1
|
Attarian F, Hatamian G, Nosrati S, Akbari Oryani M, Javid H, Hashemzadeh A, Tarin M. Role of liposomes in chemoimmunotherapy of breast cancer. J Drug Target 2025:1-29. [PMID: 39967479 DOI: 10.1080/1061186x.2025.2467139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
In the dynamic arena of cancer therapeutics, chemoimmunotherapy has shown tremendous promise, especially for aggressive forms of breast cancer like triple-negative breast cancer (TNBC). This review delves into the significant role of liposomes in enhancing the effectiveness of chemoimmunotherapy by leveraging breast cancer-specific mechanisms such as the induction of immunogenic cell death (ICD), reprogramming the tumour microenvironment (TME), and enabling sequential drug release. We examine innovative dual-targeting liposomes that capitalise on tumour heterogeneity, as well as pH-sensitive formulations that offer improved control over drug delivery. Unlike prior analyses, this review directly links advancements in preclinical research-such as PAMAM dendrimer-based nanoplatforms and RGD-decorated liposomes-to clinical trial results, highlighting their potential to revolutionise TNBC treatment strategies. Additionally, we address ongoing challenges related to scalability, toxicity, and regulatory compliance, and propose future directions for personalised, immune-focused nanomedicine. This work not only synthesises the latest research but also offers a framework for translating liposomal chemoimmunotherapy from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Ghazaleh Hatamian
- Department of Microbiology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Sharma M, Alessandro P, Cheriyamundath S, Lopus M. Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges. J Drug Target 2024; 32:287-299. [PMID: 38252035 DOI: 10.1080/1061186x.2024.2309575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.
Collapse
Affiliation(s)
- Muskan Sharma
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Parodi Alessandro
- Department of Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - Sanith Cheriyamundath
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| |
Collapse
|
3
|
Zhang P, Li B, Wang Z, Li J, Wang F, Kong J, Zhou Z, Huang Y, Li L. Durable Attenuation of Tumor pH-Platelet Linkage Reinstates Bioorthogonal Targeting of Residual Tumors Post-Debulking. ACS NANO 2024; 18:4520-4538. [PMID: 38270077 DOI: 10.1021/acsnano.3c11536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
There are circumstances where tumors can only be partially resected. Therefore, multimodality therapy targeting post-operative residuals is important. Here, we show that bioorthogonal click chemistry enables targeted delivery to heterogeneous tumors, but its utility against tumor post-debulking is ineffective due to platelet cloaks that shield tumor cells from bioorthogonal pairing. We further discover tumor-infiltrating platelet levels respond to local pH changes. Elucidating this pH-platelet linkage, we design an injectable hydrogel for resection cavity implantation that simultaneously azido-tags tumor cells and inhibit their catalysis to acidify surrounding milieu. Unlike transient buffering, tumor acidification blockade sustains pH normalization, leading to durable platelet reduction. This reinstates bioorthogonal targeting of dibenzyl cyclooctyne-modified nanoparticles, thereby enhancing photodynamic ablation of residuals while amplifying systemic antitumor immunity. Concurrently, platelet/pH normalization interrupts metastasis cascade from invasion to circulation to colonization. Overall, attenuating tumor pH-platelet linkage unlocks bioorthogonal chemistry as a potential option for adjuvant therapy after tumor debulking.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ziyan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fengju Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Živanić M, Espona‐Noguera A, Lin A, Canal C. Current State of Cold Atmospheric Plasma and Cancer-Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205803. [PMID: 36670068 PMCID: PMC10015903 DOI: 10.1002/advs.202205803] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Indexed: 05/19/2023]
Abstract
Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention as a well-tolerated cancer treatment that can enhance anti-tumor immune responses, which are important for durable therapeutic effects. This review offers a comprehensive and critical summary on the current understanding of mechanisms in which CAP can assist anti-tumor immunity: induction of immunogenic cell death, oxidative post-translational modifications of the tumor and its microenvironment, epigenetic regulation of aberrant gene expression, and enhancement of immune cell functions. This should provide a rationale for the effective and meaningful clinical implementation of CAP. As discussed here, despite its potential, CAP faces different clinical limitations associated with the current CAP treatment modalities: direct exposure of cancerous cells to plasma, and indirect treatment through injection of plasma-treated liquids in the tumor. To this end, a novel modality is proposed: plasma-treated hydrogels (PTHs) that can not only help overcome some of the clinical limitations but also offer a convenient platform for combining CAP with existing drugs to improve therapeutic responses and contribute to the clinical translation of CAP. Finally, by integrating expertise in biomaterials and plasma medicine, practical considerations and prospective for the development of PTHs are offered.
Collapse
Affiliation(s)
- Milica Živanić
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Albert Espona‐Noguera
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
- Center for Oncological Research (CORE)Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Cristina Canal
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| |
Collapse
|
5
|
Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023; 18:1195-1218. [PMID: 36926681 PMCID: PMC10013574 DOI: 10.2147/ijn.s401570] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Identification of Immunogenic Cell Death-Related Signature for Glioma to Predict Survival and Response to Immunotherapy. Cancers (Basel) 2022; 14:cancers14225665. [PMID: 36428756 PMCID: PMC9688866 DOI: 10.3390/cancers14225665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of regulated cell death (RCD) and is correlated with the progression, prognosis, and therapy of tumors, including glioma. Numerous studies have shown that the immunotherapeutic and chemotherapeutic agents of glioma might induce ICD. However, studies on the comprehensive analysis of the role of ICD-related genes and their correlations with overall survival (OS) in glioma are lacking. The genetic, transcriptional, and clinical data of 1896 glioma samples were acquired from five distinct databases and analyzed in terms of genes and transcription levels. The method of consensus unsupervised clustering divided the patients into two disparate molecular clusters: A and B. All of the patients were randomly divided into training and testing groups. Employing the training group data, 14 ICD-related genes were filtered out to develop a risk-score model. The correlations between our risk groups and prognosis, cells in the tumor microenvironment (TME) and immune cells infiltration, chemosensitivity and cancer stem cell (CSC) index were assessed. A highly precise nomogram model was constructed to enhance and optimize the clinical application of the risk score. The results demonstrated that the risk score could independently predict the OS rate and the immunotherapeutic response of glioma patients. This study analyzed the ICD-related genes in glioma and evaluated their role in the OS, clinicopathological characteristics, TME and immune cell infiltration of glioma. Our results may help in assessing the OS of glioma and developing better immunotherapeutic strategies.
Collapse
|
7
|
Jin Z, Sun X, Wang Y, Zhou C, Yang H, Zhou S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol 2022; 13:1018903. [PMID: 36300110 PMCID: PMC9589261 DOI: 10.3389/fimmu.2022.1018903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have revolutionized the treatment of patients with advanced and metastatic tumors resistant to traditional therapies. However, the immunosuppressed tumor microenvironment (TME) results in a weak response to immunotherapy. Therefore, to realize the full potential of immunotherapy and obstacle barriers, it is essential to explore how to convert cold TME to hot TME. Autophagy is a crucial cellular process that preserves cellular stability in the cellular components of the TME, contributing to the characterization of the immunosuppressive TME. Targeted autophagy ignites immunosuppressive TME by influencing antigen release, antigen presentation, antigen recognition, and immune cell trafficking, thereby enhancing the effectiveness of cancer immunotherapy and overcoming resistance to immunotherapy. In this review, we summarize the characteristics and components of TME, explore the mechanisms and functions of autophagy in the characterization and regulation of TME, and discuss autophagy-based therapies as adjuvant enhancers of immunotherapy to improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Jin
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yaoyao Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chao Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- Department of Radiation Oncology, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| |
Collapse
|
8
|
Wang S, Wang G, Wu W, Xu Z, Yang J, Cao M, Wang Q, Wang J, Yang C, Zhang W. Autophagy activation by dietary piceatannol enhances the efficacy of immunogenic chemotherapy. Front Immunol 2022; 13:968686. [PMID: 35979349 PMCID: PMC9376326 DOI: 10.3389/fimmu.2022.968686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immunogenic cell death (ICD) promotes the immune antitumor response via releasing damage-associated molecular patterns (DAMPs) from dying tumor cells. The induction of autophagy improves the efficacy of multiple immunogenic chemotherapies. Here, we show that piceatannol, a dietary phenolic compound that is widely distributed in multiple fruits and vegetables such as grapes, blueberries, and mushrooms, induces autophagy and enhances oxaliplatin (OXA)-induced anticancer immune response. Specifically, piceatannol enhanced OXA-induced release of DAMPs, several key hallmarks of ICD including ATP release, cell surface exposure of calreticulin, and high-mobility group box 1 (HMGB1) release. Mechanistically, piceatannol promoted autophagy via activating TFEB/TFE3, two key transcription factors of the autophagy-lysosome pathway, and inhibiting autophagy attenuated piceatannol plus OXA-induced ATP release. Furthermore, piceatannol induced endoplasmic reticulum stress, which is critical for its role in enhancing OXA-induced cell surface exposure of calreticulin, another key hallmark of ICD. Consistently, the combination of piceatannol with OXA promoted the anticancer effects in immunocompetent mice. Taken together, our results indicate the importance and great potential of dietary piceatannol in cancer immunotherapy. Therefore, piceatannol may be used as an ICD enhancer that improves the efficacy of chemotherapeutics such as OXA in cancer treatment with minimized toxicity.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Weiqing Wu
- Department of Health Management, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhenglei Xu
- Department of Gastroenterology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jing Yang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Min Cao
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Qi Wang
- Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Wei Zhang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| |
Collapse
|
9
|
Li Q, Liu Y, Huang Z, Guo Y, Li Q. Triggering Immune System With Nanomaterials for Cancer Immunotherapy. Front Bioeng Biotechnol 2022; 10:878524. [PMID: 35497343 PMCID: PMC9046726 DOI: 10.3389/fbioe.2022.878524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer is a major cause of incidence rate and mortality worldwide. In recent years, cancer immunotherapy has made great progress in the preclinical and clinical treatment of advanced malignant tumors. However, cancer patients will have transient cancer suppression reaction and serious immune related adverse reactions when receiving immunotherapy. In recent years, nanoparticle-based immunotherapy, which can accurately deliver immunogens, activate antigen presenting cells (APCs) and effector cells, provides a new insight to solve the above problems. In this review, we discuss the research progress of nanomaterials in immunotherapy including nanoparticle-based delivery systems, nanoparticle-based photothermal and photodynamic immunotherapy, nanovaccines, nanoparticle-based T cell cancer immunotherapy and nanoparticle-based bacteria cancer immunotherapy. We also put forward the current challenges and prospects of immunomodulatory therapy.
Collapse
Affiliation(s)
| | | | | | - Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
10
|
Spyridopoulou K, Aindelis G, Pappa A, Chlichlia K. Anticancer Activity of Biogenic Selenium Nanoparticles: Apoptotic and Immunogenic Cell Death Markers in Colon Cancer Cells. Cancers (Basel) 2021; 13:5335. [PMID: 34771499 PMCID: PMC8582357 DOI: 10.3390/cancers13215335] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer is a health problem with high mortality rates and prevalence. Thus, innovative treatment approaches need to be developed. Biogenic nanoparticles are nanomaterials that can be synthesised in biological systems and, compared to chemically synthesised nanoparticles, have better bioavailability while being more cost-effective, eco-friendlier, and less toxic. In our previous studies, the probiotic strain Lactobacillus casei ATCC 393 was used to synthesise selenium nanoparticles (SeNps), which were shown to inhibit colon cancer cell growth in vitro and in vivo. Herein, we have further investigated SeNps' pro-apoptotic activity and their ability to induce immunogenic cell death (ICD) in colon cancer cells. The SeNps' effect on Caco-2 cells growth was examined along with their potential to induce caspase activation. Moreover, the expression of typical pro-apoptotic and ICD markers were examined in SeNps-treated HT29 and CT26 cells by flow cytometry, Western blot, ELISA and fluorescence microscopy. Elevated caspase-3 activation and surface phosphatyldoserine, that subsided upon co-incubation with a pan-caspase inhibitor, were detected in SeNps-treated cells. Furthermore, nanoparticles induced modulation of the expression of various apoptosis-related proteins. We also report the detection of biomarkers involved in ICD, namely the translocation of calreticulin and ERp57, the release of HMGB1 and ATP, and the secretion of pro-inflammatory cytokines from SeNps-treated cells. Moreover, RAW246.7 macrophages exhibited a higher rate of phagocytosis against treated CT26 when compared to control cells. Taken together, our findings indicate that treatment with SeNps might be an efficient strategy to destroy tumour cells by inducing apoptotic cell death and triggering immune responses.
Collapse
Affiliation(s)
| | | | | | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, 68100 Alexandroupolis, Greece; (K.S.); (G.A.); (A.P.)
| |
Collapse
|
11
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
12
|
Jiang M, Chen W, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. Sequentially pH-Responsive Drug-Delivery Nanosystem for Tumor Immunogenic Cell Death and Cooperating with Immune Checkpoint Blockade for Efficient Cancer Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43963-43974. [PMID: 34506118 DOI: 10.1021/acsami.1c10643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemoimmunotherapy has anchored a new blueprint for cancer management. As a burgeoning approach, immunotherapy has shifted the paradigm of traditional chemotherapy and opened up new prospects for cancer treatment. Here, a sequentially pH-responsive doxorubicin (DOX) delivery nanosystem is designed for simultaneous chemotherapy and tumor immunogenic cell death (ICD). DOX is modified into pH-sensitive cis-aconityl-doxorubicin (CAD) for being easily adsorbed by polycationic polyethylenimine (PEI), and the PEI/CAD complexes are in situ-shielded by aldehyde-modified polyethylene glycol (PEG). The PEG/PEI/CAD nanoparticles (NPs) can keep stable in neutral physiological pH during systemic circulation but will detach PEG shielding once in slightly acidic tumor extracellular pH. The exposed positive PEI/CAD complexes are endocytosed effortlessly, and CAD is then converted back to DOX by endosomal-acidity-triggered cis-aconityl cleavage. The released DOX further elicits ICD, and the moribund tumor cells will release antigens and damage-associated molecular patterns to recruit dendritic cells and activate antitumor immunity. An excellent therapeutic effect is achieved when the immune checkpoint PD-1 antibody (aPD-1) is utilized to cooperate with the PEG/PEI/CAD NPs for blocking tumor immune escape and maintaining antitumor activity of the ICD-instigated T cells. The sequentially pH-responsive DOX delivery nanosystem cooperating with immune checkpoint blockade will provide a potential strategy for cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wenqiang Chen
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wenjing Yu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Zhiwei Xu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinyue Liu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Qingmiao Jia
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|