1
|
Choudhary RK, Kumar B. V. S, Sekhar Mukhopadhyay C, Kashyap N, Sharma V, Singh N, Salajegheh Tazerji S, Kalantari R, Hajipour P, Singh Malik Y. Animal Wellness: The Power of Multiomics and Integrative Strategies: Multiomics in Improving Animal Health. Vet Med Int 2024; 2024:4125118. [PMID: 39484643 PMCID: PMC11527549 DOI: 10.1155/2024/4125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
The livestock industry faces significant challenges, with disease outbreaks being a particularly devastating issue. These diseases can disrupt the food supply chain and the livelihoods of those involved in the sector. To address this, there is a growing need to enhance the health and well-being of livestock animals, ultimately improving their performance while minimizing their environmental impact. To tackle the considerable challenge posed by disease epidemics, multiomics approaches offer an excellent opportunity for scientists, breeders, and policymakers to gain a comprehensive understanding of animal biology, pathogens, and their genetic makeup. This understanding is crucial for enhancing the health of livestock animals. Multiomic approaches, including phenomics, genomics, epigenomics, metabolomics, proteomics, transcriptomics, microbiomics, and metaproteomics, are widely employed to assess and enhance animal health. High-throughput phenotypic data collection allows for the measurement of various fitness traits, both discrete and continuous, which, when mathematically combined, define the overall health and resilience of animals, including their ability to withstand diseases. Omics methods are routinely used to identify genes involved in host-pathogen interactions, assess fitness traits, and pinpoint animals with disease resistance. Genome-wide association studies (GWAS) help identify the genetic factors associated with health status, heat stress tolerance, disease resistance, and other health-related characteristics, including the estimation of breeding value. Furthermore, the interaction between hosts and pathogens, as observed through the assessment of host gut microbiota, plays a crucial role in shaping animal health and, consequently, their performance. Integrating and analyzing various heterogeneous datasets to gain deeper insights into biological systems is a challenging task that necessitates the use of innovative tools. Initiatives like MiBiOmics, which facilitate the visualization, analysis, integration, and exploration of multiomics data, are expected to improve prediction accuracy and identify robust biomarkers linked to animal health. In this review, we discuss the details of multiomics concerning the health and well-being of livestock animals.
Collapse
Affiliation(s)
- Ratan Kumar Choudhary
- Department of Bioinformatics, Animal Stem Cells Laboratory, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sunil Kumar B. V.
- Department of Animal Biotechnology, Proteomics & Metabolomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Chandra Sekhar Mukhopadhyay
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Neeraj Kashyap
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Vishal Sharma
- Department of Animal Biotechnology, Reproductive Biotechnology Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Nisha Singh
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sina Salajegheh Tazerji
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roozbeh Kalantari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouneh Hajipour
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yashpal Singh Malik
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| |
Collapse
|
2
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
3
|
Kang SW, Christensen KD, Jr. MTK, Orlowski SK. Effects of Environmental Enrichments on Welfare and Hepatic Metabolic Regulation of Broiler Chickens. Animals (Basel) 2024; 14:557. [PMID: 38396525 PMCID: PMC10886341 DOI: 10.3390/ani14040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aims of this study were to find suitable environmental enrichment (EE) and evaluate the combined effect of two EEs, variable light intensity (VL) lighting program and EH, on mental health and hepatic metabolic regulation in commercial broilers. To find the advantageous EEs for broilers, three different EEs (board, hut, and ramp) were tested in trial 1. EEs were placed and the engagement of birds to EEs, dustbathing behavior, and daily physical activity were observed. Birds treated with huts showed higher engagement than the board- or ramp-treated birds (p < 0.05). The results of dustbathing behavior and daily physical activity indicated that the environmental hut (EH) is the most favorable enrichment for broilers. In the second trial, to test the effect of EHs on mental health and hepatic metabolic conditions, the brain and liver were sampled from the four treatment birds (20 lx_Con, 20 lx_Hut, VL_Con and VL_Hut) on day 42. The lower expression of TPH2 (tryptophan hydroxylase 2) of VL_Hut birds than those of VL_Con and 20 lx_Hut treated birds suggests the combining effect of EHs with the VL lighting program on the central serotonergic homeostasis of broilers. Reduced expressions of TH (tyrosine hydroxylase), GR (glucocorticoid receptor), BDNF (brain-derived neurotrophic factor) of VL_Hut treated birds compared to those of VL_Con and 20 lx_Hut birds suggest lower stress, stress susceptibility, and chronic social stress in VL_Hut treated birds. The expression of CPT1A (carnitine palmitoyl transferase 1) increased over three-fold in the liver of VL_Con birds compared to 20 lx_Con birds (p < 0.05). EHs treatment in VL birds (VL_Hut) significantly decreased CPT1A but not in 20 lx birds (20 lx_Hut). The expression of ACCα (acetyl-CoA carboxylase alpha) was significantly decreased in VL_Con birds compared to 20 lx_Con birds. There was no significant difference in the hepatic FBPase (fructose-1,6-bisphosphatase), GR, and 11β-HSD1 (11 β-hydroxysteroid dehydrogenease-1) expression between 20 lx_Con and VL_Con birds, but EHs significantly stimulated GR in 20 lx_Hut birds, and stimulated FBPase and 11β-HSD1 expression in the VL_Hut birds compared to 20 lx_Con birds, suggesting that the VL lighting program reduced fatty acid synthesis and increased fatty acid β-oxidation in the broilers' liver and VL_Hut improved the hepatic de novo glucose production. Taken together, the results suggest that the stimulated voluntary activity by EHs in the light-enriched broiler house improved mental health and hepatic metabolic function of broilers and may indicate that the improved hepatic metabolic function contributes to efficient nutritional support for broilers.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.T.K.J.); (S.K.O.)
| | | | - Michael T. Kidd Jr.
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.T.K.J.); (S.K.O.)
| | - Sara K. Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.T.K.J.); (S.K.O.)
| |
Collapse
|
4
|
Tan X, Liu R, Zhao D, He Z, Li W, Zheng M, Li Q, Wang Q, Liu D, Feng F, Zhu D, Zhao G, Wen J. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J Adv Res 2024; 55:1-16. [PMID: 36871617 PMCID: PMC10770282 DOI: 10.1016/j.jare.2023.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
INTRODUCTION Investigating the genetic markers and genomic signatures related to chicken meat production by combing multi-omics methods could provide new insights into modern chicken breeding technology systems. OBJECT Chicken is one of the most efficient and environmentally friendly livestock, especially the fast-growing white-feathered chicken (broiler), which is well known for high meat yield, but the underlying genetic basis is poorly understood. METHOD We generated whole-genome resequencing of three purebred broilers (n = 748) and six local breeds/lines (n = 114), and sequencing data of twelve chicken breeds (n = 199) were obtained from the NCBI database. Additionally, transcriptome sequencing of six tissues from two chicken breeds (n = 129) at two developmental stages was performed. A genome-wide association study combined with cis-eQTL mapping and the Mendelian randomization was applied. RESULT We identified > 17 million high-quality SNPs, of which 21.74% were newly identified, based on 21 chicken breeds/lines. A total of 163 protein-coding genes underwent positive selection in purebred broilers, and 83 genes were differentially expressed between purebred broilers and local chickens. Notably, muscle development was proven to be the major difference between purebred broilers and local chickens, or ancestors, based on genomic and transcriptomic evidence from multiple tissues and stages. The MYH1 gene family showed the top selection signatures and muscle-specific expression in purebred broilers. Furthermore, we found that the causal gene SOX6 influenced breast muscle yield and also related to myopathy occurrences. A refined haplotype was provided, which had a significant effect on SOX6 expression and phenotypic changes. CONCLUSION Our study provides a comprehensive atlas comprising the typical genomic variants and transcriptional characteristics for muscle development and suggests a new regulatory target (SOX6-MYH1s axis) for breast muscle yield and myopathy, which could aid in the development of genome-scale selective breeding aimed at high meat yield in broiler chickens.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Di Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengxiao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Li H, Hou Y, Hu J, Li J, Liang Y, Lu Y, Liu X. Dietary naringin supplementation on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult Sci 2023; 102:102605. [PMID: 36940650 PMCID: PMC10033312 DOI: 10.1016/j.psj.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
In this study, the effects of naringin on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during late laying period were evaluated. A total of 480 (54-wk-old) Three-Yellow breeder hens were randomly assigned to 4 groups (6 replicates of 20 hens): nonsupplemented control diet (C), and control diet supplemented with 0.1%, 0.2%, and 0.4% of naringin (N1, N2, and N3), respectively. Results showed that dietary supplemented with 0.1%, 0.2%, and 0.4% of naringin for 8 wk promoted the cell proliferation and attenuated the excessive fat accumulation in the liver. Compared with C group, increased concentrations of triglyceride (TG), total cholesterol (T-CHO), high-density lipoprotein cholesterol (HDL-C), and very low-density lipoprotein (VLDL), and decreased contents of low-density lipoprotein cholesterol (LDL-C) were detected in liver, serum and ovarian tissues (P < 0.05). After 8 wk of feeding with naringin (0.1%, 0.2%, and 0.4%), serum estrogen (E2) level, expression levels of proteins and genes of estrogen receptors (ERs) increased significantly (P < 0.05). Meanwhile, naringin treatment regulated expression of genes related to yolk precursors formation (P < 0.05). Furthermore, dietary naringin addition increased the antioxidants, decreased the oxidation products, and up-regulated transcription levels of antioxidant genes in liver tissues (P < 0.05). These results indicated that dietary supplemented with naringin could improve hepatic yolk precursors formation and hepatic antioxidant capacity of Three-Yellow breeder hens during the late laying period. Doses of 0.2% and 0.4% are more effective than dose of 0.1%.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Song H, Yang R, Zhang J, Sun P, Xing X, Wang L, Sairijima T, Hu Y, Liu Y, Cheng H, Zhang Q, Li L. Oleic acid-induced steatosis model establishment in LMH cells and its effect on lipid metabolism. Poult Sci 2023; 102:102297. [PMID: 36446267 PMCID: PMC9709224 DOI: 10.1016/j.psj.2022.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatic steatosis is a highly prevalent liver disease, yet research on it is hampered by the lack of tractable cellular models in poultry. To examine the possibility of using organoids to model steatosis and detect it efficiently in leghorn male hepatocellular (LMH) cells, we first established steatosis using different concentrations of oleic acid (OA) (0.05-0.75 mmol/L) for 12 or 24 h. The subsequent detections found that the treatment of LMH cells with OA resulted in a dramatic increase in intracellular triglyceride (TG) concentrations, which was positively associated with the concentration of the inducing OA (R2 > 0.9). Then, the modeled steatosis was detected by flow cytometry after NileRed staining and it was found that the intensity of NileRed-A was positively correlated with the TG concentration (R2 > 0.93), which demonstrates that the flow cytometry is suitable for the detection of steatosis in LMH cells. According to the detection results of the different steatosis models, we confirmed that the optimal induction condition for the establishment of the steatosis model in LMH cells is OA (0.375 mmol/L) incubation for 12 h. Finally, the transcription and protein content of fat metabolism-related genes in steatosis model cells were detected. It was found that OA-induced steatosis could significantly decrease the expression of nuclear receptor PPAR-γ and the synthesis of fatty acids (SREBP-1C, ACC1, FASN), increasing the oxidative decomposition of triglycerides (CPT1A) and the assembly of low-density lipoproteins (MTTP, ApoB). Sterol metabolism in model cells was also significantly enhanced (HMGR, ABCA1, L-BABP). This study established, detected, and analyzed an OA-induced steatosis model in LMH cells, which provides a stable model and detection method for the study of poultry steatosis-related diseases.
Collapse
Affiliation(s)
- Huiqi Song
- College of life science and technology, Tarim University, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China
| | - Ruizhi Yang
- College of life science and technology, Tarim University, Alar 843300, Xinjiang, China; College of animal science and technology, Alar 843300, Xinjiang, China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Jiahao Zhang
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Pengliang Sun
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Xiaoyue Xing
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Lan Wang
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Ta Sairijima
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Yahui Hu
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Yang Liu
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Huixu Cheng
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Qiulin Zhang
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Lianrui Li
- College of life science and technology, Tarim University, Alar 843300, Xinjiang, China; College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China.
| |
Collapse
|
7
|
Cui X, Abouelezz K, Jiang Z, Gou Z, Wang Y, Jiang S. Effects of metabolic energy intervention on lipid content and liver transcriptome in finisher yellow-feathered chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Khaled Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| |
Collapse
|
8
|
Lan R, Wang Y, Wei L, Wu F, Yin F. Heat stress exposure changed liver lipid metabolism and abdominal fat deposition in broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | | | | | | | - Fuquan Yin
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
9
|
Du X, Lai S, Zhao W, Xu X, Xu W, Zeng T, Tian Y, Lu L. Single-cell RNA sequencing revealed the liver heterogeneity between egg-laying duck and ceased-laying duck. BMC Genomics 2022; 23:857. [PMID: 36577943 PMCID: PMC9798604 DOI: 10.1186/s12864-022-09089-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In the late phase of production, ducks untimely cease laying, leading to a lower feed conversion. Liver plays a vital role in the synthesis and transport of yolk materials during egg formation in birds. However, the molecular mechanism of liver in ceased-laying duck is far from clear, higher resolution and deeper analysis is needed. Sing-cell RNA-sequencing of 10 × Genomics platform can help to map the liver single cell gene expression atlas of Shaoxing duck and provide new insights into the liver between egg-laying and ceased-laying ducks. RESULTS About 20,000 single cells were profiled and 22 clusters were identified. All the clusters were identified as 6 cell types. The dominant cell type is hepatocyte, accounted for about 60% of all the cells. Of note, the heterogeneity of cells between egg-laying duck and ceased-laying duck mainly occurred in hepatocytes. Cells of cluster 3 and 12 were the unique hepatocyte states of egg-laying ducks, while cells of cluster 0 and 15 were the unique hepatocyte states of ceased-laying ducks. The expression mode of yolk precursor transporters, lipid metabolizing enzymes and fibrinogens were different in hepatocytes between egg-laying duck and ceased-laying duck. APOV1, VTG2, VTG1, APOB, RBP, VTDB and SCD might be activated in egg-laying ducks, while APOA1, APOA4, APOC3, FGB and FGG might be activated in ceased-laying ducks. CONCLUSIONS Our study further proofs that APOV1 and APOB play key roles in egg production, rather than APOA1 and APOA4. It is also the first to detect a correlation between the higher expression of APOC3, FGB, FGG and ceased-laying in duck.
Collapse
Affiliation(s)
- Xue Du
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China ,grid.443483.c0000 0000 9152 7385College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Shujing Lai
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Zhao
- grid.410744.20000 0000 9883 3553Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310022 Zhejiang China
| | - Xiaoqin Xu
- grid.411527.40000 0004 0610 111XInstitute of Ecology, China West Normal University, Nanchong, 637002 Sichuan China
| | - Wenwu Xu
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Tao Zeng
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Yong Tian
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Lizhi Lu
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| |
Collapse
|
10
|
Chen F, Zhang H, Zhao N, Du E, Jin F, Fan Q, Guo W, Huang S, Wei J. Effects of magnolol and honokiol blend on performance, egg quality, hepatic lipid metabolism, and intestinal morphology of hens at late laying cycle. Animal 2022; 16:100532. [DOI: 10.1016/j.animal.2022.100532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
|
11
|
Surugihalli C, Farley LS, Beckford RC, Kamkrathok B, Liu HC, Muralidaran V, Patel K, Porter TE, Sunny NE. Remodeling of Hepatocyte Mitochondrial Metabolism and De Novo Lipogenesis During the Embryonic-to-Neonatal Transition in Chickens. Front Physiol 2022; 13:870451. [PMID: 35530509 PMCID: PMC9068877 DOI: 10.3389/fphys.2022.870451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
Embryonic-to-neonatal development in chicken is characterized by high rates of lipid oxidation in the late-term embryonic liver and high rates of de novo lipogenesis in the neonatal liver. This rapid remodeling of hepatic mitochondrial and cytoplasmic networks occurs without symptoms of hepatocellular stress. Our objective was to characterize the metabolic phenotype of the embryonic and neonatal liver and explore whether these metabolic signatures are preserved in primary cultured hepatocytes. Plasma and liver metabolites were profiled using mass spectrometry based metabolomics on embryonic day 18 (ed18) and neonatal day 3 (nd3). Hepatocytes from ed18 and nd3 were isolated and cultured, and treated with insulin, glucagon, growth hormone and corticosterone to define hormonal responsiveness and determine their impacts on mitochondrial metabolism and lipogenesis. Metabolic profiling illustrated the clear transition from the embryonic liver relying on lipid oxidation to the neonatal liver upregulating de novo lipogenesis. This metabolic phenotype was conserved in the isolated hepatocytes from the embryos and the neonates. Cultured hepatocytes from the neonatal liver also maintained a robust response to insulin and glucagon, as evidenced by their contradictory effects on lipid oxidation and lipogenesis. In summary, primary hepatocytes from the embryonic and neonatal chicken could be a valuable tool to investigate mechanisms regulating hepatic mitochondrial metabolism and de novo lipogenesis.
Collapse
Affiliation(s)
- Chaitra Surugihalli
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Linda S Farley
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Ronique C Beckford
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Boonyarit Kamkrathok
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Hsiao-Ching Liu
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Vaishna Muralidaran
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Kruti Patel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
12
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Tan X, Liu R, Zhang Y, Wang X, Wang J, Wang H, Zhao G, Zheng M, Wen J. Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC Genomics 2021; 22:8. [PMID: 33407101 PMCID: PMC7789526 DOI: 10.1186/s12864-020-07305-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation, a biochemical modification of cytosine, has an important role in lipid metabolism. Fatty liver hemorrhagic syndrome (FLHS) is a serious disease and is tightly linked to lipid homeostasis. Herein, we compared the methylome and transcriptome of chickens with and without FLHS. Results We found genome-wide dysregulated DNA methylation pattern in which regions up- and down-stream of gene body were hypo-methylated in chickens with FLHS. A total of 4155 differentially methylated genes and 1389 differentially expressed genes were identified. Genes were focused when a negative relationship between mRNA expression and DNA methylation in promoter and gene body were detected. Based on pathway enrichment analysis, we found expression of genes related to lipogenesis and oxygenolysis (e.g., PPAR signaling pathway, fatty acid biosynthesis, and fatty acid elongation) to be up-regulated with associated down-regulated DNA methylation. In contrast, genes related to cellular junction and communication pathways (e.g., vascular smooth muscle contraction, phosphatidylinositol signaling system, and gap junction) were inhibited and with associated up-regulation of DNA methylation. Conclusions In the current study, we provide a genome-wide scale landscape of DNA methylation and gene expression. The hepatic hypo-methylation feature has been identified with FLHS chickens. By integrated analysis, the results strongly suggest that increased lipid accumulation and hepatocyte rupture are central pathways that are regulated by DNA methylation in chickens with FLHS. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07305-3.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yonghong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xicai Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hailong Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
14
|
Su S, Wang Y, Chen C, Suh M, Azain M, Kim WK. Fatty Acid Composition and Regulatory Gene Expression in Late-Term Embryos of ACRB and COBB Broilers. Front Vet Sci 2020; 7:317. [PMID: 32671107 PMCID: PMC7330006 DOI: 10.3389/fvets.2020.00317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Cobb broilers (COBB) have been heavily selected for their production performance in the past several decades, while the Athens Canadian Random Bred (ACRB) chickens, a meat-type breed, have been kept as a non-selected control strain. The purpose of this study was to compare these two lines of chickens at late embryonic development and identify the molecular markers and fatty acid profiles underlining their differences in growth performance due to selection. Fertilized eggs of the ACRB (n = 6) and COBB (n = 6) were used at 14 and 18 embryonic days. Genes involved in lipogenesis and myogenesis were measured using quantitative real-time reverse transcroption-polymerase chain reaction (RT-PCR), and fatty acid (FA) compositions of egg yolk, muscle, and liver were measured using gas chromatography. COBB had higher egg weight, embryo weight, and breast and fat ratio. The gene expression in the liver showed an interaction between age and breed on FASN expression, with the highest level in COBB at E18. ACRB had higher ApoB and MTTP expression, but lower SREBP-1 expression compared to COBB. No difference was found in myogenesis gene expression in the muscle between two breeds. For the FA composition, muscle was largely affected by both breed and age. Yolk and liver were affected mainly by breed and age, respectively. Constant interaction effects in docosahexaenoic acid (DHA), indicating the highest level in all the tested tissues of ACRB at E14 and the constant main effects with higher myristic, palmitic, and gondoic, but lower linolenic acid in the liver and yolk of COBB compared to the levels in those of ACRB. Finally, fat accumulation in the liver had no obvious difference between the breeds but was higher when embryo was older. In conclusion, broiler breed affects egg, embryo, and tissue weight, as well as FA composition in initial egg yolk and throughout the embryonic development. The highest docosahexaenoic percentage was observed in ACRB, indicating that genetic selection may result in fatty acid profile changes such as lower DHA content in chicken tissues and eggs.
Collapse
Affiliation(s)
- Shengchen Su
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Yidi Wang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Michael Azain
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Liu Y, Liu X, Zhou J, Ren Z, Yang X, Cao Y, Yang X. Folic acid perfusion administration reduced abdominal fat deposition in starter Arbor Acres broilers. Poult Sci 2020; 98:6816-6825. [PMID: 31328769 PMCID: PMC8913948 DOI: 10.3382/ps/pez413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023] Open
Abstract
With intensive selection for meat production in broilers, excessive fat accumulation is also accompanied and causes economic concerns. Folic acid was reported to be involved in lipid metabolism. The present study was conducted to investigate the role of folic acid in reducing abdominal fat deposition. A total of 105 one-day-old healthy Arbor Acres broilers were randomly distributed into 3 treatments, including the control (Con), saline-perfusion group (NS), and folic acid perfusion group (FA). The growth performance, biochemical characteristics in serum, and lipid metabolism in the liver and abdominal fat tissues were evaluated. Results have shown that folic acid significantly reduced abdominal fat percentage (P < 0.05) and had no effects on BW, ADFI, ADG, and FCR (P > 0.05). Serum triglycerides (TG), total cholesterol (TC), and alanine aminotransferase (ALT) levels were lower in FA group but albumin concentration was higher (P < 0.05). Hepatic ACC, SCD, ELOVL6, PI3K, LDLR, HMGCR, and ABCA1 mRNA abundance were all down-regulated in FA group (P < 0.05) when compared with the Con and NS groups, while CPT1 and PPARα were not affected. In addition, MTTP mRNA abundance was higher in the liver of birds subjected to folic acid (P < 0.05). There was no difference about TG deposition in the liver among all groups based on hematoxylin−eosin (HE) and Oil Red O staining. On the other hand, ELOVL6, PPARγ, IGF1, and TGFβ2 expression were notably decreased in the abdominal fat in FA group (P < 0.05). In conclusion, our data demonstrated that folic acid has reduced abdominal fat percentage by decreasing hepatic lipogenesis and suppressing adipocytes proliferation and differentiation. And the inhibiting effect of adipocytes might be mediated by IGF1 and TGFβ2 down-regulation.
Collapse
Affiliation(s)
- Y Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - J Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
16
|
Omer NA, Hu Y, Idriss AA, Abobaker H, Hou Z, Yang S, Ma W, Zhao R. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor-mediated activation of hepatic lipogenesis-related genes. Poult Sci 2020; 99:3121-3132. [PMID: 32475449 PMCID: PMC7597640 DOI: 10.1016/j.psj.2020.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/13/2023] Open
Abstract
In avian species, liver lipid metabolism plays an important role in egg laying performance. Previous studies indicate that betaine supplementation in laying hens improves egg production. However, it remains unclear if betaine improves laying performance by affecting hepatic lipid metabolism and what mechanisms are involved. We fed laying hens a 0.5% betaine-supplemented diet for 4 wks to investigate its effect on hepatic lipids metabolism in vivo and confirmed its mechanism via in vitro experiments using embryonic chicken hepatocytes. Results showed that betaine supplemented diet enhanced laying production by 4.3% compared with normal diet, accompanied with increased liver and plasma triacylglycerol concentrations (P < 0.05) in hens. Simultaneously, key genes involved in hepatic lipid synthesis, such as sterol regulatory element binding protein 1 (SREBP-1), fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase 1 (SCD1) were markedly upregulated at the mRNA level (P < 0.05). Western blot results showed that SREBP-1 and SCD1 protein levels were also increased (P < 0.05). Moreover, mRNA expression of main apolipoprotein components of yolk-targeted lipoproteins, apolipoprotein B (ApoB) and apolipoprotein-V1 (ApoV1), in addition to microsomal triglyceride transfer proteins, which is closely related to the synthesis and release of very-low density lipoprotein, were also markedly elevated (P < 0.05). Methylated DNA immunoprecipitation combined with PCR detects reduction of methylation levels in certain regions of the above gene promoters. Chromatin immunoprecipitation PCR assays showed increased binding of glucocorticoid receptor (GR) to SREBP1 and ApoB gene promoters. Similar results of ApoV1 gene expression were obtained from cultured hepatocytes treated with betaine. Additionally, betaine increased the expression of GR and some genes involved in methionine cycle in vitro. These results suggest that betaine supplementation could alter the expression of liver lipid synthesis and transport-related genes by modifying the methylation status and GR binding on their promoter and hence promote the synthesis and release of yolk precursor substances in the liver.
Collapse
Affiliation(s)
- Nagmeldin A Omer
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; College of Allied Medical Sciences, University of Nyala, Nyala, Sudan
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Abdulrahman A Idriss
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Halima Abobaker
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhen Hou
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wenqiang Ma
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
17
|
Genome-Wide Detection of Key Genes and Epigenetic Markers for Chicken Fatty Liver. Int J Mol Sci 2020; 21:ijms21051800. [PMID: 32151087 PMCID: PMC7084419 DOI: 10.3390/ijms21051800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chickens are one of the most important sources of meat worldwide, and the occurrence of fatty liver syndrome (FLS) is closely related to production efficiency. However, the potential mechanism of FLS remains poorly understood. An integrated analysis of data from whole-genome bisulfite sequencing and long noncoding RNA (lncRNA) sequencing was conducted. A total of 1177 differentially expressed genes (DEGs) and 1442 differentially methylated genes (DMGs) were found. There were 72% of 83 lipid- and glucose-related genes upregulated; 81% of 150 immune-related genes were downregulated in fatty livers. Part of those genes was within differentially methylated regions (DMRs). Besides, sixty-seven lncRNAs were identified differentially expressed and divided into 13 clusters based on their expression pattern. Some lipid- and glucose-related lncRNAs (e.g., LNC_006756, LNC_012355, and LNC_005024) and immune-related lncRNAs (e.g., LNC_010111, LNC_010862, and LNC_001272) were found through a co-expression network and functional annotation. From the expression and epigenetic profiles, 23 target genes (e.g., HAO1, ABCD3, and BLMH) were found to be hub genes that were regulated by both methylation and lncRNAs. We have provided comprehensive epigenetic and transcriptomic profiles on FLS in chicken, and the identification of key genes and epigenetic markers will expand our understanding of the molecular mechanism of chicken FLS.
Collapse
|
18
|
Li EQ, Zhao W, Zhang C, Qin LZ, Liu SJ, Feng ZQ, Wen X, Chen CP. Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1 inhibitors. Eur J Pharm Sci 2019; 137:105010. [PMID: 31325544 DOI: 10.1016/j.ejps.2019.105010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
Acetyl-coA carboxylase 1 (ACC1) is the first and rate-limiting enzyme in the de novo fatty acid synthesis (FASyn) pathway. In this study, through public database analysis and clinic sample test, we for the first time verified that ACC1 mRNA is overexpressed in non-small-cell lung cancer (NSCLC), which is accompanied by reduced DNA methylation at CpG island S shore of ACC1. Our study further demonstrated that higher ACC1 levels are associated with poor prognosis in NSCLC patients. Besides, we developed a novel synthetic route for preparation of a known ACC inhibitor ND-646, synthesized a series of its derivatives and evaluated their activity against the enzyme ACC1 and the A549 cell. As results, most of the tested compounds showed potent ACC1 inhibitory activity with IC50 values 3-10 nM. Among them, compounds A2, A7 and A9 displayed strong cancer inhibitory activity with IC50 values 9-17 nM by impairing cell growth and inducing cell death. Preliminary SAR analysis clearly suggested that (R)-configuration and amide group were vital to ACC1 and A549 inhibition, since compound (S)-A1 (the enantiomer of ND-646) had poor activity of ACC1 inhibition and the carboxylic acid ND-630 almost lost anticancer effect on A549 cells. Collectively, these findings indicate that ACC1 is a potential biomarker and target for non-small-cell lung cancer, and ND-646 and its derivatives as ACC1 inhibitors deserve further study for treatment of NSCLC.
Collapse
Affiliation(s)
- En-Qin Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Wei Zhao
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu 610050, China; Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610050, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province 210029, China
| | - Lu-Zhe Qin
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Sheng-Jie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Zhi-Qi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Cai-Ping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
19
|
El-Naggar K, El-Kassas S, Abdo SE, Kirrella AAK, Al Wakeel RA. Role of gamma-aminobutyric acid in regulating feed intake in commercial broilers reared under normal and heat stress conditions. J Therm Biol 2019; 84:164-175. [PMID: 31466750 DOI: 10.1016/j.jtherbio.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
Abstract
This study was conducted to investigate the effects of dietary GABA supplementation on blood biochemical parameters, the overall growth performance, and the relative mRNA expression of some FI- regulating genes in broiler chickens. A total of 192, three-day old chicks of mixed sex from two commercial broiler strains (Ross 308 and Cobb 500) were distributed into 2 groups; a control group and GABA-supplemented group (100 mg/kg diet). When the chicks reached 21 days of age, each group of each strain was randomly subdivided into two subgroups: one was exposed to HS (33 ± 2 °C for 5 h/day for 2 weeks), while the other remained at thermoneutral temperature (24 °C). GABA significantly improved bird growth performance under normal and HS conditions, by increasing body weight (BW), weight gain (WG), and FI and significantly reduced the elevated body temperature of birds under HS. GABA supplementation increased FI by reducing the mRNA expression levels of FI-inhibiting neuropeptides, such as POMC, leptin, Ghrelin, and CCK, during HS and by increasing the expression of FI-stimulating neuropeptides such as AgRP and NPY. Moreover, GABA significantly altered FAS and ACC gene expression, resulting in significant increases in abdominal fat content in birds reared normally. In contrast, GABA lowered fat content in Cobb birds and increased it in Ross birds under HS. Therefore, GABA (100 mg/kg diet) is a strong FI-stimulating neurotransmitter and its regulatory effects depend on broiler strain and housing temperature.
Collapse
Affiliation(s)
- Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, 22758, Egypt.
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Abeer A K Kirrella
- Poultry Physiology, Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| |
Collapse
|
20
|
Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken. Genes (Basel) 2018; 9:genes9040199. [PMID: 29642504 PMCID: PMC5924541 DOI: 10.3390/genes9040199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 12/25/2022] Open
Abstract
Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.
Collapse
|