1
|
Keogh K, McGee M, Kenny DA. Effect of breed and dietary composition on the miRNA profile of beef steers divergent for feed efficiency. Sci Rep 2024; 14:20046. [PMID: 39209905 PMCID: PMC11362461 DOI: 10.1038/s41598-024-70669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Identifying and breeding cattle that are more feed efficient is of great benefit to beef production. Additionally, it is crucial that genes contributing to feed efficiency are robust across varying management settings including dietary source as well as being relevant across contrasting breeds of cattle. The aim of this study was to determine miRNAs that are contributing to the expression of residual feed intake (RFI) across two breeds and dietary sources. miRNA profiling was undertaken in Longissimus dorsi tissue of Charolais and Holstein-Friesian steers divergent for RFI phenotype following two contrasting consecutive diets (high-forage and high-concentrate). Ten miRNA were identified as differentially expressed (adj. P < 0.1) across the breed and diet contrasts examined. Of particular interest was the differential expression of miR-2419-5p and miR-2415-3p, both of which were up-regulated in the Low-RFI Charolais steers across each dietary phase. Pathway analysis of target mRNA genes of differentially expressed miRNA revealed enrichment (P < 0.05) for pathways including metabolic related pathways, insulin receptor signalling, adipogenesis as well as pathways related to skeletal muscle growth. These results provide insight into the skeletal muscle miRNAome of beef cattle and their potential molecular regulatory mechanisms relating to feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
| | - M McGee
- Livestock Systems Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - D A Kenny
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
2
|
Chen H, Wu Y, Zhu Y, Luo K, Zheng S, Tang H, Xuan R, Huang Y, Li J, Xiong R, Fang X, Wang L, Gong Y, Miao J, Zhou J, Tan H, Wang Y, Wu L, Ouyang J, Huang M, Yan X. Deciphering the Genetic Landscape: Insights Into the Genomic Signatures of Changle Goose. Evol Appl 2024; 17:e13768. [PMID: 39175938 PMCID: PMC11340016 DOI: 10.1111/eva.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
The Changle goose (CLG), a Chinese indigenous breed, is celebrated for its adaptability, rapid growth, and premium meat quality. Despite its agricultural value, the exploration of its genomic attributes has been scant. Our study entailed whole-genome resequencing of 303 geese across CLG and five other Chinese breeds, revealing distinct genetic diversity metrics. We discovered significant migration events from Xingguo gray goose to CLG and minor gene flow between them. We identified genomic regions through selective sweep analysis, correlating with CLG's unique traits. An elevated inbreeding coefficient in CLG, alongside reduced heterozygosity and rare single nucleotide polymorphisms (RSNPs), suggests a narrowed genetic diversity. Genomic regions related to reproduction, meat quality, and growth were identified, with the GATA3 gene showing strong selection signals for meat quality. A non-synonymous mutation in the Sloc2a1 gene, which is associated with reproductive traits in the CLG, exhibited significant differences in allelic frequency. The roles of CD82, CDH8, and PRKAB1 in growth and development, alongside FABP4, FAF1, ESR1, and AKAP12 in reproduction, were highlighted. Additionally, Cdkal1 and Mfsd14a may influence meat quality. This comprehensive genetic analysis underpins the unique genetic makeup of CLG, providing a basis for its conservation and informed breeding strategies.
Collapse
Affiliation(s)
- Hao Chen
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yan Wu
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yihao Zhu
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Keyi Luo
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Sumei Zheng
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Hongbo Tang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Rui Xuan
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yuxuan Huang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Jiawei Li
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Rui Xiong
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Xinyan Fang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Lei Wang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yujie Gong
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Junjie Miao
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Jing Zhou
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Hongli Tan
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yanan Wang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Liping Wu
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Jing Ouyang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Min Huang
- College of Animal Sciences & TechnologyZhejiang A&F UniversityHangzhouChina
| | - Xueming Yan
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| |
Collapse
|
3
|
Helal M, Ali MA, Nadrin AH, Awad YI, Younis NK, Alasyed BM, Jamal M, Eid DH, Soliman HA, Eissa SA, Ragab M. Association between IRS-1, PPAR-γ and LEP genes polymorphisms and growth traits in rabbits. Anim Biotechnol 2023; 34:2391-2399. [PMID: 35767350 DOI: 10.1080/10495398.2022.2092743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Single nucleotide polymorphisms are commonly associated with changes in quantitative traits, and have been considered useful markers for improving different traits in livestock. The current study aimed to explore the effect of three SNPs located in Insulin receptor substrate (IRS-1), Peroxisome proliferator-activated receptor γ (PPAR-γ), and Leptin (LEP) genes on the growth traits of rabbits. Individuals from three rabbit breeds were genotyped using RFLP-PCR. The IRS-1 variant (c.189T > G) was associated with post-weaning body weight, and body weight gains, However, the effect on growth rates was insignificant in Baladi Red and V-line rabbits. The PPAR-γ variant (c.207A > C) was significantly associated with 8-wk body weights in V-line rabbits, 10-wk body weights, and growth rates from 8 to 10 weeks of age in New Zealand rabbits. However, the differences between genotypes were insignificant for body weight gains and average daily gain. The LEP gene mutation (g.16079636C > G) had significant effects on body weights at 6 and 8 weeks of age in New Zealand White rabbits and 8 weeks of age in Baladi Red rabbits were associated with the presence of the C allele. Concludingly, the results stressed the importance of the IRS-1 gene in post-weaning growth and suggested the existence of breed-specific effects for PPAR-γ and LEP.
Collapse
Affiliation(s)
- Mostafa Helal
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud A Ali
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Amira H Nadrin
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yomna I Awad
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Nada K Younis
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Basant M Alasyed
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohnad Jamal
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dima H Eid
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hagar A Soliman
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sara A Eissa
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed Ragab
- Department of Poultry Production, Kafr El-Sheikh University, Kafr EL-Sheikh, Egypt
| |
Collapse
|
4
|
Zhou S, Shi X, Song C, Wang Y, Lai M, Chen X, Zhang C, Chen H, Fang X. SNP discovery of PRKAB1 gene and their associations with growth traits in goats. Anim Biotechnol 2022; 33:1613-1619. [PMID: 34106801 DOI: 10.1080/10495398.2021.1920426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AMPK plays an important role in regulating the metabolism of carbohydrate, lipid and protein in an organism, and is considered to be a key regulator of cellular energy homeostasis. In recent years, attention has been drawn to AMPK subunit polymorphisms and their association with economical traits of domestic animals and fowls. PRKAB1 encodes the β1 regulatory subunit of AMPK, and it has been reported that PRKAB1 may be applied in breeding programs of meat-type chicken. To date, the polymorphism of goat PRKAB1 gene and its associations remain unknown. In this paper, the polymorphism of PRKAB1 gene was detected in 316 goats of three breeds. A total of four novel single nucleotide polymorphisms (SNPs) of PRKAB1 gene were revealed by sequence analysis. Among them, three were in the coding region (285 C > A, 297 C > A, 309 C > T), and they were all synonymous. One was in the intron (229 A > G). The associations between polymorphic loci and the growth traits of Xuhuai and Haimen goats were analyzed, and significant associations were found in body length index and trunk index (p < 0.05) for Xuhuai breed, while no significant associations in Haimen breed. Our results provide useful information for the improvement and breeding of Chinese native goats.
Collapse
Affiliation(s)
- Shengliang Zhou
- College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiuying Shi
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Min Lai
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
5
|
Shao M, Shi K, Zhao Q, Duan Y, Shen Y, Tian J, He K, Li D, Yu M, Lu Y, Tang Y, Feng C. Transcriptome Analysis Reveals the Differentially Expressed Genes Associated with Growth in Guangxi Partridge Chickens. Genes (Basel) 2022; 13:genes13050798. [PMID: 35627183 PMCID: PMC9140345 DOI: 10.3390/genes13050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Guangxi Partridge chicken is a well-known chicken breed in southern China with good meat quality, which has been bred as a meat breed to satisfy the increased demand of consumers. Compared with line D whose body weight is maintained at the average of the unselected group, the growth rate and weight of the selected chicken group (line S) increased significantly after breeding for four generations. Herein, transcriptome analysis was performed to identify pivotal genes and signal pathways of selective breeding that contributed to potential mechanisms of growth and development under artificial selection pressure. The average body weight of line S chickens was 1.724 kg at 90 d of age, which showed a significant increase at 90 d of age than line D chickens (1.509 kg), although only the internal organ ratios of lung and kidney changed after standardizing by body weight. The myofiber area and myofiber density of thigh muscles were affected by selection to a greater extent than that of breast muscle. We identified 51, 210, 31, 388, and 100 differentially expressed genes (DEGs) in the hypothalamus, pituitary, breast muscle, thigh muscle, and liver between the two lines, respectively. Several key genes were identified in the hypothalamus-pituitary-muscle axis, such as FST, THSB, PTPRJ, CD36, PITX1, PITX2, AMPD1, PRKAB1, PRKAB2, and related genes for muscle development, which were attached to the cytokine–cytokine receptor interaction signaling pathway, the PPAR signaling pathway, and lipid metabolism. However, signaling molecular pathways and the cell community showed that elevated activity in the liver of line S fowl was mainly involved in focal adhesion, ECM-receptor interaction, cell adhesion molecules, and signal transduction. Collectively, muscle development, lipid metabolism, and several signaling pathways played crucial roles in the improving growth performance of Guangxi Partridge chickens under artificial selection for growth rate. These results support further study of the adaptation of birds under selective pressure.
Collapse
Affiliation(s)
- Minghui Shao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Kai Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Qian Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Ying Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Yangyang Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Jinjie Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Kun He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Dongfeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Minli Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Yanfei Tang
- Guangxi Fufeng Agricultural and Animal Husbandry Group Co., Ltd., Nanning 530024, China;
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
- Correspondence:
| |
Collapse
|
6
|
Dao HT, Sharma NK, Kheravii SK, Bradbury EJ, Wu SB, Swick RA. Supplementation of reduced protein diets with l-arginine and l-citrulline for broilers challenged with subclinical necrotic enteritis. 3. Immunological parameters and gene expression. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Guo S, Bai Y, Zhang Q, Zhang H, Fan Y, Han H, Liu Y. Associations of CALM1 and DRD1 polymorphisms, and their expression levels, with Taihang chicken egg-production traits. Anim Biotechnol 2021:1-11. [PMID: 34890302 DOI: 10.1080/10495398.2021.2008948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg production by hens is an important reproductive performance index in the poultry industry. To investigate the effects of the CALM1 and DRD1 genes on egg production in chicken, their mRNA expression and single nucleotide polymorphisms (SNP) levels were investigated, and bioinformatics and egg-production association analyses were performed. Three SNPs (g.44069941G > A and g.44069889A > G in CALM1 and g.10742639C > T in DRD1) were detected in the exons and introns of CALM1 and DRD1 in 400 Taihang chickens. Among them, g.44069941G > A was significantly associated with Taihang chicken egg production on the 500th day (p < 0.05), whereas g.10742639C > T was significantly associated with the 300th day (p < 0.05). The expression levels of CALM1 and DRD1 in ovarian tissues of a high-yielding Taihang group were greater than in a low-yielding group (p < 0.05). The bioinformatics analysis revealed that the mutations influenced the mRNA secondary structures of CALM1 and DRD1. This study provides new insights into the potential effects of CALM1 and DRD1 polymorphisms on chicken egg production. The two SNPs g.44069941G > A and g.10742639C > T are potential molecular markers for improving the reproductive traits of Taihang chicken.
Collapse
Affiliation(s)
- Siwu Guo
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ying Bai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qingyang Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Hui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Haiyin Han
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yufang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
8
|
Liu H, Zhu C, Song W, Xu W, Tao Z, Zhang S, Li H. Genomic characteristics of four different geese populations in China. Anim Genet 2021; 52:228-231. [PMID: 33450105 DOI: 10.1111/age.13035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
It is well known that many Chinese goose breeds differ substantially in economic performance, but the genetic changes involved are still poorly understood. This study sequenced 35 individuals from four goose breeds namely Shitou, Zhedong White, Taihu, and Zi with an average sequencing depth of 10× for each individual. Among these populations, SNPs were identified, which clustered the individuals into four distinct genetic groups in accordance with the four breeds. Genomic comparisons among the four goose breeds revealed many candidate genes, as well as pathways that may be associated with meat yield in Shitou geese and laying traits in Zi geese. These findings will enable a better understanding of the artificial selection history of Chinese local geese and provide a valuable resource for future research on the breeding of geese for the economic traits of meat and egg production.
Collapse
Affiliation(s)
- H Liu
- Jiangsu Institute of Poultry Sciences, Yangzhou, Jiangsu, 225125, China
| | - C Zhu
- Jiangsu Institute of Poultry Sciences, Yangzhou, Jiangsu, 225125, China
| | - W Song
- Jiangsu Institute of Poultry Sciences, Yangzhou, Jiangsu, 225125, China
| | - W Xu
- Jiangsu Institute of Poultry Sciences, Yangzhou, Jiangsu, 225125, China
| | - Z Tao
- Jiangsu Institute of Poultry Sciences, Yangzhou, Jiangsu, 225125, China
| | - S Zhang
- Jiangsu Institute of Poultry Sciences, Yangzhou, Jiangsu, 225125, China
| | - H Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, Jiangsu, 225125, China
| |
Collapse
|
9
|
Liu K, Wen YY, Liu HH, Cao HY, Dong XY, Mao HG, Yin ZZ. POMC gene expression, polymorphism, and the association with reproduction traits in chickens. Poult Sci 2020; 99:2895-2901. [PMID: 32475422 PMCID: PMC7597669 DOI: 10.1016/j.psj.2019.12.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/06/2019] [Accepted: 12/31/2019] [Indexed: 01/21/2023] Open
Abstract
Reproduction trait is one of the most important economic traits in poultry industry. This study was aimed to investigate the mRNA expression levels, single nucleotide polymorphisms (SNP) of POMC gene, and the association with reproduction traits in chickens. Five SNP (g.958 G > A, g.1374 G > C, g.1393 G > A, g.1817 C > T, and g.1918G > A) were detected in introns of POMC gene in 317 Zhenning yellow chickens. Association analysis revealed that g.958 G > A and g.1817 C > T showed significantly associations with fertilization rate, hatching rate of hatching eggs, and hatching rate of fertilized eggs in chickens. Simultaneously, g.1374 G > C and g.1918G > A were both associated with egg weight at 300 D of age (P < 0.05). The SNP of g.958 G > A, g.1393 G > A, and g.1817 C > T were all associated with E2 hormone levels (P < 0.05). The result of mRNA expression levels in different tissues showed that POMC mRNA expression level in the pituitary was higher than those in the other tissues and varied in different genotypes. In conclusion, the results in this study provided new evidences that polymorphisms of the POMC gene have potential effects on reproduction traits in chickens. The 5 SNP detected in this study could be potential markers for improving reproduction traits in chickens.
Collapse
Affiliation(s)
- K Liu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, China 310058
| | - Y Y Wen
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, China 310058
| | - H H Liu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, China 310058
| | - H Y Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, China 310058
| | - X Y Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, China 310058
| | - H G Mao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, China 310058
| | - Z Z Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, China 310058.
| |
Collapse
|
10
|
PANDA SNEHASMITA, GAUR GK, SAHOO NR, SAINI BL. Association of MC4R, RYR1 and PRKAG3 single nucleotide polymorphisms with body weight in crossbred piglets. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i5.90022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An attempt was made to study the association of MC4R, RYR1 and PRKAG3 SNPs with body weight from birth to 8 weeks in 238 crossbred pigs. The lower value of PIC, observed heterozygosity, expected heterozygosity and number of effective alleles for RYR1 and PRKAG3 SNP revealed that population under investigation was of low diversity maintaining a single allele. These values were intermediate for MC4R SNP representing that forces had been operated to maintain both alleles in the population. Chi square value was significant for MC4R showing significant departure from the Hardy–Weinberg equilibrium. Effect of all SNPs was non-significant on body weight at all ages. Though non-significant, GG genotype of MC4R SNP, NN genotype of RYR1 SNP and QR genotype of PRKAG3 SNP had better weight at 6 and 8 week as compared to their contemporary genotypes, i.e. AG and AA genotype of MC4R SNP, Nn genotype of RYR1 SNP and RR genotype of PRKAG3 SNP. Fourth parity piglets had higher body weight at all ages as compared to those born in other parities. Piglets born from March to June had a higher growth at most of the weeks as compared to rest of the seasons. Piglets born in 2016 had higher growth at most of the weeks. The effect of sex was non-significant on body weight at all ages.
Collapse
|
11
|
Wu P, Dai G, Chen F, Chen L, Zhang T, Xie K, Wang J, Zhang G. Transcriptome profile analysis of leg muscle tissues between slow- and fast-growing chickens. PLoS One 2018; 13:e0206131. [PMID: 30403718 PMCID: PMC6221307 DOI: 10.1371/journal.pone.0206131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Chicken is widely favored by consumers because of some unique features. The leg muscles occupy an important position in the market. However, the specific mechanism for regulating muscle growth speed is not clear. In this experiment, we used Jinghai yellow chickens with different body weights at 300 days as research subjects. The chickens were divided into fast- and slow-growing groups, and we collected leg muscles after slaughtering for use in RNA-seq. After comparing the two groups, 87 differentially expressed genes (DEGs) were identified (fold change ≥ 2 and FDR < 0.05). The fast-growing group had 42 up-regulated genes and 45 down-regulated genes among these DEGs compared to the slow-growing group. Six items were significantly enriched in the biological process: embryo development ending in birth or egg hatching, chordate embryonic development, embryonic skeletal system development, and embryo development as well as responses to ketones and the sulfur compound biosynthetic process. Two significantly enriched pathways were found in the KEGG pathway analysis (P-value < 0.05): the insulin signaling pathway and the adipocytokine signaling pathway. This study provides a theoretical basis for the molecular mechanism of chicken growth and for improving the production of Jinghai yellow chicken.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Izadnia HR, Tahmoorespur M, Bakhtiarizadeh MR, Nassiri M, Esmaeilkhanien S. Gene expression profile analysis of residual feed intake for Isfahan native chickens using RNA-SEQ data. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1507625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hamid Reza Izadnia
- Animal Science Improvement Research Department, Agricultural and Natural Resources Research and Education Center, Safiabad AREEO, Dezful, Iran
| | - Mojtaba Tahmoorespur
- Faculty of Agriculture, Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammadreza Nassiri
- Faculty of Agriculture, Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
13
|
Sell-Kubiak E, Wimmers K, Reyer H, Szwaczkowski T. Genetic aspects of feed efficiency and reduction of environmental footprint in broilers: a review. J Appl Genet 2017; 58:487-498. [PMID: 28342159 PMCID: PMC5655602 DOI: 10.1007/s13353-017-0392-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/18/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
Abstract
Currently, optimization of feed efficiency is one of the main challenges in improvement programs of livestock and poultry genetics. The objective of this review is to present the genetic aspects of feed efficiency related traits in meat-type chicken and possible ways to reduce the environmental impact of poultry meat production with effective breeding. Basic measures of feed efficiency are defined and the genetic background of these traits, including a review of heritabilities is described. Moreover, a number of genomic regions and candidate genes determining feed efficiency traits of broilers that were detected over the past decades are described. Classical and genomic selection strategies for feed efficiency in the context of its relationships with other performance traits are discussed as well. Finally, future strategies to improve feed digestibility are described as it is expected that they will decrease wastes and greenhouse gas emission. Further genetic improvement of feed efficiency, should be examined jointly with appropriate feeding strategies in broilers.
Collapse
Affiliation(s)
- Ewa Sell-Kubiak
- Departament of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska st. 33, 60-637, Poznan, Poland
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute of Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute of Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tomasz Szwaczkowski
- Departament of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska st. 33, 60-637, Poznan, Poland.
| |
Collapse
|
14
|
Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci Rep 2017; 7:45564. [PMID: 28378745 PMCID: PMC5381223 DOI: 10.1038/srep45564] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 01/18/2023] Open
Abstract
Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing. The results showed that the later laying-period hens, which had a higher intramuscular fat (IMF) deposition capacity and water holding capacity (WHC) and less tenderness, exhibited higher global DNA methylation levels than the juvenile hens. A total of 2,714 differentially methylated regions were identified in the present study, which corresponded to 378 differentially methylated genes, mainly affecting muscle development, lipid metabolism, and the ageing process. Hypermethylation of the promoters of the genes ABCA1, COL6A1 and GSTT1L and the resulting transcriptional down-regulation in the later laying-period hens may be the reason for the significant difference in the meat quality between the juvenile and later laying-period hens. These findings contribute to a better understanding of epigenetic regulation in the skeletal muscle development and meat quality of chicken.
Collapse
|