1
|
Lin Y, Gong J, Buttimer C, Pan X, Jia Y, Bai Z, Wang R, Tong H, Bao H. Effects of astaxanthin on growth performance, intestinal integrity, and microbiota in Salmonella Enteritidis-infected chickens. Poult Sci 2025; 104:105056. [PMID: 40132313 PMCID: PMC11986504 DOI: 10.1016/j.psj.2025.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigated the effects of astaxanthin (AST) supplementation in drinking water on the growth performance, intestinal barrier function, and cecal microbiota of broilers challenged with Salmonella Enteritidis. During the 20-day experiment, two hundred and forty 1-day-old male Arbor Acres birds were randomly assigned into a 2 × 2 factorial design with four groups: a non-challenged control (CON), an S. Enteritidis-challenged group (SA), a group receiving AST treatment (AST), and an S. Enteritidis-challenged group receiving AST treatment (SA+AST). Each treatment comprised six replicate groups, and challenged groups were inoculated with S. Enteritidis from day 2 to day 4. The results indicated that S. Enteritidis infection significantly reduced the average daily feed intake (ADFI) in broilers and adversely affected average daily gain (ADG) and feed conversion ratio (FCR) by day 20. AST supplementation significantly improved FCR. While S. Enteritidis infection did not significantly affect ileal mucosa antioxidation, it significantly decreased villus height and the villus height-to-crypt depth ratio (VCR), and significantly downregulated mRNA expression of ZO-1 and Occludin. However, AST supplementation significantly enhanced antioxidant capacity (T-AOC), increased villus height and VCR in the ileum, and notably upregulated ZO-1 and MUC2 expression levels, particularly mitigating the adverse effects of S. Enteritidis infection on ileal crypt depth. Furthermore, S. Enteritidis infection significantly affected both the α- and β-diversity of cecal microbiota. Infection with S. Enteritidis was associated with changes at the phylum level, including significant increases in Alistipes, unclassified_f__Lachnospiraceae, and bacteria of the Clostridia UCG-014 grouping, alongside notable decreases in Bacteroides, Akkermansia, Blautia, and Butyricicoccus. AST supplementation significantly decreased the abundance of norank_f__Ruminococcaceae and increased the abundance of Lachnoclostridium and unclassified_f__Lachnospiraceae in the challenged group. In conclusion, AST supplementation in drinking water could improve growth performance and intestinal health in broilers challenged with S. Enteritidis.
Collapse
Affiliation(s)
- Yong Lin
- Institute of Agricultural Facilities and Equipment & Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affair& Jiangsu Engineering Research Center for Facility Waterfowl Health Breeding Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
| | - Jiansen Gong
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, PR China
| | - Colin Buttimer
- APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland
| | - Xiaoqing Pan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
| | - Yimin Jia
- Key Laboratory of Animal Physiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zongchun Bai
- Institute of Agricultural Facilities and Equipment & Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affair& Jiangsu Engineering Research Center for Facility Waterfowl Health Breeding Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
| | - Haibing Tong
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, PR China
| | - Hongduo Bao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China.
| |
Collapse
|
2
|
Huang Y, Lang A, Yang S, Shahid MS, Yuan J. The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers. Int J Mol Sci 2024; 25:8396. [PMID: 39125968 PMCID: PMC11313147 DOI: 10.3390/ijms25158396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The use of cinnamaldehyde and Vitamin C can improve immunity and intestinal health. A two-way factorial design was employed to investigate the main and interactive effects of cinnamaldehyde and vitamin C on the growth, carcass, and intestinal health of broiler chickens. A total of 288 one-day-old female Arbor Acres broiler chicks were randomly distributed among four treatment groups, consisting of six replicate cages with 12 birds each. Four treatments were basal diet or control (CON), supplemental cinnamaldehyde (CA) 300 g/ton (g/t), vitamin C (VC) 300 g/t, and cinnamaldehyde 300 g/t, and vitamin C 300 g/t (CA + VC), respectively. The results showed that supplemental CA did not affect the growth performance or slaughter performance of broilers at 21 days (d), 42 days (d), and 1-42 days (d); however, it could improve intestinal barrier function at 42 d of age and reduce the mRNA expression of inflammatory factors in the intestine at 21 d and 42 d of age. Supplemental VC showed a trend towards increasing body weight gain (BWG) at 21 d (p = 0.094), increased breast muscle rate (at 21-d 5.33%, p < 0.05 and at 42-d 7.09%, p = 0.097), and decreased the abdominal fat (23.43%, p < 0.05) and drip loss (20.68%, p < 0.05) at 42-d. Moreover, VC improves intestinal morphology and intestinal barrier function and maintains a balanced immune response. The blend of CA and VC significantly upregulated the mRNA expression of myeloid differentiation factor 88 (MyD-88) in the intestine at 21 d of age, the mRNA expression of catalase (CAT), Occludin, Claudin-1, Mucin-2, nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR-4) in the intestine at 42 d of age (p < 0.01), and downregulated the mRNA expression of interleukin 10 (IL-10), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) in the intestine at 21-d and 42-d of age, and interleukin-1 beta (IL-1β) mRNA in intestine at 42 d of age (p < 0.01). This study suggested that the combination of CA and VC had the potential to regulate intestinal health and result in better carcass character of broilers.
Collapse
Affiliation(s)
| | | | | | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (A.L.); (S.Y.); (M.S.S.)
| |
Collapse
|
3
|
Shani MA, Irani M. Feeding strategy and prebiotic supplementation: Effects on immune responses and gut health in the early life stage of broiler chickens. Res Vet Sci 2024; 171:105226. [PMID: 38502998 DOI: 10.1016/j.rvsc.2024.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
This study aimed to investigate the effects of early or late feeding strategies and prebiotic, on immune responses and gut health during the early life stage of broiler chickens. A total of 240 day-old male broiler chicks were used in a 2 × 3 factorial arrangement of treatments that comprised 2 feeding strategies (early or late) and 3 levels of prebiotic (0, recommended dosage or three times the recommended dosage) in a completely randomized design with 4 pen replicates and 10 broilers per each. Compared to broiler chickens that had early access to feed, delayed access to feed resulted in an increased population of Escherichia coli and a decreased population of Lactobacillus spp. and Bifidobacterium spp. in the ileum (P < 0.05). Additionally, delayed access to feed led to a decrease in villus height, crypt depth, villus height: villus width ratio, goblet cell density, and mucin 2 gene expression in the ileum (P < 0.05). The supplementation of prebiotics in both the late and early feeding strategy groups resulted in increased villus height, crypt depth, goblet cell density, mucin 2 gene expression, and antibodies against Infectious Bursal Disease (IBD). Additionally, it led to an improvement in the foot web thickness index (P < 0.05). Furthermore, it resulted in a significant decrease in the population of Escherichia coli, while the populations of Lactobacillus spp. and Bifidobacterium spp. in the ileum were significantly increased (P < 0.05). Therefore, this study suggests that incorporating prebiotics in the starter diet can effectively enhance immune responses and promote gut health, regardless of the feeding strategy (early or late). In conclusion, this study demonstrates the potential benefits of incorporating prebiotics into poultry diets to alleviate the detrimental effects of delayed access to feed and improve gut health during the early life stage of broiler chickens.
Collapse
Affiliation(s)
- Mostafa Abbasnejad Shani
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran
| | - Mehrdad Irani
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran.
| |
Collapse
|
4
|
Logue CM, De Cesare A, Tast-Lahti E, Chemaly M, Payen C, LeJeune J, Zhou K. Salmonella spp. in poultry production-A review of the role of interventions along the production continuum. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:289-341. [PMID: 38461002 DOI: 10.1016/bs.afnr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.
Collapse
Affiliation(s)
- Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, United States.
| | | | - Elina Tast-Lahti
- European Center for Disease Prevention and Control (ECDC), Sweden
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Cyrielle Payen
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Jeff LeJeune
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| | - Kang Zhou
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| |
Collapse
|
5
|
Hu Z, Liu L, Guo F, Huang J, Qiao J, Bi R, Huang J, Zhang K, Guo Y, Wang Z. Dietary supplemental coated essential oils and organic acids mixture improves growth performance and gut health along with reduces Salmonella load of broiler chickens infected with Salmonella Enteritidis. J Anim Sci Biotechnol 2023; 14:95. [PMID: 37391807 DOI: 10.1186/s40104-023-00889-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/03/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Reducing Salmonella infection in broiler chickens by using effective and safe alternatives to antibiotics is vital to provide safer poultry meat and minimize the emergence of drug-resistant Salmonella and the spread of salmonellosis to humans. This study was to first evaluate the protective efficacy of feeding coated essential oils and organic acids mixture (EOA) on broiler chickens infected with Salmonella Enteritidis (S. Enteritidis, SE), and then its action mechanism was further explored. METHODS A total of 480 1-day-old Arbor Acres male chickens were randomly assigned into five treatments with six replicates, including non-challenged control fed with basal diet (A), SE-challenged control (B), and SE-infected birds fed a basal diet with 300 mg/kg of EOA (BL), 500 mg/kg of EOA (BM) and 800 mg/kg of EOA (BH), respectively. All birds on challenged groups were infected with Salmonella Enteritidis on d 13. RESULTS: Feeding EOA showed a reversed ability on negative effects caused by SE infection, as evidenced by decreasing the feed conversion rate (FCR) and the ratio of villus height to crypt depth (VH/CD) (P < 0.05), obviously decreasing intestinal and internal organs Salmonella load along with increasing cecal butyric acid-producing bacteria abundance (P < 0.05). Moreover, supplemental different levels of EOA notably up-regulated claudin-1 (CLDN-1), occludin (OCLN), zonula occludens-1 (ZO-1), mucin-2 (MUC-2), fatty acid binding protein-2 (FABP-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), myeloid differential protein-88 (MyD88) and interleukin-6 (IL-6) mRNA levels in the ileum of the infected chickens after challenge, whereas down-regulated toll-like receptor-4 (TLR-4) mRNA levels (P < 0.05). Linear discriminant analysis combined effect size measurements analysis (LEfSe) showed that the relative abundance of g_Butyricicoccus, g_Anaerotruncus and g_unclassified_f_Bacillaceae significantly was enriched in infected birds given EOA. Also, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed that alpha-linolenic acid metabolism, fatty acid metabolism and biosynthesis of unsaturated fatty acids were significantly enriched in the EOA group. CONCLUSION Our data suggest that the essential oils and organic acids mixture can be used as an effective strategy to ameliorate and alleviate Salmonella Enteritidis infection in broilers.
Collapse
Affiliation(s)
- Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianing Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinyu Huang
- Shanghai Meinong Biotechnology Co., Ltd., Shanghai, China
| | - Kaichen Zhang
- Shandong Heyi Food Co., Ltd., Zaozhuang City, Shandong Province, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Wang C, Shan H, Chen H, Bai X, Ding J, Ye D, Adam FEA, Yang Y, Wang J, Yang Z. Probiotics and vitamins modulate the cecal microbiota of laying hens submitted to induced molting. Front Microbiol 2023; 14:1180838. [PMID: 37228378 PMCID: PMC10203222 DOI: 10.3389/fmicb.2023.1180838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Induced molting enables laying hens to relax, restore energy and prolong the laying hen cycle, resolving problems such as poor egg quality and minimizing economic losses caused by rising global feeding costs. However, traditional molting methods may disrupt gut microflora and promote potential pathogens infections. This study used a customized additive with a mixture of probiotics and vitamins to induce molting and examine the cecal microbiota post molting. A total of two hundred 377 day-of-ISA Brown laying hens were randomly assigned to four groups: non-molt with basal diet (C), 12-day feeding restriction (FR) in earlier-molting (B), feed again to 27.12% egg production in middle-molting (A) and reach second peak of egg production over 81.36% in post-molting (D). Sequencing 16S rRNA to analyze cecal microbial composition revealed that there is no significant change in bacterial community abundance post-molting. In contrast to group C, the number of potentially harmful bacteria such as E. coli and Enterococcus was not found to increase in groups B, A, or D. This additive keeps cecal microbiota diversity and community richness steady. In cecal contents, hens in group B had lower Lactobacillus, Lachnospiraceae and Prevotellaceae (vsC, A, and D), no significant differences were found between post-molting and the non-molting. Furthermore, cecal microbiota and other chemicals (antibodies, hormones, and enzymes, etc.) strongly affect immunological function and health. Most biochemical indicators are significantly positively correlated with Prevotellaceae, Ruminococcaceae and Subdoligranulum, while negatively with Phascolarctobacterium and Desulfovibrio. In conclusion, the additive of probiotics and vitamins improved the cecal microbiota composition, no increase in the associated pathogenic microbial community due to traditional molting methods, and enhances hepatic lipid metabolism and adaptive immunological function, supporting their application and induced molting technology in the poultry breeding industry.
Collapse
Affiliation(s)
- Chunyang Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Honghu Shan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Jingru Ding
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Dongyang Ye
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | | | - Yawei Yang
- Hongyan Molting Research Institute, Xianyang, Shanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| |
Collapse
|
7
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
8
|
Papadomichelakis G, Palamidi I, Paraskeuas VV, Giamouri E, Mountzouris KC. Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets. Animals (Basel) 2023; 13:431. [PMID: 36766320 PMCID: PMC9913353 DOI: 10.3390/ani13030431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
A natural phytogenic formulation (NPF) was tested as an alternative to pharmaceutical zinc oxide (ZnO) in weaned piglets with respect to growth performance, apparent total tract digestibility and faecal microbiota composition and metabolic activity. Two dietary NPF levels (NPF: 1000 and 2000 mg/kg diet) were compared to a positive control (ZnO: 3000 mg ZnO/kg diet) and a negative control (CON: no added ZnO or NPF) using 84 weaned piglets from 29 d to 78 d (days of age). Feed conversion ratio was improved (p < 0.05) in ZnO and NPF piglets were compared to CON at 50 d. Dry matter, organic matter and crude protein (p < 0.05) digestibility was improved in NPF piglets compared to CON at 57 d. Compared to CON, NPF inclusion reduced E. coli (p < 0.05) and increased C. leptum subgroup (p < 0.01) at 57 d and 78 d, and reduced C. perfringens subgroup (p < 0.05; at 78 d). The ZnO reduced (p < 0.001) E. coli and C. perfringens subgroup (p < 0.01) compared to CON at 78 d. Moreover, ZnO and NPF reduced molar ratios of branched chain volatile fatty acids (p < 0.05) compared to CON, while NPF also increased butyric acid (p < 0.05) at 78 d. In conclusion, the NPF appeared to be a promising alternative to pharmaceutical doses of ZnO.
Collapse
Affiliation(s)
| | | | | | | | - Konstantinos C. Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
9
|
García-Reyna A, Cortes-Cuevas A, Juárez-Ramírez M, Márquez-Mota CC, Gómez-Verduzco G, Arce-Menocal J, Ávila-González E. Performance, Gut Integrity, Enterobacteria Content in Ceca of Broiler Fed Different Eubiotic Additives. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2021-1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
| | | | | | | | | | - J Arce-Menocal
- Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | | |
Collapse
|
10
|
Derix J, Ducatelle R, Pardon B, Croes E, Nibbelink NG, Van Deurzen-Duineveld L, Van Immerseel F, Goossens E. The in vitro effect of lactose on Clostridium perfringens alpha toxin production and the implications of lactose consumption for in vivo anti-alpha toxin antibody production. J Dairy Sci 2022; 106:733-742. [DOI: 10.3168/jds.2022-22467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022]
|
11
|
Effect of enzyme-modified yeast products on Salmonella Enteritidis colonization in different organs of laying hens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Dietary Supplementation of a New Probiotic Compound Improves the Growth Performance and Health of Broilers by Altering the Composition of Cecal Microflora. BIOLOGY 2022; 11:biology11050633. [PMID: 35625361 PMCID: PMC9138300 DOI: 10.3390/biology11050633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In most countries, antibiotic growth promoters are restricted or banned in the livestock industry, and probiotics have been widely explored to replace them. Lactobacillus LP184 and Yeast SC167 were selected as probiotic strains that could remain viable in feed and the gastrointestinal tract and were combined to form a compound to act as a substitute for antibiotics in broilers’ diets. This study aimed to investigate the effects of the compound probiotics as a potential alternative to antibiotics in broiler production. The feeding trial contained three dietary treatments and lasted for 42 days. The negative control group was fed the basal diet. The positive control group was fed the basal diet supplemented with commercial antibiotics. The probiotics group was fed the basal diet containing the compound probiotics. The results showed that the compound probiotics were a competent alternative for synthetic antibiotics to improve the production of broilers. The compound probiotics enhanced the immune and antioxidant capacities of broilers, which could not be achieved using antibiotics. The positive effects of the compound probiotics on the growth performance and health of broilers can likely be attributed to the improvement of intestinal morphology and cecal microbial diversity, effects which are distinct from those of antibiotics. These findings demonstrate the feasibility of replacing antibiotics with compound probiotics in broilers’ diets. Abstract The current study aimed to investigate the effects of a new probiotic compound developed as a potential alternative to synthetic antibiotics for broilers. A total of 360 newly hatched Arbor Acres male chicks were randomly divided into three treatment groups. Each treatment consisted of six replicates with 20 birds in each replicate. The negative control group was fed the basal diet. The positive control group was fed the basal diet supplemented with a commercial antimicrobial, virginiamycin, at 30 mg/kg of basal feed. The compound probiotics group was fed a basal diet containing 4.5 × 106 CFU of Lactobacillus LP184 and 2.4 × 106 CFU of Yeast SC167 per gram of basal feed. The feeding trial lasted for 42 days. The results showed that the compound probiotics were a competent alternative to synthetic antibiotics for improving the growth performance and carcass traits of broilers. The compound probiotics enhanced the immune and antioxidant capacities of the broilers, while antibiotics lacked such merits. The positive effects of compound probiotics could be attributed to an improvement in the intestinal morphology and cecal microbial diversity of broilers, effects which are distinct from those of antibiotics. These findings revealed the differences between probiotics and antibiotics in terms of improving broilers’ performance and enriched the basic knowledge surrounding the intestinal microbial structure of broilers.
Collapse
|
13
|
Ahiwe E, Tedeschi Dos Santos T, Graham H, Iji P. Can probiotic or prebiotic yeast (Saccharomyces cerevisiae) serve as alternatives to in-feed antibiotics for healthy or disease-challenged broiler chickens?: a review. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Novel multi-strain probiotics reduces Pasteurella multocida induced fowl cholera mortality in broilers. Sci Rep 2021; 11:8885. [PMID: 33903662 PMCID: PMC8076301 DOI: 10.1038/s41598-021-88299-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pasteurella multocida causes fowl cholera, a highly contagious poultry disease of global concern, causing significant ecological and economic challenges to the poultry industry each year. This study evaluated the effects of novel multi-strain probiotics consisting of Lactobacillus plantarum, L. fermentum, Pediococcus acidilactici, Enterococcus faecium and Saccharomyces cerevisiae on growth performance, intestinal microbiota, haemato-biochemical parameters and anti-inflammatory properties on broilers experimentally challenged with P. multocida. A total of 120 birds were fed with a basal diet supplemented with probiotics (108 CFU/kg) and then orally challenged with 108 CFU/mL of P. multocida. Probiotics supplementation significantly (P < 0.05) improved growth performance and feed efficiency as well as reducing (P < 0.05) the population of intestinal P. multocida, enterobacteria, and mortality. Haemato-biochemical parameters including total cholesterol, white blood cells (WBC), proteins, glucose, packed cell volume (PCV) and lymphocytes improved (P < 0.05) among probiotic fed birds when compared with the controls. Transcriptional profiles of anti-inflammatory genes including hypoxia inducible factor 1 alpha (HIF1A), tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) and prostaglandin E receptor 2 (PTGER2) in the intestinal mucosa were upregulated (P < 0.05) in probiotics fed birds. The dietary inclusion of the novel multi-strain probiotics improves growth performance, feed efficiency and intestinal health while attenuating inflammatory reaction, clinical signs and mortality associated with P. multocida infection in broilers.
Collapse
|
15
|
Wei RX, Ye FJ, He F, Song Q, Xiong XP, Yang WL, Gang X, Hu JW, Hu B, Xu HY, Li L, Liu HH, Zeng XY, Chen L, Kang B, Han CC. Comparison of overfeeding effects on gut physiology and microbiota in two goose breeds. Poult Sci 2020; 100:100960. [PMID: 33652539 PMCID: PMC7936201 DOI: 10.1016/j.psj.2020.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
To have a better understanding of how the “gut–liver axis” mediates the lipid deposition in the liver, a comparison of overfeeding influence on intestine physiology and microbiota between Gang Goose and Tianfu Meat Goose was performed in this study. After force-feeding, compared with Gang Goose, Tianfu Meat Goose had better fat storage capacity in liver (397.94 vs. 166.54 for foie gras weight (g), P < 0.05; 6.37 vs. 2.92% for the ratio of liver to body, P < 0.05; 60.01 vs. 46.64% for fat content, P < 0.05) and the less subcutaneous adipose tissue weight (1240.96 g vs. 1440.46 g, P < 0.05). After force-feeding, the digestion–absorption capacity of Tianfu Meat Goose was higher than that of Gang Goose (5.56 vs. 3.64 and 4.63 vs. 3.68 for the ratio of villus height to crypt depth in duodenum and ileum, respectively, P < 0.05; 1394.96 vs. 782.59 and 1314.76 vs. 766.17 for the invertase activity (U/mg-prot), in duodenum and ileum, respectively, P < 0.05; 6038.36 vs. 3088.29 and 4645.29 vs. 3927.61 for the activity of maltase (U/mg-prot), in duodenum and ileum, respectively, P < 0.05). Force-feeding decreased the gene expression of Escherichia coli in the ileum of Tianfu Meat Goose; force-feeding increased the number of gut microbiota Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction band in Tianfu Meat Goose and decreased the number in Gang Goose. In conclusion, compared with Gang Goose, the lipid deposition in the liver and the intestine digestion–absorption capacity and stability were higher in Tianfu Meat Goose. Thereby, Tianfu Meat Goose is the better breed for foie gras production for prolonged force-feeding; Gang Goose possesses better fat storage capacity in subcutaneous adipose tissue. However, Gang Goose has lower gut stability responding to force-feeding, so Gang Goose is suited to force-feeding in a short time to gain the body weight and subcutaneous fat as an overfed duck for roast duck.
Collapse
Affiliation(s)
- R X Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F J Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Q Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X P Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - W L Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Gang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - J W Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H Y Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Y Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - L Chen
- Xichang Huanong Poultry Co., Xichang, Sichuan 615000, P.R. China
| | - B Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - C C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
16
|
Tong C, Li P, Yu LH, Li L, Li K, Chen Y, Yang SH, Long M. Selenium-rich yeast attenuates ochratoxin A-induced small intestinal injury in broiler chickens by activating the Nrf2 pathway and inhibiting NF-KB activation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
17
|
Abstract
Stress is a nonspecific response of the body to any demand imposed upon it, disrupting the body homoeostasis and manifested with symptoms such as anxiety, depression or even headache. These responses are quite frequent in the present competitive world. The aim of this review is to explore the effect of stress on gut microbiota. First, we summarize evidence of where the microbiota composition has changed as a response to a stressful situation, and thereby the effect of the stress response. Likewise, we review different interventions that can modulate microbiota and could modulate the stress according to the underlying mechanisms whereby the gut-brain axis influences stress. Finally, we review both preclinical and clinical studies that provide evidence of the effect of gut modulation on stress. In conclusion, the influence of stress on gut microbiota and gut microbiota on stress modulation is clear for different stressors, but although the preclinical evidence is so extensive, the clinical evidence is more limited. A better understanding of the mechanism underlying stress modulation through the microbiota may open new avenues for the design of therapeutics that could boost the pursued clinical benefits. These new designs should not only focus on stress but also on stress-related disorders such as anxiety and depression, in both healthy individuals and different populations.
Collapse
|
18
|
Effect of Yeast Culture ( Saccharomyces cerevisiae) on Broilers: A Preliminary Study on the Effective Components of Yeast Culture. Animals (Basel) 2019; 10:ani10010068. [PMID: 31905984 PMCID: PMC7022638 DOI: 10.3390/ani10010068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The value of yeast culture (YC) as alternative feed additives in poultry farming has been proven. YC is a nutrient-rich and complex micro-ecological fermentation product containing various metabolites. However, the major or specific effective components of YC and their importance in poultry farming are unknown. Herein, we screened the “effective ingredients” of YCs obtained from different fermentation times based on metabolomics and animal feeding experiments. Glycine, fructose, inositol, galactose, and sucrose were identified as potential effective metabolites in YCs. These findings provide an important basis for objective, accurate, and quick evaluation of the quality of YC products, as well as a scientific understanding of their functions. Abstract This study was aimed at determining the effective ingredients of yeast culture (YC) for animal breeding. First, the contents of YCs obtained from various fermentation times were detected using gas-chromatography. A total of 85 compounds were identified. Next, 336 Arbor Acres (AA) broilers were randomly divided into seven experimental groups and fed a basal diet, diets supplemented with YCs obtained at various fermentation times, or SZ1 (a commercial YC product). A significant increase in body weight gain (BWG) and a significant decrease in feed conversion ratio (FCR) of AA broiler chicks were observed with YC supplementation. Additionally, most of blood and immunological indices were improved with YC supplementation. According to the production performance and the results of multivariate analysis, glycine, fructose, inositol, galactose, and sucrose were found as the potential effective compounds of YC and were involved in metabolic pathways including glycine, serine, and threonine metabolism. Supplementation with diets based on combinations of effective compounds improved weight gain, feed efficiency, serum immunoglobulin A, and immunoglobulin G, but decreased blood urea concentration. These findings suggest YCs as effective and harmless feed additives with improved nutritional properties for broiler chicks.
Collapse
|
19
|
Chuang WY, Lin WC, Hsieh YC, Huang CM, Chang SC, Lee TT. Evaluation of the Combined Use of Saccharomyces Cerevisiae and Aspergillus Oryzae with Phytase Fermentation Products on Growth, Inflammatory, and Intestinal Morphology in Broilers. Animals (Basel) 2019; 9:E1051. [PMID: 31805670 PMCID: PMC6940866 DOI: 10.3390/ani9121051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Saccharomyces cerevisiae and Aspergillus oryzae are both ancient probiotic species traditionally used as microbes for brewing beer and soy sauce, respectively. This study investigated the effect of adding these two probiotics with phytase fermentation products to the broilers diet. Fermented products possess protease and cellulase, and the activities were 777.1 and 189.5 U/g dry matter (DM) on S. cerevisiae fermented products (SCFP) and 190 and 213.4 U/g DM on A. oryzae fermented products (AOFP), respectively. Liposaccharides stimulated PBMCs to produce nitric oxide to 120 μmol. Both SCFP and AOFP reduced lipopolysaccharides stimulated peripheral blood mononuclear cells (PBMCs) nitric oxide release to 40 and 60 μmol, respectively. Nevertheless, in an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, SCFP and AOFP also increased the survival rate of lipopolysaccharides stimulated PBMCs by almost two-fold compared to the negative control. A total of 240 broilers were divided into four groups as Control, SCFP 0.1% (SCFP), SCFP 0.05% + AOFP 0.05% (SAFP), and AOFP 0.1% (AOFP) groups, respectively. Each group had 20 broilers, and three replicate pens. The results showed that the addition of SCFP, SAFP, and AOFP groups did not affect the growth performances, but increased the jejunum value of villus height and villus: crypt ratio on SAFP and AOFP groups compared to the control and SCFP groups. Furthermore, adding SCFP, SAFP, and AOFP significantly reduced the number of Clostridium perfringens in ileum chyme. SCFP, SAFP, and AOFP significantly reduced the amount of interleukin-1β, inducible nitric oxide synthases, interferon-γ, and nuclear factor kappa B mRNA expression in PBMCs, especially in the AOFP group. In summary, all the SCFP, SAFP, and AOFP groups can be suggested as a functional feed additive since they enhanced villus: crypt ratio and decreased inflammation-related mRNA expression, especially for AOFP group in broilers.
Collapse
Affiliation(s)
- Wen Yang. Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Wei Chih. Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Yun Chen. Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Chung Ming. Huang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Shen Chang. Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Pingtung 912, Taiwan;
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
20
|
Massacci FR, Lovito C, Tofani S, Tentellini M, Genovese DA, De Leo AAP, Papa P, Magistrali CF, Manuali E, Trabalza-Marinucci M, Moscati L, Forte C. Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 Positively Affects Performance and Intestinal Ecosystem in Broilers during a Campylobacter jejuni Infection. Microorganisms 2019; 7:E596. [PMID: 31766507 PMCID: PMC6956328 DOI: 10.3390/microorganisms7120596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023] Open
Abstract
In poultry production, probiotics have shown promise to limit campylobacteriosis at the farm level, the most commonly reported zoonosis in Europe. The aim of this trial was to evaluate the effects of Saccharomyces supplementation in Campylobacter jejuni challenged chickens on performance and intestinal ecosystem. A total of 156 day old male Ross 308 chicks were assigned to a basal control diet (C) or to a Saccharomyces cerevisiae boulardii CNCM I-1079 supplemented diet (S). All the birds were orally challenged with C. jejuni on day (d) 21. Live weight and growth performance were evaluated on days 1, 21, 28 and 40. The histology of intestinal mucosa was analyzed and the gut microbiota composition was assessed by 16S rRNA. Performance throughout the trial as well as villi length and crypt depth were positively influenced by yeast supplementation. A higher abundance of operational taxonomic units (OTUs) annotated as Lactobacillus reuteri and Faecalibacterium prausnitzii and a lower abundance of Campylobacter in fecal samples from S compared to the C group were reported. Supplementation with Saccharomyces cerevisiae boulardii can effectively modulate the intestinal ecosystem, leading to a higher abundance of beneficial microorganisms and modifying the intestinal mucosa architecture, with a subsequent improvement of the broilers' growth performance.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Carmela Lovito
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana ‘M. Aleandri’, 00178 Roma, Italy
| | - Michele Tentellini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Domenica Anna Genovese
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Alessia Arcangela Pia De Leo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Paola Papa
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | | | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Claudio Forte
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| |
Collapse
|
21
|
Hofacre CL, Berghaus RD, Jalukar S, Mathis GF, Smith JA. Effect of a Yeast Cell Wall Preparation on Cecal and Ovarian Colonization With Salmonella enteritidis in Commercial Layers. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfy030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Awais MM, Jamal MA, Akhtar M, Hameed MR, Anwar MI, Ullah MI. Immunomodulatory and ameliorative effects of Lactobacillus and Saccharomyces based probiotics on pathological effects of eimeriasis in broilers. Microb Pathog 2018; 126:101-108. [PMID: 30385394 DOI: 10.1016/j.micpath.2018.10.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 10/27/2018] [Indexed: 11/28/2022]
Abstract
Eimeria infection is very important in broilers and causes heavy economic losses in extensive farming system due to reduced weight gains, high mortality and poor feed conversion ratio (FCR). Under the circumstances, there is a dire need to devise effective control strategies to avoid/counteract this infectious threat. This study was conducted to assess the immunomodulatory and ameliorative effects of Lactobacillus and Saccharomyces based probiotics against Eimeria infection in broilers. The results showed statistically higher (P < 0.05) lymphoproliferative responses in experimental groups treated either with Lactobacillus or Saccharomyces based probiotics, as compared to control group. Further higher antibody titers (geomean titers) were also recorded in chickens of experimental groups treated with probiotics as compared to those of control group. The probiotic treated groups also revealed significantly improved (P < 0.05) FCRs as compared to control group. In challenge experiment, significantly lower (P < 0.05) oocyst counts were recorded in broilers treated with probiotics, when compared with control group. Further, experimental groups also revealed significantly higher (P < 0.05) daily weight gains and protection rates as compared to control. The data regarding the lesion scoring showed that chickens treated with probiotics had higher values of percent protection against intestinal and caecal lesion, when compared with those of control group. In conclusion, supplementation of probiotics proved very useful to enhance the immunological and performance potentials of broilers which subsequently provided protection against Eimeria infection. Further studies on the physico-chemical properties along with commercial feasibility and cost benefit analysis of these probiotic species are needed for wise selection to get maximum profit from broiler industry.
Collapse
Affiliation(s)
- Mian Muhammad Awais
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Muhammad Asif Jamal
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Masood Akhtar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Raza Hameed
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Irfan Ullah
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
23
|
Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Res 2018; 28:51-76. [PMID: 30374651 DOI: 10.1007/s11248-018-0101-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.
Collapse
|
24
|
El Khoury S, Rousseau A, Lecoeur A, Cheaib B, Bouslama S, Mercier PL, Demey V, Castex M, Giovenazzo P, Derome N. Deleterious Interaction Between Honeybees (Apis mellifera) and its Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Lloyd DH, Page SW. Antimicrobial Stewardship in Veterinary Medicine. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0023-2017. [PMID: 29916349 PMCID: PMC11633576 DOI: 10.1128/microbiolspec.arba-0023-2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
While antimicrobial resistance is already a public health crisis in human medicine, therapeutic failure in veterinary medicine due to antimicrobial resistance remains relatively uncommon. However, there are many pathways by which antimicrobial resistance determinants can travel between animals and humans: by close contact, through the food chain, or indirectly via the environment. Antimicrobial stewardship describes measures that can help mitigate the public health crisis and preserve the effectiveness of available antimicrobial agents. Antimicrobial stewardship programs have been principally developed, implemented, and studied in human hospitals but are beginning to be adapted for other applications in human medicine. Key learning from the experiences of antimicrobial stewardship programs in human medicine are summarized in this article-guiding the development of a stewardship framework suitable for adaptation and use in both companion animal and livestock practice. The antimicrobial stewardship program for veterinary use integrates infection prevention and control together with approaches emphasizing avoidance of antimicrobial agents. The 5R framework of continuous improvement that is described recognizes the importance of executive support; highly motivated organizations and teams (responsibility); the need to review the starting position, set objectives, and determine means of measuring progress and success; and a critical focus on reducing, replacing, and refining the use of antimicrobial agents. Significant issues that are currently the focus of intensive research include improved detection and diagnosis of infections, refined dosing regimens that are simultaneously effective while not selecting resistance, searches for alternatives to antimicrobial agents, and development of improved vaccines to enhance immunity and reduce disease.
Collapse
Affiliation(s)
- David H Lloyd
- Department of Clinical Sciences and Services, Royal Veterinary College (University of London), Hawkshead Campus North Mymms, Hatfield AL9 7TA, United Kingdom
| | - Stephen W Page
- Advanced Veterinary Therapeutics, Newtown, NSW 2042, Australia
| |
Collapse
|
26
|
Administration of Bacillus Amyloliquefaciens and Saccharomyces Cerevisiae as Direct-Fed Microbials Improves Intestinal Microflora and Morphology in Broiler Chickens. J Poult Sci 2017; 54:134-141. [PMID: 32908418 PMCID: PMC7477127 DOI: 10.2141/jpsa.0160069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study was conducted to investigate the effects of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) as directed-fed microbials on performance, intestinal microflora, and intestinal morphology in broiler chickens. A total of four hundred one-day-old broiler chickens were randomly divided into 16 pens of 25 chickens each, and every treatment had 4 replicated pens with two pens of males and females respectively. A formulated corn-soybean meal based control diets and experimental diets, including 0.1% BA (1×107 colony-forming units (CFU)/kg), the mixture of 0.05% BA (5×106 CFU/kg) and 0.05% SC (5×106 CFU/kg), and 10 ppm antibiotic (avilamycin), were fed for 5 weeks. The results showed no significant difference in the growth performance among all treatments. Supplementation of the mixture of BA and SC increased acetate and propionate and decreased the E. coli in ceca compared to control and antibiotic treatment. The treatments with antibiotic, BA, and the mixture of BA and SC compared to control treatment increased villus height / crypt depth ratio and decreased ammonia in excreta. In addition, supplementation of BA and the mixture of BA and SC compared to antibiotic treatment increased serum high-density lipoprotein, and decreased serum glutamic-oxaloacetic transaminase, respectively. In conclusion, supplementation of the mixture of BA and SC was better than added BA only, and the mixed probiotics product could potentially alter the use of avilamycin in broiler diets.
Collapse
|
27
|
Thibodeau A, Letellier A, Yergeau É, Larrivière-Gauthier G, Fravalo P. Lack of Evidence That Selenium-Yeast Improves Chicken Health and Modulates the Caecal Microbiota in the Context of Colonization by Campylobacter jejuni. Front Microbiol 2017; 8:451. [PMID: 28367146 PMCID: PMC5355472 DOI: 10.3389/fmicb.2017.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Faced with ever-increasing demand, the industrial production of food animals is under pressure to increase its production. In order to keep productivity, quality, and safety standards up while reducing the use of antibiotics, farmers are seeking new feed additives. In chicken production, one of these additives is selenium. This element is expected to confer some advantages in terms of animal health and productivity, but its impact on chicken intestinal microbiota as well as on the carriage of foodborne pathogens is unknown. In this study, chickens raised in a level 2 animal facility were fed or not 0.3 ppm of in-feed selenium-yeast until 35 days of age and were inoculated or not with the foodborne pathogen Campylobacter jejuni at the age of 14 days. At the end of the study, body weight, seric IgY, intestinal IgA, seric gluthatione peroxydase activity, the caecal microbiota (analyzed by MiSeq 16S rRNA gene sequencing), and C. jejuni caecal levels were analyzed. The experiment was completely replicated twice, with two independent batches of chickens. This study revealed that, for healthy chickens raised in very good hygienic conditions, selenium-yeast does not influence the bird’s body weight and lowers their seric gluthatione peroxidase activity as well as their intestinal IgA concentrations. Furthermore, selenium-yeast did not modify the caecal microbiota or the colonization of C. jejuni. The results also showed that C. jejuni colonization does not impact any of the measured chicken health parameters and only slightly impacts the caecal microbiota. This study also clearly illustrated the need for true biological replication (independent animal trials) when assessing the microbiota shifts associated with treatments as the chickens microbiotas clearly clustered according to study replicate.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| | - Ann Letellier
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| | - Étienne Yergeau
- INRS-Institut Armand-Frappier Research Centre, Université du Québec, Laval QC, Canada
| | - Guillaume Larrivière-Gauthier
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| | - Philippe Fravalo
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| |
Collapse
|
28
|
Teng PY, Chang CL, Huang CM, Chang SC, Lee TT. Effects of solid-state fermented wheat bran by Bacillus amyloliquefaciens and Saccharomyces cerevisiae on growth performance and intestinal microbiota in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1299597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Che Lun Chang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Chung Ming Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shen Chang Chang
- Livestock Research Institute, Council of Agriculture, Pingtung, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
29
|
Vrakas S, Mountzouris KC, Michalopoulos G, Karamanolis G, Papatheodoridis G, Tzathas C, Gazouli M. Intestinal Bacteria Composition and Translocation of Bacteria in Inflammatory Bowel Disease. PLoS One 2017; 12:e0170034. [PMID: 28099495 PMCID: PMC5242456 DOI: 10.1371/journal.pone.0170034] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Live commensal intestinal bacteria are present in the peripheral blood where they can induce inflammation. OBJECTIVE To evaluate the intestinal bacteria composition and translocation of bacteria in IBD. METHODS Both blood and tissue biopsy samples were collected from adult patients with active/inactive Crohn's disease (CD), active/inactive ulcerative colitis (UC) and healthy individuals. Most of the patients were newly diagnosed and none of them received antibiotics. Using a reverse transcription-quantitative real-time PCR (RT-qPCR) method, we determined the composition of microbiota. NOD2/CARD15 genotyping was also studied. RESULTS Total bacterial DNA concentration was increased in tissue and blood samples of IBD patients compared to healthy controls. Furthermore, the active IBD cases had higher total bacterial DNA concentration levels compared to the inactive cases. Three species characterized dysbiosis in IBD, namely an increase of Bacteroides spp in active and inactive IBD samples, and a decrease in Clostridium leptum group (IV), and Faecalibacterium prausnitzi in both active and inactive IBD patients. No significant association between bacterial translocation and NOD2/CARD15 mutations was found. CONCLUSIONS The composition of the microbiota in IBD patients differs from that of healthy controls. The high rate of bacterial DNA in the blood samples indicates translocation in inflammatory bowel disease.
Collapse
Affiliation(s)
- Spyros Vrakas
- Gastroenterology Department, Tzaneion General Hospital, Piraeus, Greece
| | | | | | - George Karamanolis
- Gastroenterology Unit, 2nd University Surgical Department Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School, National and Kapodistrian University of Athens Laiko Hospital of Athens, Athens, Greece
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Oh JK, Pajarillo EAB, Chae JP, Kim IH, Yang DS, Kang DK. Effects of Bacillus subtilis CSL2 on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella Gallinarum. J Anim Sci Biotechnol 2017; 8:1. [PMID: 28070331 PMCID: PMC5215103 DOI: 10.1186/s40104-016-0130-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The chicken gastrointestinal tract contains a diverse microbiota whose composition and structure play important roles in gut functionality. In this study, microbial shifts resulting from feed supplementation with Bacillus subtilis CSL2 were evaluated in broilers challenged and unchallenged with Salmonella Gallinarum. To analyse bacterial community composition and functionality, 454 GS-FLX pyrosequencing of 16S rRNA gene amplicons was performed. RESULTS The Quantitative Insights into Microbial Ecology (QIIME) pipeline was used to analyse changes in the faecal microbiota over a 24-h period. A total of 718,204 sequences from broiler chickens were recorded and analysed. At the phylum level, Firmicutes, Bacteroidetes, and Proteobacteria were the predominant bacterial taxa. In Salmonella-infected chickens (SC), Bacteroidetes were more highly abundant compared to control (NC) and Bacillus-treated (BT) chickens. At the genus level, in the NC and BT groups, Lactobacillus was present at high abundance, and the abundance of Turicibacter, unclassified Enterobacteriaceae, and Bacteroides increased in SC broilers. Furthermore, taxon-independent analysis showed that the SC and BT groups were compositionally distinct at the end of the 24-h period. Further analysis of functional properties showed that B. subtilis CSL2 administration increased gut-associated energy supply mechanisms (i.e. carbohydrate transport and metabolism) to maintain a stable microbiota and protect gut integrity. CONCLUSIONS This study demonstrated that S. Gallinarum infection and B. subtilis CSL2 supplementation in the diet of broiler chickens influenced the diversity, composition, and functional diversity of the faecal microbiota. Moreover, the findings offer significant insights to understand potential mechanisms of Salmonella infection and the mode of action of probiotics in broiler chickens.
Collapse
Affiliation(s)
- Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Edward Alain B Pajarillo
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Jong Pyo Chae
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In Ho Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Dong Soo Yang
- Abson BioChem, Inc, 10-1 Yangjimaeul-gil, Sangrok-gu, Ansan, 15524 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
31
|
Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system. Clin Exp Gastroenterol 2016; 9:269-279. [PMID: 27695355 PMCID: PMC5027949 DOI: 10.2147/ceg.s111003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, traveller’s diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. Aim The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. Methods A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). Results and conclusion S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host’s infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens’ ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated.
Collapse
Affiliation(s)
| | - Stephan C Bischoff
- Department of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|