1
|
Wang Y, Wu Y, Wu Y, Feng Z, Li D, Liu Q. A gold nanoflower particle-based immunochromatographic assay sensor for on-site detection of six species of Salmonella in water and food samples. Anal Chim Acta 2025; 1350:343813. [PMID: 40155160 DOI: 10.1016/j.aca.2025.343813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Salmonella is a prevalent zoonotic pathogen that threatens food safety and human health. Owing to the large number of Salmonella species and their significant variations in pathogenicity and virulence, it is difficult to classify Salmonella strains quickly, which makes rapid detection of Salmonella outbreaks and research on foodborne diseases difficult. RESULTS Therefore, in this study, an ICA sensor for the detection of multiple Salmonella strains with high pathogenicity based on broad-spectrum Salmonella antibodies was developed using AuNFs as probes. Compared with other Salmonella ICA sensors, the sensor was able to detect six different types of Salmonella. The ICA sensor had a visual LOD of 104 CFU/mL for S. Paratyphi A, S. Typhimurium, S. Paratyphi B, S. Saintpaul, S. Heidelberg and S. enterica. The ICA sensor had no cross-reaction with 20 common foodborne pathogens, which could effectively avoid incorrect results caused by cross-reaction and delay accurate tracing of pathogenic bacteria. Moreover, the feasibility of the ICA sensor was verified by detecting Salmonella in spiked drinking water, orange juice, and milk. The ICA sensor achieved a visual detection limit of 104 CFU/mL and detected as low as 1 CFU/mL in chicken and egg samples after 6-8 h of enrichment. SIGNIFICANCE In conclusion, this sensor offers a rapid, cost-effective, and reliable solution for the on-site detection of multiple Salmonella strains, addressing critical needs in food safety and public health.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yafang Wu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Youxue Wu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhaoyi Feng
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Dezhi Li
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qing Liu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
2
|
Xu X, Liang Y, Zheng Z, Lin Q, Cai Q, Liu R, Wang B, Wan J, Chen J, Xu C, Liao M, Zhang J. An enzyme-activated loop primer probe LAMP method based on a new SNP site in the group_17537 gene for rapid on-site detection of Salmonella Pullorum. Poult Sci 2025; 104:104779. [PMID: 39823835 PMCID: PMC11786731 DOI: 10.1016/j.psj.2025.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Pullorum disease (PD) is a widespread disease that causes significant economic losses within the poultry industry of developing countries. An effective strategy for its prevention and control involves the implementation of decontamination procedures utilizing highly specific on-site detection techniques. In this study, a single-nucleotide polymorphism (SNP) site within the group_17537 gene of Salmonella enterica serovar Gallinarum biovars Pullorum (S. Pullorum) was found by using bioinformatics tools. The prevalence of this SNP among 165 strains of S. Pullorum was determined to exceed 96.3 %. The SNP exhibited a specificity rate greater than 99.9 %, with only 0.08 % detected among 2490 non-target Salmonella strains. It can be concluded that this SNP can be employed to distinguish S. Pullorum from other serotypes of Salmonella, specifically Salmonella enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterica serovar Gallinarum biovars Gallinarum (S. Gallinarum). Additionally, an enzyme-activated loop primer probe LAMP (EALP-LAMP) was developed based on this SNP site for the detection of S. Pullorum. This method exhibited excellent specificity and reproducibility, achieving limit of detection of 53.5 copies/µL with plasmid DNA and 0.2 pg/µL with genomic DNA. Moreover, in clinical applications involving 190 chick embryo samples from poultry farms, 24 samples identified as S. Pullorum positive, aligning with results obtained through traditional isolation and quantitative real-time PCR (qPCR) methods. These fingdings highlight the significant potential of this method, which offers accurate, rapid, on-site and visual detection of S. Pullorum.
Collapse
Affiliation(s)
- Xiaozhen Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yucen Liang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qianyi Cai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ruidong Liu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bosen Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Wan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jinger Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Resources and Environmental, Zhongkai College of Agricultural Engineering, Guangxin Road No. 388, Baiyun District, Guangzhou 510550, Guangdong, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
4
|
Lamas A, Santos SB, Prado M, Garrido-Maestu A. Phage amplification coupled with loop-mediated isothermal amplification (PA-LAMP) for same-day detection of viable Salmonella Enteritidis in raw poultry meat. Food Microbiol 2023; 115:104341. [PMID: 37567642 DOI: 10.1016/j.fm.2023.104341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Salmonella Enteritidis is the main serotype responsible for human salmonellosis in the European Union. One of the main sources of Salmonella spp. in the food chain are poultry products, such as eggs or chicken meat. In recent years, molecular methods have become an alternative to culture dependent methods for the rapid screening of Salmonella spp. In this work, the strain S. Enteritidis S1400, and previously isolated and characterized bacteriophage PVP-SE2, were used to develop and evaluate a same-day detection method combining Phage Amplification and Loop-mediated isothermal amplification (PA-LAMP) to specifically detect viable S. Enteritidis in chicken breast. This method is based on the detection of the phage DNA rather than bacterial DNA. The virus is added to the sample during pre-enrichment in buffered peptone water, where it replicates in the presence of viable S. Enteritidis. The detection of phage DNA allows, on the one hand to detect viable bacteria, since viruses only replicate in them, and on the other hand to increase the sensitivity of the method since for each infected S. Enteritidis cell, hundreds of new viruses are produced. Two different PA-LAMP detection strategies were evaluated, a real time fluorescence and a naked-eye detection. The present method could down to 0.2 fg/μL of pure phage DNA and a concentration of viral particles of 2.2 log PFU/mL. After a short Salmonella recovery step of 3 h and a co-culture of 4 h of the samples with phage particles, both real-time fluorescence and naked-eye method showed a LoD95 of 6.6 CFU/25 g and a LoD50 of 1.5/25 g in spiked chicken breast samples. The entire detection process, including DNA extraction and LAMP analysis, can be completed in around 8 h. In the current proof-of-concept, the novel PA-LAMP obtained comparable results to those of the reference method ISO 6579, to detect Salmonella Enteritidis in poultry meat.
Collapse
Affiliation(s)
- Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory, Department of Analytical Chemistry, Nutrition and Bromatology, University of Santiago de Compostela, Spain
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4800-122, Braga, Guimarães, Portugal
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
5
|
Zhuang L, Gong J, Shen Q, Yang J, Song C, Liu Q, Zhao B, Zhang Y, Zhu M. Advances in detection methods for viable Salmonella spp.: current applications and challenges. ANAL SCI 2023; 39:1643-1660. [PMID: 37378821 DOI: 10.1007/s44211-023-00384-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming. And they are relatively limited in their ability to detect Salmonella in the viable but non-culturable status if present in the sample to be tested. As a result, there is an increasing need for rapid and accurate techniques to detect viable Salmonella spp. This paper reviewed the status and progress of various methods reported in recent years that can be used to detect viable Salmonella, such as culture-based methods, molecular methods targeting RNAs and DNAs, phage-based methods, biosensors, and some techniques that have the potential for future application. This review can provide researchers with a reference for additional method options and help facilitate the development of rapid and accurate assays. In the future, viable Salmonella detection approaches will become more stable, sensitive, and fast and are expected to play a more significant role in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
6
|
Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods 2023; 12:foods12061179. [PMID: 36981106 PMCID: PMC10048424 DOI: 10.3390/foods12061179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Foodborne diseases caused by foodborne pathogens pose risks to food safety. Effective detection and efficient inactivation of pathogenic bacteria has always been a research hotspot in the field of food safety. Complicating these goals, bacteria can be induced to adopt a viable but non-culturable (VBNC) state under adverse external environmental stresses. When in the VBNC state, pathogens cannot form visible colonies during traditional culture but remain metabolically active and toxic. The resulting false negative results in growth-related assays can jeopardize food safety. This review summarizes the latest research on VBNC foodborne pathogens, including induction conditions, detection methods, mechanism of VBNC formation, and possible control strategies. It is hoped that this review can provide ideas and methods for future research on VBNC foodborne pathogenic bacteria.
Collapse
|
7
|
Ghorashi MS, Pant SD, Ghorashi SA. Comparison of colourimetric loop-mediated isothermal amplification (LAMP), PCR and high-resolution melt curve analysis and culture based diagnostic assays in the detection of three salmonella serotypes in poultry. Avian Pathol 2022; 51:476-487. [PMID: 35833568 DOI: 10.1080/03079457.2022.2101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The accuracy of two molecular tests, PCR and loop-mediated isothermal amplification (LAMP) assay were compared with bacterial culture in detection of salmonella in poultry clinical samples. The icIR family transcriptional regulator gene was targeted and out of 56 clinical specimens, 20 poultry field isolates were found positive for salmonella. Along with human isolates, reference strains of three different serovars, Salmonella Enteritidis (S. Enteritidis), S. Typhimurium and S. Infantis, were also tested. Eight different but genetically closely related bacterial genera (Klebsiella, Pseudomonas, Enterobacter, Campylobacter, Staphylococcus, Streptococcus, Escherichia and Pasteurella) were also used to evaluate the specificity of assay. The LAMP assay showed 80.8% sensitivity (95% CI, 0.66-0.95) and 100% specificity (95% CI, 0.71-1.00) when compared with microbiological culture and PCR, both with 100% sensitivity (95% CI, 0.87-1.00) and 100% specificity (95% CI, 0.71-1.00). High-resolution melt (HRM) curve analysis following PCR was able to differentiate between salmonella isolates based on their melting points, and all specimens were genotyped in three distinct HRM curve profiles. Each normalised melt curve profile represented one salmonella serotype and differences between the three melt profiles were correlated with nucleotide variations in the target gene sequences which demonstrated high discriminatory power of this technique. The colourimetric LAMP assay provided an alternative detection method capable of being used in the field and showed analytical sensitivity for detection of 1 pg of salmonella DNA per reaction. The advantages and disadvantages of each test in detection of salmonella are discussed.
Collapse
Affiliation(s)
- Mojdeh Sadat Ghorashi
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia,
| | - Sameer Dinkar Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia: .,Graham Centre for Agricultural Innovation, Wagga Wagga, Australia:
| | - Seyed Ali Ghorashi
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia: .,Graham Centre for Agricultural Innovation, Wagga Wagga, Australia:
| |
Collapse
|
8
|
Investigation and validation of labelling loop mediated isothermal amplification (LAMP) products with different nucleotide modifications for various downstream analysis. Sci Rep 2022; 12:7137. [PMID: 35504953 PMCID: PMC9062634 DOI: 10.1038/s41598-022-11320-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Loop mediated isothermal amplification (LAMP) is one of the best known and most popular isothermal amplification methods. It's simplicity and speed make the method particularly suitable for point-of-care diagnostics. Nevertheless, false positive results remain a major drawback. Many (downstream) applications are known for the detection of LAMP amplicons like colorimetric assays, in-situ LAMP or CRISPR-Cas systems. Often, modifications of the LAMP products are necessary for different detection applications such as lateral flow assays. This is usually achieved with pre-modified primer. The aim of this study is to evaluate amplicon labelling with different modified nucleotides such as Cy5-dUTP, biotin-dUTP and aminoallyl-dUTP as an alternative to pre-labelled primers. To realise this, the effects on amplification and labelling efficiency were studied as a function of molecule size and nucleotide amount as well as target concentration. This research shows that diverse labelling of LAMP amplicons can be achieved using different, modified nucleotides during LAMP and that these samples can be analysed by a wide range of downstream applications such as fluorescence spectroscopy, gel electrophoresis, microarrays and lateral flow systems. Furthermore, microarray-based detection and the ability to identify and distinguish false positives were demonstrated as proof of concept.
Collapse
|
9
|
Rapid and visual detection of viable Staphylococcus aureus in pork and pork products by PMA and saltatory rolling circle amplification. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wang C, Xu Z, Hou X, Wang M, Zhou C, Liang J, Wei P. Rapid, Sensitive, Specific, and Visual Detection of Salmonella in Retail Meat with Loop-Mediated Isothermal Amplification, Targeting the invA Gene. J Food Prot 2022; 85:6-12. [PMID: 34436593 DOI: 10.4315/jfp-21-186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella is one of the major pathogenic bacteria causing foodborne diseases. The rapid detection of Salmonella in food is of great significance to food safety. In this study, the loop-mediated isothermal amplification (LAMP) method was developed, and primers were designed targeting the invA gene of Salmonella. Standard samples of recombinant invA-plasmid and 100 retail meat samples were tested by LAMP and compared with the results tested by conventional PCR and the routine Chinese National Food Safety Standard-Microbiological Examination of Food-Examination of Salmonella, respectively. The results showed that Salmonella strains of eight different serotypes were amplified successfully by the developed LAMP assay, and it was 1,000-fold more sensitive than conventional PCR, with the analytical sensitivity of 8 × 102 copies per μL of the standard sample of invA-plasmid. The results were visualized directly by adding calcein and MnCl2 in the LAMP reaction tube, and the positively amplified products turned green after an incubation of 2 min. In parallel detection, the positive rate of Salmonella by the LAMP assay was highly correlated with the routine Chinese national standard method. The results of the study demonstrated that the developed LAMP assay is a simple, rapid, strongly specific, highly sensitive, and visual detection method for Salmonella. HIGHLIGHTS
Collapse
Affiliation(s)
- Can Wang
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Ziheng Xu
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Xuejiao Hou
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Min Wang
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Chenyu Zhou
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Jingzhen Liang
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Ping Wei
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| |
Collapse
|
11
|
Lin X, Jin X, Du W, Shan X, Huang Q, Fu R, Lv W, Yang H, Su Y, Huang G. Quantitative and specific detection of viable pathogens on a portable microfluidic chip system by combining improved propidium monoazide (PMAxx) and loop-mediated isothermal amplification (LAMP). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3569-3576. [PMID: 34286728 DOI: 10.1039/d1ay00953b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An accurate and specific detection of viable Candida albicans (C. albicans) in vaginal discharge is crucial for the diagnosis of vulvovaginal candidiasis (VVC) and assessment of antifungal effects. In this study, improved propidium monoazide (PMAxx) and loop-mediated isothermal amplification (LAMP) were used for the first time to distinguish between viable and dead C. albicans. A portable microfluidic chip system was developed to detect multiple viable pathogens in parallel. The consumption of samples and reagents in per reaction cell were only 0.94 μL, less than 1/25 of the conventional 25 μL Eppendorf tubular test method, both significantly reducing testing cost and greatly simplifying the detection of multiple viable pathogens. The concentration of PMAxx was optimized against C. albicans at 4.0 log CFU mL-1 to 5.0 log CFU mL-1, and 1 μM PMAxx was proven to be suitable for the detection of C. albicans in clinical samples. When testing mixtures containing different ratios of viable to dead C. albicans, PMAxx-LAMP could circumvent the signal arising from dead cells and, therefore, reflected the abundance of viable cells precisely. Furthermore, the suitability of this technique to evaluate the effects of antifungal agents, including clotrimazole, miconazole, and tioconazole, was assessed. Finally, the viability of Escherichia coli (E. coli) and C. albicans were detected on the portable microfluidic chip system. PMAxx-LAMP based portable microfluidic chip system was determined to be a feasible technique for assessing the viability of multiple pathogens in gynecology and might provide insights into new VVC treatment strategies.
Collapse
Affiliation(s)
- Xue Lin
- Department of Biomedical Engineering, The School of Medicine, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Wen J, Gou H, Liu J, Zhou H, Lin Q, Qu X, Chen K, Wang S, Shen H, Liao M, Zhang J. A one-step closed-tube enzyme-activated blocked probe assay based on SNP for rapid detection of Salmonella Pullorum. Poult Sci 2020; 100:1059-1067. [PMID: 33518064 PMCID: PMC7858149 DOI: 10.1016/j.psj.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovars Pullorum (S. Pullorum) is an infectious bacterial pathogen in the poultry industry that causes systemic pullorum disease. This disease causes great losses in terms of the clinical production and quality of chicken products in breeding farms. However, an acknowledged usable rapid detection method for its specific identification has not been reported, and it is generally difficult to distinguish from fowl typhoid caused by Salmonella enterica serovar Gallinarum biovars Gallinarum. The development of a specific and rapid detection method for this pathogen is therefore needed. In the present study, we targeted the single-nucleotide mutation position 237 of the S. Pullorum rfbS gene to develop an enzyme-activated blocked probe for its clinical rapid detection. The method displayed robust specificity and reproducibility, and it achieved minimal detection limits of 21 copies/μL of copy number and 4.53 pg/μL of genomic DNA. Compared with traditional identification and PCR methods, this method performed better for the detection of 100 clinical actual samples and without false negative results. The entire process can be accomplished in a 1-step closed-tube operation, overcomes the difficulties currently associated with S. Pullorum detection, and provides a specific and rapid method with broad application potential for SNP detection.
Collapse
Affiliation(s)
- Junping Wen
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Liu
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hualiang Zhou
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen 518054, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaojun Wang
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Shen H, Wen J, Liao X, Lin Q, Zhang J, Chen K, Wang S, Zhang J. A Sensitive, Highly Specific Novel Isothermal Amplification Method Based on Single-Nucleotide Polymorphism for the Rapid Detection of Salmonella Pullorum. Front Microbiol 2020; 11:560791. [PMID: 33117307 PMCID: PMC7575712 DOI: 10.3389/fmicb.2020.560791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
S. Pullorum (Salmonella enterica serovar Gallinarum biovars Pullorum) is an infectious pathogen that causes the acute systemic disease called Pullorum disease in poultry. This disease causes huge losses to the poultry industry and seriously affects the yield and quality of the chicken product. It is not easily distinguishable with fowl typhoid caused by S. Gallinarum (Salmonella enterica serovar Gallinarum biovars Gallinarum), hence the development of a specific and rapid detection method for this pathogen is highly desired. In this study, we propose a novel single-nucleotide polymorphism (SNP) detection strategy termed loop primer probe-introduced loop-mediated isothermal amplification (LP-LAMP) for S. Pullorum detection. Based on the original primer sets, we targeted the nucleotide position 237 of the rfbS gene sequence to design a new modified loop-primer probe with a ribonucleotide insertion, where activity of the enzyme ribonuclease H2 (RNase H2) is only activated when the probe is perfectly complementary, leading to the hydrolytic release of a quencher moiety and thus an amplified signal. The method exhibits robust specificity and a low detection limit as the copy number and genomic DNA is 21 copies/μL and 4.92 pg/μL, respectively. This method showed great performance in real sample testing of 130 samples of embryos, livers, and anal swabs from chickens in poultry farms. The experimental results are mainly consistent with traditional identification methods and a PCR method reported in the past. However, the other two methods still contain some false negative results, while our method is without miss detection. The entire closed-tube reaction process can be accomplished within 40 min at a constant temperature (61°C) without the need for expensive instruments or a complicated operation. The LP-LAMP strategy established in this study not only overcomes the existing difficulties of S. Pullorum rapid detection, it also provides a novel, sensitive, and highly specific detection platform for SNPs that is suitable for clinical use.
Collapse
Affiliation(s)
- Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China; Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Junping Wen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinmeng Liao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China; Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaojun Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Wen J, Gou H, Zhan Z, Gao Y, Chen Z, Bai J, Wang S, Chen K, Lin Q, Liao M, Zhang J. A rapid novel visualized loop-mediated isothermal amplification method for Salmonella detection targeting at fimW gene. Poult Sci 2020; 99:3637-3642. [PMID: 32616260 PMCID: PMC7597837 DOI: 10.1016/j.psj.2020.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella infection causes huge losses in the poultry industry worldwide. With the aim to prevent infectious diseases caused by Salmonella and to achieve rapid visualized Salmonella detection in poultry production, we used cresol red as an indicator to develop a novel visualized loop-mediated isothermal amplification method that targets the Salmonella fimW gene firstly in related field. The detection limit was 7.3 × 101 CFU/mL, and the method was highly specific and showed a high clinical detection rate. The entire reaction can be completed in about 40 min and only requires a water bath at 62°C, which makes the method extremely suitable for application to poultry production.
Collapse
Affiliation(s)
- Junping Wen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zeqiang Zhan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Gao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhengquan Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Bai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaojun Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Baymiev AK, Baymiev AK, Kuluev BR, Shvets KY, Yamidanov RS, Matniyazov RT, Chemeris DA, Zubov VV, Alekseev YI, Mavzyutov AR, Ivanenkov YA, Chemeris AV. Modern Approaches to Differentiation of Live and Dead Bacteria Using Selective Amplification of Nucleic Acids. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Ge J, Huang G, Sun X, Yin H, Han L. New insights into the kinetics of bacterial growth and decay in pig manure-wheat straw aerobic composting based on an optimized PMA-qPCR method. Microb Biotechnol 2019; 12:502-514. [PMID: 30838800 PMCID: PMC6465228 DOI: 10.1111/1751-7915.13380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/01/2019] [Accepted: 02/04/2019] [Indexed: 02/04/2023] Open
Abstract
Aerobic composting is a bacteria-driven process to degrade and recycle wastes. This study quantified the kinetics of bacterial growth and decay during pig manure-wheat straw composting, which may provide insights into microbial reaction mechanisms and composting operations. First, a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) method was developed to quantify the viable bacteria concentration of composting samples. The optimal PMA concentration and light exposure time were 100 μM and 8 min respectively. Subsequently, the concentrations of total and decayed bacteria were quantified. Viable and decayed bacteria coexisted during the entire composting period (experiments A and B), and the proportion of viable bacteria finally fell to only 35.1%. At the beginning, bacteria grew logarithmically and decayed rapidly. Later, the bacterial growth in experiment A remained stable, while that of experiment B was stable at first and then decomposed. The duration of the stable stage was positively related to the soluble sugar content of composting materials. The logarithmic growth and rapid decay of bacteria followed Monod equations with a specific growth (0.0317 ± 0.0033 h-1 ) and decay rate (0.0019 ± 0.0000 h-1 ). The findings better identified the bacterial growth stages and might enable better prediction of composting temperatures and the degree of maturation.
Collapse
Affiliation(s)
- Jinyi Ge
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
- Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Guangqun Huang
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| | - Xiaoxi Sun
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| | - Hongjie Yin
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| | - Lujia Han
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| |
Collapse
|
18
|
Kogovšek P, Ambrožič-Avguštin J, Dovč A, Dreo T, Hristov H, Krapež U, Ravnikar M, Slavec B, Lotrič M, Žel J, Zorman Rojs O. Loop-mediated isothermal amplification: rapid molecular detection of virulence genes associated with avian pathogenic Escherichia coli in poultry. Poult Sci 2019; 98:1500-1510. [PMID: 30476321 PMCID: PMC6377436 DOI: 10.3382/ps/pey516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/18/2018] [Indexed: 11/20/2022] Open
Abstract
Infections with pathogenic Escherichia coli can lead to different animal- and human-associated diseases. E. coli infections are common in intensive poultry farming, and important economic losses can be expected during infections with avian pathogenic E. coli (APEC) strains followed by colibacillosis. Loop-mediated isothermal amplification (LAMP) assays were developed for rapid detection of 3 APEC-associated virulence genes: sitA, traT, and ompT. All 3 LAMP assays are shown to be specific, repeatable, and reproducible. High sensitivities of the assays are shown, where as few as 1,000 bacterial cells/mL can be detected in different matrices. On-site applicability of this LAMP method is demonstrated through testing of different sample types, from animal swabs and tissues, and from environmental samples collected from 6 commercial poultry farms. All 3 virulence genes were detected at high rates (above 85%) in samples from layer and broiler chickens with clinical signs and, interestingly, high prevalence of those genes was detected also in samples collected from clinically healthy broiler flock (above 75%) while lower prevalence was observed in remaining 3 clinically healthy chicken flocks (less than 75%). Importantly, these virulence genes were detected in almost all of the air samples from 11 randomly selected poultry houses, indicating air as an important route of E. coli spread. Three LAMP assays that target APEC-associated virulence genes are shown to be sensitive and robust and are therefore applicable for rapid on-site testing of various sample types, from animal swabs to air. This on-site LAMP testing protocol offers rapid diagnostics, with results obtained in <35 min, and it can be applied to other important microorganisms to allow the required prompt measures to be taken.
Collapse
Affiliation(s)
| | | | - Alenka Dovč
- Veterinary Faculty, Institute for Poultry, Birds, Small Mammals and Reptiles, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tanja Dreo
- National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Hristo Hristov
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, Institute for Poultry, Birds, Small Mammals and Reptiles, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Ravnikar
- National Institute of Biology, 1000 Ljubljana, Slovenia.,Wine Research Centre, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, Institute for Poultry, Birds, Small Mammals and Reptiles, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | - Jana Žel
- National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Olga Zorman Rojs
- Veterinary Faculty, Institute for Poultry, Birds, Small Mammals and Reptiles, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Current loop-mediated isothermal amplification (LAMP) technologies for the detection of poultry pathogens. WORLD POULTRY SCI J 2018. [DOI: 10.1017/s004393391700109x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Yang Q, Domesle KJ, Ge B. Loop-Mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions. Foodborne Pathog Dis 2018; 15:309-331. [PMID: 29902082 PMCID: PMC6004089 DOI: 10.1089/fpd.2018.2445] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) has become a powerful alternative to polymerase chain reaction (PCR) for pathogen detection in clinical specimens and food matrices. Nontyphoidal Salmonella is a zoonotic pathogen of significant food and feed safety concern worldwide. The first study employing LAMP for the rapid detection of Salmonella was reported in 2005, 5 years after the invention of the LAMP technology in Japan. This review provides an overview of international efforts in the past decade on the development and application of Salmonella LAMP assays in a wide array of food and feed matrices. Recent progress in assay design, platform development, commercial application, and method validation is reviewed. Future perspectives toward more practical and wider applications of Salmonella LAMP assays in food and feed testing are discussed.
Collapse
Affiliation(s)
- Qianru Yang
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine , U.S. Food and Drug Administration, Laurel, Maryland
| | - Kelly J Domesle
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine , U.S. Food and Drug Administration, Laurel, Maryland
| | - Beilei Ge
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine , U.S. Food and Drug Administration, Laurel, Maryland
| |
Collapse
|