18059694.2017.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Myofibroblast expansion is a critical event in the pathogenesis of liver fibrosis. The activation of hepatic stellate cells (HSC) to myofibroblast (MFB) results in the enhanced production of extracellular matrix (ECM). In this study, we explored the effect of acidic fibroblast growth factor (FGF-1) treatment on a transforming growth factor (TGF-β1) induced MFB conversion. We used HSC-T6 cell line, which represents well-established model of activated HSC. These cells strongly expressed α-smooth muscle actin (α-SMA) and fibronectin (FN-EDA) after stimulation with TGF-β1, which is a stimulus for MFB differentiation and ECM production. FGF-1 reduced proteins expression to levels comparable with untreated cells. Mild repression of secreted gelatinases was seen in culture media after FGF-1 treatment. The exposure of cells to collagen gel leads to changes in cell morphology and in expression of MFB markers. Lack of α-SMA in cells embedded to collagen gel was detected. When stimulated with TGF-β1, the cells increased expression of FN-EDA, but not α-SMA. Although the cells on plastic and in collagen gel show different properties, FGF-1 reduced expression of FN-EDA in both conditions. Disrupting TGF-β1 signalling pathway represents a potential strategy for the treatment of fibrosis. We showed that FGF-1 could antagonize signals initiated by TGF-β1.
Collapse
Affiliation(s)
- Eva Peterová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Lucie Podmolíková
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|