1
|
Ayala DI, Evans NP, Wilson D, Mouw M, Karnezos TP. In vitro Evaluation of Candidate Bacillus Strains Against erysipelothrix rhusiopathiae from Erysipelas Outbreaks in Layer Flocks. Avian Dis 2025; 68:521-524. [PMID: 40249593 DOI: 10.1637/aviandiseases-d-24-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 04/19/2025]
Abstract
Erysipelas is a zoonotic disease, causing acute infections in swine, poultry, and a wide variety of animals, including humans. In layers, erysipelas is considered an emerging disease characterized by hepatomegaly, splenomegaly, septicemia, and acute death. It affects flocks between 43 and 73 wk old and can result in 50% overall mortality. Layer hens possibly affected by an erysipelas outbreak were sampled in this study. Organs at necropsy showed the typical erysipelas lesions; the presence of Erysipelothrix rhusiopathiae was confirmed by selective plating and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The antimicrobial effect of a set of 20 proprietary Bacillus direct-fed microbials (DFM), individual strains and in combinations, was analyzed against confirmed E. rhusiopathiae isolates, by agar-well diffusion assay. Nine of the Bacillus strains screened in this study were found effective at inhibiting the growth of all four E. rhusiopathiae isolates from erysipelas cases. The findings of this study highlight the potential of using the Bacillus DFMs in vivo to evaluate their efficacy as biocontrol alternatives to reduce the growth E. rhusiopathiae in poultry production.
Collapse
Affiliation(s)
- Diana I Ayala
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO 63039,
| | | | - Dan Wilson
- Wilson Veterinary Company, Indianapolis, IN 46162
| | - Mark Mouw
- Wilson Veterinary Company, Indianapolis, IN 46162
| | - T Peter Karnezos
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO 63039
| |
Collapse
|
2
|
Lu YN, Yue TJ, Ding WL, Xu BW, Li AY, Huang SC. Gut-X Axis and Its Role in Poultry Bone Health: A Review. Microorganisms 2025; 13:757. [PMID: 40284594 PMCID: PMC12029844 DOI: 10.3390/microorganisms13040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The normal development and growth of bones are critical for poultry health. With the rapid increase in poultry growth rates achieved over the last few decades, juvenile meat-type poultry exhibit a high incidence of leg weakness and lameness. These issues are significant contributors to poor animal welfare and substantial economic losses. Understanding the potential etiology of bone problems in poultry will aid in developing treatments for bone diseases. The gut microbiota represents the largest micro-ecosystem in animals and is closely related to many metabolic disorders, including bone disease. It achieves this by secreting secondary metabolites and coordinating with various tissues and organs through the circulatory system, which leads to the concept of the gut-X axis. Given its importance, modulating gut microbiota to influence the gut-X axis presents new opportunities for understanding and developing innovative therapeutic approaches for poultry bone diseases. In light of the extensive literature on this topic, this review focuses on the effects of gut microbiota on bone density and strength in poultry, both directly and indirectly, through the regulation of the gut-X axis. Our aim is to provide scientific insights into the bone health problems faced by poultry.
Collapse
Affiliation(s)
| | | | | | | | - Ao-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| |
Collapse
|
3
|
Gao C, Chen Y, Zhang Z, Xu D, Liu X, Wang D, Shi L, Wang X, Chen H, Hao E. LAYING RATE WAS CORRELATED WITH MICROBIAL Fecal microbiota transplantation improves the laying performance by changing the gut microbiota composition in late laying period. Poult Sci 2025; 104:105064. [PMID: 40120240 PMCID: PMC11981753 DOI: 10.1016/j.psj.2025.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
This research investigated the differences and succession patterns of microbes in different ages, the performance of laying hens, and the effect of Fecal Microbiota Transplantation (FMT) on aged laying hens. First, based on the different laying rates and age, we divided the laying hens into four groups: 75-week-old high-yield (OH, laying rate (LR) > 90%), 75-week-old low-yield (OL, LR < 60%), 75-week-old non-laying hens (OZ, LR = 0%) and 35-week-old high-yield (YH, LR > 90%) with 5 replicates in each group and 6 chickens in each replicate. The microbial metabolic patterns between different ages and laying rates were determined using 16S rDNA technology. Then, to verify the results of microbiome research, we utilized FMT technology to transplant the gut microbiota from OH to OZ (OZFMT-OH), thereby revealing the connection between gut microbes and production performance. The results showed that high-yielding hens (YH and OH groups) had higher levels of Superoxide dismutase (SOD) and Immunoglobulin A (IgA) compared to OL and OZ groups. The Villus height to Crypt depth ratio(V/C) was significantly higher in the YH group than in 75-week-old hens (P < 0.05). Alpha diversity indicated higher microbial diversity in the YH group compared to older hens (P < 0.05), with YH hens harboring more Megamonas, OH hens more Bacteroides, and OL and OZ groups showing higher levels of harmful bacteria. The villus height, V/C, mucosal layer thickness, cup cell number acetic acid level, and LR in the OZFMT-OH group were significantly higher than those in the OZ group (P < 0.05), while the IL-2 level, crypt depth and cecal intestinal wall thickness were significantly lower than those in OZ group (P < 0.05). FMT also changed the morphological structure of grade follicles and small yellow follicles, improved the microbe composition of cecum and increased Bacteroides abundance. In the late laying period, if the intestinal flora cannot maintain the dynamic balance and carry out timely replacement, the production performance may be decreased, and the increase of Bacteroides abundance in the intestinal tract can improve the intestinal health and production performance of laying hens in the late laying period.
Collapse
Affiliation(s)
- Chong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhenhong Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dahai Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuelu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuechang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
4
|
Incharoen T, Charoensook R, Tartrakoon W, Numthuam S, Sunanta Y, Jimenez G, Loor JJ. Dietary Bacillus toyonensis BCT-7112 T Supplementation Influences Performance, Egg Quality, Ammonia Emission, and Cecal Microbiome in Laying Ducks. Vet Sci 2025; 12:259. [PMID: 40267015 PMCID: PMC11946347 DOI: 10.3390/vetsci12030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
This study evaluated the effects of Bacillus toyonensis BCT-7112T on laying duck performance, egg quality, ammonia emission, and cecal microbiota. Two hundred twenty 32-week-old Khaki Campbell ducks were assigned to four dietary treatments (0, 200, 500, or 1000 ppm Toyocerin® 109 premixture, containing 1 × 10⁹ B. toyonensis BCT-7112T CFU/g) with five replicate pens of eleven birds each. Data on productivity, egg quality, and ammonia emissions were collected weekly, and cecal microbiota were analyzed at 44 weeks of age. Supplementation with 1000 ppm B. toyonensis BCT-7112T significantly increased average egg weight (p < 0.001) and eggshell thickness (p = 0.007). Egg mass also improved at higher supplementation levels (p < 0.05), though feed intake, feed conversion, daily egg production, and most egg quality parameters were unaffected (p > 0.05). Ammonia emissions in litter decreased significantly (p < 0.05) with probiotic inclusion. Cecal microbiota analysis revealed higher diversity in ducks fed 1000 ppm, with a notable shift in predominant phyla from Bacteroidetes (35.12%) and Firmicutes (34.93%) in the controls to Bacteroidetes (40.52%), Firmicutes (34.08%), and Deferribacteres (9.54%) in the treated ducks. The findings suggest that 1000 ppm B. toyonensis BCT-7112T enhances egg production, eggshell quality, and microbial diversity while reducing ammonia emissions in laying duck systems.
Collapse
Affiliation(s)
- Tossaporn Incharoen
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (T.I.); (W.T.); (S.N.)
- Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Rangsun Charoensook
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (T.I.); (W.T.); (S.N.)
- Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wandee Tartrakoon
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (T.I.); (W.T.); (S.N.)
| | - Sonthaya Numthuam
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (T.I.); (W.T.); (S.N.)
| | - Yutthana Sunanta
- Faculty of Animal Science and Technology, Maejo University, Chiang-Mai 50290, Thailand;
| | | | - Juan J. Loor
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA;
| |
Collapse
|
5
|
Wang Y, Zhang C, Chen X, Zheng A, Liu G, Ren Y, Chen Z. Dietary supplementation of compound probiotics to improve performance, egg quality, biochemical parameters and intestinal morphology of laying hens. Front Vet Sci 2024; 11:1505151. [PMID: 39776595 PMCID: PMC11703898 DOI: 10.3389/fvets.2024.1505151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The purpose of this study was to investigate the effects of dietary supplementation of compound probiotics on the performance, egg quality, biochemical parameters and intestinal morphology of laying hens. A total of 180 healthy 200-day-old Hyline Brown laying hens with similar initial laying rate (87.5% ± 0.2%) were randomly divided into the control group and the treatment group. Each group included 6 replicates and each replicate included 15 laying hens. The control group was provided a basal diet, while the treatment group received the basal diet supplemented with compound probiotics. The experiment lasted for 52 days. The study indicated the following outcomes: (1) The laying rate (LR) and average egg weight (AEW) of laying hens in the treatment group were significantly higher than those of the control group (p < 0.05), whereas the feed-to-egg ratio (F/E) was significantly lower (p < 0.05); (2) The yolk weight (YW), egg shape index (ESI) and albumen height (AH) were significantly higher (p < 0.05), whereas the eggshell percentage (EP) was significantly lower (p < 0.05) after the dietary supplementation of compound probiotics; (3) The treatment group significantly decreased in total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), immunoglobulin A (IgA), and immunoglobulin G (IgG) levels in serum compared to the CON group (p < 0.05). Additionally, serum levels of total protein (TP), globulin (GLB), albumin (ALB), high-density lipoprotein (HDL), alkaline phosphatase (ALP), and total antioxidant capacity (T-AOC) were significantly higher in the treatment group (p < 0.05); (4) The supplementation of compound probiotics to laying hen diets led to a significant reduction in crypt depth (CD) and the ratio of villus height to crypt depth (V/C) in the jejunum compared to the CON group (p < 0.05). In conclusion, the supplementation of compound probiotics can regulate the body metabolism and improve the intestinal morphology, thus enhancing the antioxidant capacity and immune function of the body, which in turn improves the performance and egg quality of laying hens.
Collapse
Affiliation(s)
- Yan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Chaosheng Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xing Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Ying Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
6
|
Tajudeen H, Ha SH, Hosseindoust A, Mun JY, Park S, Park S, Choi P, Hermes RG, Taechavasonyoo A, Rodriguez R, Kim J. Effect of dietary inclusion of Bacillus-based probiotics on performance, egg quality, and the faecal microbiota of laying hen. Anim Biosci 2024; 37:689-696. [PMID: 38271980 PMCID: PMC10915221 DOI: 10.5713/ab.23.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Our study examined the impact of propriety blends of Bacillus strain probiotics on the performance, egg quality, and faecal microflora of laying hens. METHODS A total of 183 Institut de selection Animale (ISA) brown laying hens aged 23 weeks with an average body weight of 1,894±72 g were randomly allocated into 3 groups as control (corn-soybean meal based diet, CON), 0.5 g/kg Enterosure probiotics (ET1, 3×108 colony-forming unit [CFU]/kg feed), and 5 g/kg Enterosure probiotics (ET2, 3×109 CFU/kg feed) administered in mashed form. At the completion of each phase hen day egg production (HDEP), average egg weight (AEW), feed intake, and faecal microbiota were evaluated. RESULTS HDEP and AEW were higher (p<0.05) in the ET2-supplemented diet in phase 3 (week 9 to 12) compared with CON. Egg mass (EM) was higher (p<0.05) in phase 2 at ET2, and also higher (p<0.05) in phase 3 at the ET1 and ET2-supplemented diets compared with CON. Feed conversion ratio was lower (p<0.05) in phase 3 at the ET1 and ET2-supplemented diets, with ET2 being the lowest compared with ET1 and CON. Yolk colour was higher (p<0.05) in the ET-supplemented diets at phase 3 compared with CON. Bifidobacterium spp. was higher (p<0.05) in the ET2- supplemented diet compared with CON in phase 2, while in In phase 3, Lactobacillus spp. and Bifidobacterium spp. were higher (p<0.05) in the ET-supplemented diets compared with CON. Coliforms were lower (p<0.05) in the ETsupplemented diets compared with CON in phase 3. CONCLUSION The propriety blends of Bacillus strain probiotics supplements at 0.5 g/kg and 5 g/kg could improve the production and quality of eggs with more significance at 5 g/kg for HDEP, AEW and EM, which was achieved via the increase of beneficial microbiomes such as Lactobacillus spp., Bifidobacterium spp., and the decrease of pathogenic microbiomes like Escherichia coli and Coliforms which was speculated to improve gut barrier function and the reproductive hormone.
Collapse
Affiliation(s)
- Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Sang Hun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Jun Young Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Serin Park
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - SangIn Park
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - PokSu Choi
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Rafael Gustavo Hermes
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317,
USA
| | | | - Raquel Rodriguez
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317,
USA
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| |
Collapse
|
7
|
Mushtaq M, Ali B, Ali M, BiBi N, Raut R, Suliman GM, Swelum AA. Different levels of single-strain probiotic (Bacillus subtilis) with proteolytic enzyme (serratiopeptidase) can be used as an alternative to antibiotic growth promoters in broiler. Poult Sci 2024; 103:103400. [PMID: 38295498 PMCID: PMC10844863 DOI: 10.1016/j.psj.2023.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
In the current study, the proteolytic enzyme (serratiopeptidase) was used to enhance the efficacy of Bacillus subtilis (B. subtilis) probiotic as a growth promotor in broiler chicken. The effects of serratiopeptidase on the efficacy of different levels of B. subtilis as a growth promotor in broiler chicks were evaluated regarding growth performance traits, villus histomorphometric characterization, and intestinal microbiota count. Day-old broiler chicks (n = 120) were allocated into 4 groups having 3 replicates/group. In the control group (C), the basal diet was kept without supplementation. In treatment groups (P100, P150, and P200), the basal diet was supplemented with 100, 150, and 200 mg probiotics, respectively besides 30 mg proteolytic enzyme in the 3 treated groups for 4 wk. The performance parameters were significantly affected by the supplementation of serratiopeptidase to the B. subtilis treatment groups. Feed intake (FI), body weight gain (WG), feed conversion ratio (FCR), and dressing percent were significantly improved in the treatment groups as compared to the control group. Significantly, the lowest feed intake was recorded for the P200 group. The highest body weight gain and dressing percentage were recorded for the P200 group. An improved FCR was recorded in the P200 group (1.7) as compared to the control group. The different levels of B. subtilis supplemented with serratiopeptidase revealed significant improvements (P<0.05) in the morphology of the intestine by showing increases in villus height and width and crypt depth of the small intestine. The microbial count revealed that E. coli and salmonella colonies were significantly reduced in the P200 group as compared to the control and other treatment groups. In conclusion, the supplementation of B. subtilis with serratiopeptidase as a growth promoter in broiler chicks significantly improved the overall performance, and intestinal health and reduced microbial load contributing to optimizing the performance of broiler chickens. The greatest improvement was observed in the P200 group fed with B. subtilis as a probiotic and serratiopeptidase enzyme (200 mg:30 mg).
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Baseerat Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Majid Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Neelam BiBi
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rabin Raut
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 3720 USA
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Li Z, Guo Q, Lin F, Li C, Yan L, Zhou H, Huang Y, Lin B, Xie B, Lin Z, Huang Y. Lactobacillus plantarum supernatant inhibits growth of Riemerella anatipestifer and mediates intestinal antimicrobial defense in Muscovy ducks. Poult Sci 2024; 103:103216. [PMID: 38043406 PMCID: PMC10711468 DOI: 10.1016/j.psj.2023.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Riemerella anatipestifer (RA) is an important pathogen of waterfowl, with multiple serotypes and a lack of cross-protection between each serotype, which leads to the continued widespread in the world and causing significant economic losses to the duck industry. Thus, prevention and inhibition of RA infection are of great concern. Previous research has established that Lactobacillus plantarum supernatant (LPS) can prevents the pathogenic bacteria infection. However, LPS whether inhibits RA and underlying mechanisms have not yet been clarified. In this study, we investigated the direct and indirect effects of LPS-ZG7 against RA infection in Muscovy ducks. The results demonstrated that LPS-ZG7 prevented RA growth in the presence of pH-neutralized, and the inhibition was relatively stable and unaffected by heat, acid-base and ultraviolet light (UV). Following flow cytometry data found that LPS-ZG7 increased RA membrane permeability and leakage of intracellular molecules. And scanning electron microscopy revealed LPS-ZG7 damaged the RA membrane integrity and leading to RA death. Furthermore, quantitative real time polymerase chain reaction (qPCR) analysis represented that LPS-ZG7 upregulated mucosal tight junction proteins occludin, claudin-1, and Zo-1 in Muscovy ducks, and increasing mucosal transport channels SGLT-1, PepT1, AQP2, AQP3, and AQP10 in duodenum, jejunum, and colon, then decreased the intestinal permeability and intestinal barrier disruption which were caused from RA. From the data, it is apparent that LPS-ZG7 enhanced intestinal mucosal integrity by rising villus height, villus height-to-crypt depth ratio and lower crypt depth. LPS-ZG7 significantly decreased intestinal epithelia cells apoptosis caused by RA invasion, and enhanced intestinal permeability and contribute to barrier dysfunction, ultimately improving intestinal health of host, indirectly leading to reduce diarrhea rate and mortality caused by RA. Overall, this study strengthens the idea that LPS-ZG7 directly inhibited the RA growth by increased RA membrane permeability and damaged the RA membrane integrity, and then indirectly enhanced intestinal mucosal integrity, improved intestinal health of host and mediated intestinal antimicrobial defense.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Qing Guo
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Cuiting Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Lu Yan
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Haiou Zhou
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yaping Huang
- Department of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou 361000, China
| | - Binbin Lin
- Putian Institute of Agricultural Science, Putian 361013, China
| | - Bilin Xie
- Putian Institute of Agricultural Science, Putian 361013, China
| | - Zhimin Lin
- Putian Institute of Agricultural Science, Putian 361013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
9
|
Qin M, Wang Z, Liang M, Sha Y, Liu M, Liu J, Wang T, Zhao C, Wang Z, Guo D, Li R. Effects of dietary supplementation with tea polyphenols and probiotics on laying performance, biochemical parameters intestinal morphology and microflora of laying hens. Int J Biol Macromol 2024; 256:128368. [PMID: 38029914 DOI: 10.1016/j.ijbiomac.2023.128368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
This study was conducted to investigate the effects of tea polyphenols (TP) and probiotics (PB) on the production performance, biochemical indices, and gut health of laying hens. A total of 400 Hy-line Brown layers (45 weeks old) were randomly assigned to 8 diet groups for 8-week feeding trial. Compared with the control basal diet (CT), dietary high dosage of TP and PB (HTP-PB) increased egg mass (P < 0.05). Supplementation with HTP-PB improved the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the malonic dialdehyde (MDA) content (P < 0.05) without affecting the contents of immunoglobulins in the serum. The combination of HTP and PB supplementation promoted the secretion of estradiol (E2) and progesterone (PROG) compared with treatment with TP or PB alone (P < 0.05). The combined use of HTP and PB induced higher jejunal villus height (VH) than the CT group (P < 0.05). Dietary TP and PB could optimize the functional network of intestinal microflora and the interactions between the intestinal microflora and the host. Therefore, the combined use of the high dosage of TP and PB affected laying performance, improved antioxidant capacity, and promoted intestinal health, which may be associated with regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Zengguang Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Mingzhi Liang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yufen Sha
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Minxiao Liu
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Jiewei Liu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang 330045, China; GuangDong Shengdilecun Ecological Food Co., Ltd, Kaiping 529300, China
| | - Ting Wang
- Yantai Municipal Agriculture and Rural Affairs Bureau, Yantai 264000, China
| | - Chengxin Zhao
- Yantai Jinhai Pharmaceutical Co., Ltd, Yantai 265323, China
| | - Zhixin Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Duitian Guo
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Ruili Li
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China.
| |
Collapse
|
10
|
Tsai MY, Shih BL, Liaw RB, Chen WT, Lee TY, Hung HW, Hung KH, Lin YF. Effect of dietary supplementation of Bacillus subtilis TLRI 211-1 on laying performance, egg quality and blood characteristics of Leghorn layers. Anim Biosci 2023; 36:609-618. [PMID: 36634665 PMCID: PMC9996276 DOI: 10.5713/ab.22.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE TLRI 211-1 is a novel Bacillus subtilis strain. This experiment was to investigate dietary supplementation of TLRI 211-1 on laying performance, egg quality and blood characteristics of layers. METHODS One hundred and twenty 65-wk-old Leghorn layers were divided into four treatment groups for 8 weeks experiment. Each treatment had three replicates. The basal diet was formulated as control group with crude protein 17% and metabolizable energy 2,850 kcal/kg and supplemented with TLRI 211-1 0.1%, 0.3%, and commercial Bacillus amyloliquefaciens 0.1% as treatment 2, 3 and 4 groups, respectively. Both TLRI 211-1 and commercial Bacillus amyloliquefaciens were adjusted to contain 1×109 colony-forming unit (CFU)/mL (g), hence the 0.1% supplemental level was 1×109 CFU/kg. RESULTS The results showed that TLRI 211-1 0.3% and commercial B. amyloliquefaciens groups had higher weight gain than the other groups; TLRI 211-1 0.1% group had better feed to eggs conversion ratio than the control and commercial B. amyloliquefaciens groups (p<0.05). Bacillus subtilis supplementation increased yolk weight (p<0.05). In egg quality during storage, TLRI 211-1 0.1% had higher breaking strength than the control group at the second week of storage (p<0.05). At the third week of storage, TLRI 211-1 0.3% had higher Haugh unit (p<0.05). Hens fed diets supplemented with TLRI 211-1 0.3% significantly decreased blood triglyceride levels and increased blood calcium levels (p< 0.05). TLRI 211-1 0.3% group had lower H2S (p<0.05) and hence had less unpleasant odor in excreta of hens. CONCLUSION In conclusion, supplementation with 0.1% TLRI 211-1 can significantly improve feed to eggs conversion ratio. TLRI 211-1 supplementation also can maintain eggs at their optimum quality level during storage. The study showed that B. subtilis TLRI 211-1 can be used as feed additives for improving egg production performance and egg quality.
Collapse
Affiliation(s)
- Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute (LRI), Council of Agriculture (COA), Hsinhua, Tainan 712009, Taiwan.,Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
| | - Bor-Ling Shih
- Nutrition Division, Livestock Research Institute (LRI), Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Ren-Bao Liaw
- Physiology Division, Livestock Research Institute (LRI), Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Wen-Tsen Chen
- Nutrition Division, Livestock Research Institute (LRI), Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Tsung-Yu Lee
- Nutrition Division, Livestock Research Institute (LRI), Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Hsi-Wen Hung
- Nutrition Division, Livestock Research Institute (LRI), Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
| | - Yih-Fwu Lin
- Nutrition Division, Livestock Research Institute (LRI), Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| |
Collapse
|
11
|
Cheng X, Ning Z. Research progress on bird eggshell quality defects: a review. Poult Sci 2023; 102:102283. [PMID: 36399932 PMCID: PMC9673113 DOI: 10.1016/j.psj.2022.102283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The eggshell quality declined with extending of chicken laying cycles. Eggshell quality is a crucial feature that not only affects consumer preference, but also influences producers' economic profitability. The eggshell ultrastructure consists of mammillary, palisade, and vertical crystal layers. Any defect in shell structure results in a reduction in eggshell quality. Speckled, translucent, pimpled, and soft eggshells are common defects that cause significant financial losses for farmers and food security concerns for consumers. Therefore, reducing the faulty eggshells is critical for poultry production. Defective eggshell quality has been attributed to hereditary factors and external environmental stimuli. As such, improvements can be carried out through selective breeding and environmental control of components such as temperature, moisture, and diet formula balance. In this review, the molecular mechanisms of the main eggshell quality defects (speckled, translucent, pimpled, broken, and soft-shell eggs) and the relevant improvement methods are detailed. We hope this review will serve as a useful resource for poultry production management and effectively increasing eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Wang F, Zou P, Xu S, Wang Q, Zhou Y, Li X, Tang L, Wang B, Jin Q, Yu D, Li W. Dietary supplementation of Macleaya cordata extract and Bacillus in combination improve laying performance by regulating reproductive hormones, intestinal microbiota and barrier function of laying hens. J Anim Sci Biotechnol 2022; 13:118. [PMID: 36224643 PMCID: PMC9559840 DOI: 10.1186/s40104-022-00766-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate whether the combination of Macleaya cordata extract (MCE) and Bacillus could improve the laying performance and health of laying hens better. METHODS A total of 360 29-week-old Jingbai laying hens were randomly divided into 4 treatments: control group (basal diet), MCE group (basal diet + MCE), Probiotics Bacillus Compound (PBC) group (basal diet + compound Bacillus), MCE + PBC group (basal diet + MCE + compound Bacillus). The feeding experiment lasted for 42 d. RESULTS The results showed that the laying rate and the average daily egg mass in the MCE + PBC group were significantly higher than those in the control group (P < 0.05) and better than the MCE and PBC group. Combination of MCE and Bacillus significantly increased the content of follicle-stimulating hormone (FSH) in the serum and up-regulated the expression of related hormone receptor gene (estrogen receptor-β, FSHR and luteinizing hormone/choriogonadotropin receptor) in the ovary of laying hens (P < 0.05). In the MCE + PBC group, the mRNA expressions of zonula occluden-1, Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group (P < 0.05). In addition, compared with the control group, combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity (P < 0.05), and down-regulated the mRNA expressions of inflammation-related genes (interleukin-1β and tumor necrosis factor-α) as well as apoptosis-related genes (Caspase 3, Caspase 8 and P53) (P < 0.05). The concentration of acetic acid and butyric acid in the cecum content of laying hens in the MCE + PBC group was significantly increased compared with the control group (P < 0.05). CONCLUSIONS Collectively, dietary supplementation of 600 μg/kg MCE and 5 × 108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier, regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens, and the combined effect of MCE and Bacillus is better than that of single supplementation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Dongyou Yu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| |
Collapse
|
13
|
Obianwuna UE, Qiu K, Chang XY, Zhang HJ, Wang J, Qi GH, Sun TH, Su YB, Wu SG. Enhancing egg production and quality by the supplementation of probiotic strains (Clostridium and Brevibacillus) via improved amino acid digestibility, intestinal health, immune response, and antioxidant activity. Front Microbiol 2022; 13:987241. [PMID: 36177461 PMCID: PMC9512665 DOI: 10.3389/fmicb.2022.987241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
This study focused on evaluating the influence of Clostridium butyricum and Brevibacillus strains on egg production, egg quality, immune response and antioxidant function, apparent fecal amino acid digestibility, and jejunal morphology when supplemented as probiotics in the diets of laying hens in the peak phase. A total of 288 healthy 30-week-old Hy-Line Brown laying hens were arbitrarily assigned to four dietary groups, which included control diet and control diet supplemented with 0.02% C. butyricum zlc-17, C. butyricum lwc-13, or Brevibacillus zlb-z1, for 84 days. The results showed that dietary C. butyricum and Brevibacillus sp. exerted a positively significant influence (P ≤ 0.05) compared to the control group on the performance, egg quality, and physiological response of the birds. The diets could reduce mortality rate and enhance (P ≤ 0.05) egg weight and egg mass, egg production rate, and feed efficiency. Further analysis suggested that the probiotic strains can enhance (P ≤ 0.05) eggshell quality, Haugh unit, thick albumen content, and albumen height. Also, probiotics enhanced (P ≤ 0.05) the antioxidant status via increased antioxidant enzymes and jejunal morphology as evidenced by increased villi surface area (VSA), the ratio of villi height to crypt depth, villi width, and villi height, and a significant reduction in crypt depth. Besides, nutrient absorption and retention were enhanced, as apparent fecal amino acid digestibility of key essential amino acids was substantially improved in the diet-based group. The concentrations of immunoglobulin M and A (IgM and IgA) increased significantly (P ≤ 0.05) in the probiotics group and the same effect was notable for complement proteins (C3) and immune organ (Spleen). Conclusively, the supplementation of Clostridium butyricum zlc-17 in comparison to Clostridium butyricum lwc-13 and Brevibacillus zlb-z1 strains significantly (P ≤ 0.05) promoted the antioxidant status, modulated the intestinal structure, enhanced amino acid digestibility, and regulated the immunity index of the laying hens, which finally improves the laying performance and egg quality of the laying hens.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin-yu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tie-hu Sun
- China Oil Foodstuffs Corporation (COFCO) Nutrition and Health Research Institute, Beijing, China
- *Correspondence: Tie-hu Sun,
| | - Yong-bo Su
- Technology Department, China Oil Foodstuffs Corporation (COFCO) (Beijing) Feed Technology Company Limited, Beijing, China
| | - Shu-geng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Shu-geng Wu,
| |
Collapse
|
14
|
Ceylan N, Evrenkaya E, Lanckriet A. Efficacy of the probiotic Bacillus licheniformis DSM 28710
in laying hens fed barley-sunflower meal-based diets
on performance egg quality and excreta composition. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/149388/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Obianwuna UE, Oleforuh-Okoleh VU, Wang J, Zhang HJ, Qi GH, Qiu K, Wu SG. Natural Products of Plants and Animal Origin Improve Albumen Quality of Chicken Eggs. Front Nutr 2022; 9:875270. [PMID: 35757269 PMCID: PMC9226613 DOI: 10.3389/fnut.2022.875270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Albumen quality is recognized as one of the major yardsticks in measuring egg quality. The elasticity of thick albumen, a strong bond in the ovomucin-lysozyme complex, and excellent biological properties are indicators of high-quality albumen. The albumen quality prior to egg storage contribute to enhance egg’s shelf life and economic value. Evidence suggests that albumen quality can deteriorate due to changes in albumen structure, such as the degradation of β-ovomucin subunit and O-glyosidic bonds, the collapse of the ovomucin-lysozyme complex, and a decrease in albumen protein-protein interaction. Using organic minerals, natural plants and animal products with antioxidant and antimicrobial properties, high biological value, no residue effect and toxicity risk could improve albumen quality. These natural products (e.g., tea polyphenols, marigold extract, magnolol, essential oils, Upro (small peptide), yeast cell wall, Bacillus species, a purified amino acid from animal blood, and pumpkin seed meal) are bio-fortified into eggs, thus enhancing the biological and technological function of the albumen. Multiple strategies to meeting laying hens’ metabolic requirements and improvement in albumen quality are described in this review, including the use of amino acids, vitamins, minerals, essential oils, prebiotics, probiotics, organic trace elements, and phytogenic as feed additives. From this analysis, natural products can improve animal health and consequently albumen quality. Future research should focus on effects of these natural products in extending shelf life of the albumen during storage and at different storage conditions. Research in that direction may provide insight into albumen quality and its biological value in fresh and stored eggs.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vivian U Oleforuh-Okoleh
- Department of Animal Science, Faculty of Agriculture, Rivers State University, Port Harcourt, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Probiotics-induced Changes in Intestinal Structure and Gut Microbiota Are Associated with Reduced Rate of Pimpled Eggs in the Late Laying Period of Hens. J Poult Sci 2022; 59:206-222. [PMID: 35989689 PMCID: PMC9346597 DOI: 10.2141/jpsa.0210061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
|
17
|
Schokker D, Visscher J, Woelders H. Changes in Blood Metabolites, Intestinal Microbiota Composition and Gene Expression of 95 Weeks Old Laying Hens Differing in Egg Production and Egg Breaking Strength. Animals (Basel) 2021; 11:ani11113012. [PMID: 34827745 PMCID: PMC8614445 DOI: 10.3390/ani11113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The average cycle of laying hens is prolonged by improving one or more aspects, including genetics, nutrition, and management. Yet, this prolongation needs to go hand-in-hand with laying hens staying vital. Our objective was to explore hen vitality at an age of 95 weeks in association with performance parameters (egg production and breaking strength). To this end, we measured metabolism and disease indicators in blood, microbiota composition and diversity in different gut segments, and the biological activity of the small intestine. We observed that 12% of the hens developed certain aberrations. Additionally, five metabolites were significantly associated to these aberrations, and two metabolites to the performance parameters. In the small intestine we observed that in the production groups the physical barrier function was affected, whereas in the breaking strength group the immune function was affected. Taken together, these data show that hen vitality at later ages can still be improved and we provided data on a molecular level that could be used in future endeavors to improve animal health and welfare. Abstract Herein, we investigated to what extent molecular phenotypes of the systemic level (blood) and local (intestine) are associated with the performance of laying hens at 95 weeks of age. After the trial had run for 95 weeks, two performance groups were generated, i.e., egg production (PROD) and egg breaking strength (BS). A subset of 21 cages, 116 hens, was measured to indicate the metabolism and disease status. Additionally, a focus group (four cages) was made to perform molecular phenotyping in the intestine. A notifiable observation made during the post-mortem dissection was that approximately 12% of the birds at 95 weeks had developed certain aberrations and/or impairments (denoted as organ morbidity). At the systemic level, we observed five metabolites (γGT, triglycerides, HDL, glucose, and cholesterol) significantly associated to organ morbidity, and only two metabolites (urea and aspartate aminotransferase) to the performance phenotypes. At the local level, when comparing high PROD vs. low PROD, we observed differentially expressed genes involved in cell cycle processes and the extracellular matrix. When comparing high BS vs. low BS differentially, expressed genes were observed mainly involved in immune and cell cycle-related processes. This knowledge is crucial for developing novel strategies of keeping laying hens vital.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Wageningen Livestock Research, 6708 PB Wageningen, The Netherlands
| | - Jeroen Visscher
- Hendrix Genetics Research, Technology & Services B.V., 5831 CK Boxmeer, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
18
|
Zou X, Jiang S, Zhang M, Hu H, Wu X, Liu J, Jin M, Cheng H. Effects of Bacillus subtilis on Production Performance, Bone Physiological Property, and Hematology Indexes in Laying Hens. Animals (Basel) 2021; 11:2041. [PMID: 34359169 PMCID: PMC8300237 DOI: 10.3390/ani11072041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
This study was to investigate the effects of Bacillus subtilis on production performance and bone pathophysiological characteristics of layers. Twenty-four 48-week-old Lohmann Pink-shell laying hens were randomly divided into two groups: a basic diet (control) and the basic diet mixed with Bacillus subtilis (0.5 g/kg) for a 60-day trial. Statistically, independent-sample t-test was used to assess the treatment differences. The results showed that Bacillus subtilis supplementation improved the percent of marketable eggs (p < 0.05) with reduced numbers of broken and soft-shelled eggs but had no effects on egg weight, height of albumen, yolk color, and Haugh unit (p > 0.05). Bacillus subtilis supplement also elevated maximum load (p = 0.06), maximum stress (p = 0.01), stiffness (p < 0.01), and Young's modulus (p < 0.01) but suppressed maximum strain (p = 0.06) in the femur. In addition, compared with control birds, phosphorous concentration (p < 0.01) was reduced in serum at day 61 but increased in the femur (p < 0.05) in Bacillus subtilis fed birds. Bacillus subtilis fed birds also had lower magnesium concentrations in both femur (p = 0.04) and feces (p = 0.09). Furthermore, Bacillus subtilis increased plasma estrogen concentration (p = 0.01) and femur TNF receptor superfamily member 11b (OPG) expression (p < 0.05) but reduced plasma IL-1 (p < 0.01) and TNF-α (p < 0.01) concentrations. These results indicate that Bacillus subtilis could be used as a health promotor to reduce overproduction-induced inflammation and associated bone damage and to increase marketable egg production. The data provide evidence for developing a management strategy to use Bacillus subtilis as a feed additive to improve marketable egg production and health and welfare status of laying hens.
Collapse
Affiliation(s)
- Xinyu Zou
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (X.Z.); (M.Z.); (X.W.); (M.J.)
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (X.Z.); (M.Z.); (X.W.); (M.J.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Mi Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (X.Z.); (M.Z.); (X.W.); (M.J.)
| | - Haiqiang Hu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Xiaoling Wu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (X.Z.); (M.Z.); (X.W.); (M.J.)
| | - Jianzhu Liu
- China College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Meilan Jin
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (X.Z.); (M.Z.); (X.W.); (M.J.)
| | - Hengwei Cheng
- Livestock Behavior Research Unit, USDA-Agricultural Research Service, West Lafayette, IN 47907, USA;
| |
Collapse
|
19
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
20
|
Rivera-Pérez W, Barquero-Calvo E, Chaves AJ. Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poult Sci 2021; 100:101372. [PMID: 34364120 PMCID: PMC8353351 DOI: 10.1016/j.psj.2021.101372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
The global poultry trend toward the more responsible use of antibiotics is becoming recurrent and has demanded the need to generate new natural alternatives. Probiotics have gained importance as an option to use as growth promoters. This study aimed to evaluate Bacillus subtillis QST713 as a substitute for an antibiotic growth promoter (BMD). A total of 150 male broilers were assigned to three dietary treatments: 1) control diet (CO), 2) control diet + 500 g/t of BMD (AGP), and 3) control diet + 100 g/t of B. subtilis QST713 (PB), respectively. Each treatment was monitored for 5 wk for the productive variables: body weight, accumulated feed consumption, food conversion, and European efficiency factor. At the end of each week, fresh fecal samples were cultured and quantified for E. coli, Enterococcus spp., and Lactobacillus spp. At the end of the trial, blood samples were analyzed for hemogram and intestinal samples (anterior portion) for histomorphometry. The data were statistically analyzed with an analysis of variance and subjected to a least significant difference test (Tukey). The zootechnical yields were similar in the AGP and PB groups (P ˃ 0.05); both superior to the control group. In the hematological profiles, no difference was observed between the experimental groups. E. coli and Enterococcus counts were significantly lower (P ˂ 0.05), and Lactobacillus counts were significantly (P ˂ 0.05) higher in the PB group, relative to CO and AGP groups. No differences (P ˃ 0.05) were found in bacterial counts between the CO and AGP groups. The intestinal mucosa and villi in the PB group were significantly (P ˂ 0.05) longer and with less deeper crypts than CO and AGP groups. We conclude that B. subtillis QST713, used at the suggested commercial dose (100 g/ton), is an effective growth-promoting alternative to BMD that modulates the microbiota and intestinal architecture, thus producing zootechnical yields consistent with BMD.
Collapse
Affiliation(s)
- Walter Rivera-Pérez
- Tropical Diseases Research Program, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica; Avian Pathology Laboratory, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica
| | - Elías Barquero-Calvo
- Tropical Diseases Research Program, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica
| | - Aida J Chaves
- Avian Pathology Laboratory, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica.
| |
Collapse
|
21
|
A Review of the Effects and Production of Spore-Forming Probiotics for Poultry. Animals (Basel) 2021; 11:ani11071941. [PMID: 34209794 PMCID: PMC8300232 DOI: 10.3390/ani11071941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Spore-forming probiotics are widely used in the poultry industry for their beneficial impact on host health. The main feature that separates spore-forming probiotics from the more common lactic acid probiotics is their high resistance to external and internal factors, resulting in higher viability in the host and correspondingly, greater efficiency. Their most important effect is the ability to confront pathogens, which makes them a perfect substitute for antibiotics. In this review, we cover and discuss the interactions of spore-forming probiotic bacteria with poultry as the host, their health promotion effects and mechanisms of action, impact on poultry productivity parameters, and ways to manufacture the probiotic formulation. The key focus of this review is the lack of reproducibility in poultry research studies on the evaluation of probiotics’ effects, which should be solved by developing and publishing a set of standard protocols in the professional community for conducting probiotic trials in poultry. Abstract One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a “one health” approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts’ organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.
Collapse
|
22
|
Effects of the Use of a Combination of Two Bacillus Species on Performance, Egg Quality, Small Intestinal Mucosal Morphology, and Cecal Microbiota Profile in Aging Laying Hens. Probiotics Antimicrob Proteins 2021; 12:204-213. [PMID: 30810908 DOI: 10.1007/s12602-019-09532-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sixty-week-old Hy-Line brown laying hens were randomly divided into five groups and fed different diets over a period of 84 days. Experimental treatments included a basal diet (control); the basal diet supplemented with 1.0 × 106B. licheniformis yb-214245; the basal diet supplemented with 1.0 × 106B. subtilis yb-114246; a combination of both strains in a 2:1 ratio (6.6 × 105:3.3 × 105B. licheniformis yb-214245:B. subtilis yb-114246); and the latter, added with 5 mg/kg flavomycin. Basal diet supplementation with the combined Bacillus species improved egg-laying performance in aging hens significantly (P < 0.05). Eggshell strength improved significantly with this treatment, compared to the control or the antibiotic-supplemented groups (P < 0.05). The levels of total cholesterol, triglycerides, and very low-density lipoprotein cholesterol in egg yolk declined significantly more in the Bacillus-treated group than in the control or the antibiotic-supplemented groups (P < 0.01). Small intestinal morphology was better in the hens treated with the Bacillus combination than in the hens in the control group (P < 0.05). The total number of aerobic bacteria (Bacillus, Lactobacillus, and Bifidobacterium) in the cecum was significantly higher in all the Bacillus-supplemented hens than either in the control or the antibiotic-supplemented hens (P < 0.01); additionally, the number of E. coli and Salmonella was significantly lower than in the control group (P < 0.01). In conclusion, diet supplementation with the combination of Bacillus species used here for aging laying hens improved their growth performance, cecal bacterial composition, egg quality, and small intestine morphology.
Collapse
|
23
|
Zhou Y, Li S, Pang Q, Miao Z. Bacillus amyloliquefaciens BLCC1-0238 Can Effectively Improve Laying Performance and Egg Quality Via Enhancing Immunity and Regulating Reproductive Hormones of Laying Hens. Probiotics Antimicrob Proteins 2021; 12:246-252. [PMID: 30834486 DOI: 10.1007/s12602-019-9524-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we sought to evaluate the effects of dietary Bacillus amyloliquefaciens (B. amyloliquefaciens) BLCC1-0238 supplementation on laying performance, egg quality, antioxidant enzyme activities, reproductive hormone, and immunity of laying hens. A total of 240 Hy-Line Brown laying hens (28 weeks old) were randomly divided into four groups, and three replicates per group (n = 20 per replicate). The control group was fed a standard basal diet, and the three treatment groups were provided the basal diet supplemented with either 0.01%, 0.03%, or 0.06% B. amyloliquefaciens BLCC1-0238 (2 × 1010 CFU/g), respectively. Hens were allowed 2 weeks to acclimate prior to initiation of the 8-week experiment. It was observed that dietary supplementation with 0.01% or 0.03% B. amyloliquefaciens BLCC1-0238 significantly increased egg production and egg mass. However, no significant differences in feed intake, egg weight, and feed conversion ratio among the four groups were observed. Different levels of B. amyloliquefaciens BLCC1-0238 supplementation also significantly increased egg shell strength and thickness. With respect to the levels of reproductive hormones in the hens, B. amyloliquefaciens BLCC1-0238 supplementation significantly reduced serum adrenal cortical hormone (ACTH) levels, while increasing estradiol (E2) and follicle-stimulating hormone (FSH) secretion in the treatment groups compared to the control group. Relative to the control group, supplementation with 0.03% and 0.06% B. amyloliquefaciens BLCC1-0238 was observed to significantly increase serum glutathione S-transferase (GST) concentration, and supplementation significantly reduced serum IL-1 and IL-6 levels, whereas IL-4 levels increased for all concentrations tested. In conclusion, supplementation of a basal chicken diet with B. amyloliquefaciens BLCC1-0238 can improve laying performance and egg quality through the reduction of stress responses, up-regulation of growth hormones, and supporting immunity in laying hens.
Collapse
Affiliation(s)
- Yufa Zhou
- College of Animal Science and Technology, Shanxi Agricultural University, Mingxian South Road 1, Taigu, 030801, China
| | - Song Li
- School of Basic Medicine, Taishan Medical University, Tai'an, 271000, China
| | - Quanhai Pang
- College of Animal Science and Technology, Shanxi Agricultural University, Mingxian South Road 1, Taigu, 030801, China.
| | - Zengmin Miao
- School of Life Sciences, Taishan Medical University, Changcheng Road 619, Tai'an, 271018, China.
| |
Collapse
|
24
|
Zhang G, Wang H, Zhang J, Tang X, Raheem A, Wang M, Lin W, Liang L, Qi Y, Zhu Y, Jia Y, Cui S, Qin T. Modulatory Effects of Bacillus subtilis on the Performance, Morphology, Cecal Microbiota and Gut Barrier Function of Laying Hens. Animals (Basel) 2021; 11:1523. [PMID: 34073794 PMCID: PMC8225007 DOI: 10.3390/ani11061523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the efficacy of a single bacterium strain, Bacillus subtilis (B. subtilis) YW1, on the performance, morphology, cecal microbiota, and intestinal barrier function of laying hens. A total of 216 28-week-old Hy-line Brown laying hens were divided into three dietary treatment groups, with six replicates of 12 birds each for 4 weeks. The control group (Ctr) was fed a basal diet and the treatment groups, T1 and T2, were fed a basal diet supplemented with B. subtilis at a dose rate of 5 × 108 CFU/kg and 2.5 × 109 CFU/kg, respectively. Dietary supplementation with B. subtilis did not significantly affect overall egg production in both groups, with no obvious changes in average egg weight and intestine morphology. B. subtilis administration also improved the physical barrier function of the intestine by inducing significantly greater expression levels of the tight junction protein occludin in T1 (p = 0.07) and T2 (p < 0.05). Further, supplementation with B. subtilis effectively modulated the cecal microbiota, increasing the relative level of beneficial bacteria at the genus level (e.g., Bifidobacterium p < 0.05, Lactobacillus p = 0.298, Bacillus p = 0.550) and decreasing the level of potential pathogens (e.g., Fusobacterium p < 0.05, Staphylococcus p < 0.05, Campylobacter p = 0.298). Overall, B. subtilis YW1 supplementation cannot significantly improve the egg production; however, it modulated the cecal microbiota towards a healthier pattern and promoted the mRNA expression of the tight junction protein occludin in laying hens, making B. subtilis YW1 a good probiotic candidate for application in the poultry industry, and further expanding the resources of strains of animal probiotics.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Hao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Xinming Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Mingyan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Weidong Lin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yuzhuo Qi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yali Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
25
|
Zhao H, Yan L, Guo L, Sun H, Huang Q, Shao D, Jiang C, Shi J. Effects of Bacillus subtilis iturin A on HepG2 cells in vitro and vivo. AMB Express 2021; 11:67. [PMID: 33970365 PMCID: PMC8110684 DOI: 10.1186/s13568-021-01226-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Iturin A with cyclic peptide and fatty acid chain isolated from Bacillus subtilis fermentation shows a variety of biological activities. Among them, the anticancer activity attracted much attention. However, the molecular mechanism of its inhibitory effect on hepatocellular carcinoma was still unclear. Thus its effect on hepatocellular carcinoma was tested in this research. It was found that iturin A could enter HepG2 cells immediately and cause reactive oxygen species burst, disrupt cell cycle and induce apoptosis, paraptosis and autophagy in vitro. The iturin A without fatty acid chain showed no antitumor activity. Amphiphilic is critical to the activity of iturin A. The anticancer activity of iturin A to hepatocellular carcinoma was also verified in mice models carrying xenograft tumors constructed by HepG2 cells. At a dosage of 3 mg/kg/day, iturin A significantly inhibited the further increase of the tumor weight by 58.55%, and reduced the expression of Ki67 in tumor. In the tumor treated with iturin A, lymphocyte infiltration was found, and the expressions of TGF-β1and PD-L1 were decreased, which indicated that the tumor immune microenvironment was improved. Besides, iturin A showed no significant harm on the health of mice except slight disturbance of liver function. These results suggested that iturin A had significant antitumor effect in vitro and vivo, and provide a basis for the application of iturin A as anticancer agent.
Collapse
|
26
|
Liu X, Chen Y, Tang S, Deng Y, Xiao B, He C, Guo S, Zhou X, Qu X. Dietary encapsulated Bacillus subtilis and essential oil supplementation improves reproductive performance and hormone concentrations of broiler breeders during the late laying period. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Wang J, Wang WW, Qi GH, Cui CF, Wu SG, Zhang HJ, Xu L, Wang J. Effects of dietary Bacillus subtilis supplementation and calcium levels on performance and eggshell quality of laying hens in the late phase of production. Poult Sci 2021; 100:100970. [PMID: 33518333 PMCID: PMC7936213 DOI: 10.1016/j.psj.2020.12.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/24/2020] [Accepted: 12/24/2020] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary Bacillus subtilis supplementation and calcium (Ca) levels on performance, eggshell quality, intestinal morphology, and relative calbindin-D28k (CALB1) mRNA level of laying hens in the late phase of production. An experiment employing a 2 × 3 factorial arrangement of 3 levels of Ca (3.5, 4.0, and 4.5%) and the absence or presence of B. subtilis was carried out with a total of 576 Hy-Line Brown laying hens aged 72 to 79 wk. Every group had 8 replicates of 12 birds each. The results showed that 4.0 and 4.5% Ca levels improved (P < 0.05) apparent retention and serum Ca content of aged laying hens. Compared with the 3.5% Ca level, the 4.0% Ca level in diets increased (P < 0.05) thickness, eggshell weight, shell ratio, and eggshell Ca content of aged laying hens. Moreover, breaking strength, thickness, eggshell weight, shell ratio, eggshell Ca content, apparent retention of Ca in g/day, apparent retention of Ca in percent, villus height, villus height/crypt depth, serum Ca level, and relative CALB1 mRNA level of aged laying hens were all increased (P < 0.05) by B. subtilis supplementation in diets. The supplemental B. subtilis decreased feed conversion ratio (P = 0.001) significantly. In addition, there was an interaction effect between increased Ca levels from 3.5 to 4.5% and B. subtilis supplementation on crypt depth in the duodenum (P < 0.05). In conclusion, we found that both the increase in dietary Ca level from 3.5 to 4.5% and B. subtilis supplementation could enhance intestinal Ca absorption and improve eggshell quality of laying hens in the late phase of production (72-79 wk of age). Dietary supplementation of B. subtilis accompanying the 4.0% Ca level was appropriate in enhancement of eggshell quality.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory of Quality & Safety Risk Assessment For Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Animal Science and Technology, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Wei-Wei Wang
- Laboratory of Quality & Safety Risk Assessment For Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment For Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuang-Fei Cui
- Laboratory of Quality & Safety Risk Assessment For Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment For Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment For Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment For Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
28
|
Wang Y, Wang H, Wang B, Zhang B, Li W. Effects of manganese and Bacillus subtilis on the reproductive performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. Poult Sci 2020; 99:6196-6204. [PMID: 33142537 PMCID: PMC7647850 DOI: 10.1016/j.psj.2020.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
This experiment was conducted to investigate the effects of manganese (Mn) and Bacillus subtilis (BS) on the production performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. A total of 120 forty-six-week-old breeding geese (Wulong) were randomly assigned to 1 of 6 treatment diets formulated to supply 10, 20, and 30 mg/kg Mn with 5 × 109 CFU/kg or 2.5 × 109 CFU/kg BS for a 10-wk trial. Results showed that dietary supplementation with 20 and 30 mg/kg Mn could decrease the daily feed intake (DFI) of geese. Moreover, 30 mg/kg Mn significantly increased the laying rate. Besides, although Mn addition had no obvious effect on egg quality, 5 × 109 CFU/kg BS was found to elevate the hatching egg hatching rate and eggshell thickness. For the serum hormones, 30 mg/kg Mn promoted estradiol secretion, while 5 × 109 CFU/kg BS increased the level of follicle-stimulating hormone. Furthermore, 20 and 30 mg/kg Mn and 5 × 109 CFU/kg BS significantly enhanced the total antioxidant capacity by increasing the activity of total superoxide dismutases or decreasing the content of malondialdehyde. Dietary supplementation with 5 × 109 CFU/kg BS also increased the intestinal villus height and upregulated the abundance of Fusobacteria, Fusobacteriaceae, Fusobacterium, and Faecalibacterium in cecal content. In addition, 20 and 30 mg/kg Mn elevated the levels of Bacteroidetes, Bacteroidaceae, Bacteroides, and Ruminococcaceae but decreased Streptococcaceae. Importantly, an interaction effect was observed between Mn and BS on the DFI, egg mass, average egg size, and the abundance of Bacteroides as well as Faecalibacterium. In conclusion, dietary inclusion of Mn and BS could improve the production performance, egg quality, antioxidant capacity, intestinal structure, as well as gut microbiota. Supplementation of 30 mg/kg Mn and 5.0 × 109 CFU/kg BS provided the optimal effect.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hefei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Baowei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
29
|
Ye M, Wei C, Khalid A, Hu Q, Yang R, Dai B, Cheng H, Wang Z. Effect of Bacillus velezensis to substitute in-feed antibiotics on the production, blood biochemistry and egg quality indices of laying hens. BMC Vet Res 2020; 16:400. [PMID: 33097070 PMCID: PMC7583257 DOI: 10.1186/s12917-020-02570-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The excessive use of antibiotics in the livestock feed industry caused inevitable side effects of microbial resistance. Besides this residual antibiotics in animal-derived foodstuff imposed serious health problems for humans. So this study aimed to investigate the potential use of Bacillus velezensis to substitute antibiotics for poultry production. A total of 468, 49-week-old Hy-Line Brown chickens, were randomly divided into four groups the control group (regular diet), experiment group I (0.1% B. veleznesis), experiment group II (0.2% B. veleznesis), and antibiotic group (50 mg/kg flavomycin), with three replicates per group and trial period consisted on 42 days. RESULTS The results showed that, compared with the control group, the average egg production rate and daily feed intake of experimental groups I and II increased significantly (P < 0.05), while the average egg weight was increased in experimental group II as compared to (I) (P < 0.01). The feed conversion ratio was decreased (P > 0.05) in group (II) Egg quality parameters such as yolk weight of the experimental group II was increased, but that of the antibiotic group and experiment group I was decreased, neither significant (P > 0.05). Moreover, the eggshell strength, yolk color, albumen height, and Haugh unit were significantly increased (P < 0.05). Compared with the control group, probiotic groups can increase the progesterone and motilin (P > 0.05) but decrease the secretin and cholecystokinin in the blood plasma (P > 0.05). CONCLUSIONS This study suggested that B. velezensis can substitute in-feed-antibiotics and improved most of the study parameters significantly. Which suggested that B. velezensis has potential future application value to replace the feed antibiotics.
Collapse
Affiliation(s)
- Miao Ye
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China
| | - Chunjie Wei
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China
| | - Qian Hu
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China
| | - Ru Yang
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China
| | - Binghong Dai
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China
| | - Hengwei Cheng
- Department of Animal Science, Purdue University, 270 S, Russell ST, IN, 47907, West Lafayette, USA
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China.
| |
Collapse
|
30
|
la Mora ZVD, Macías-Rodríguez ME, Arratia-Quijada J, Gonzalez-Torres YS, Nuño K, Villarruel-López A. Clostridium perfringens as Foodborne Pathogen in Broiler Production: Pathophysiology and Potential Strategies for Controlling Necrotic Enteritis. Animals (Basel) 2020; 10:E1718. [PMID: 32972009 PMCID: PMC7552638 DOI: 10.3390/ani10091718] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Clostridium perfringens (Cp.) is the cause of human foodborne desease. Meat and poultry products are identified as the main source of infection for humans. Cp. can be found in poultry litter, feces, soil, dust, and healthy birds' intestinal contents. Cp. strains are known to secrete over 20 identified toxins and enzymes that could potentially be the principal virulence factors, capable of degrading mucin, affecting enterocytes, and the small intestine epithelium, involved in necrotic enteritis (NE) pathophysiology, also leading to immunological responses, microbiota modification and anatomical changes. Different environmental and dietary factors can determine the colonization of this microorganism. It has been observed that the incidence of Cp-associated to NE in broilers has increased in countries that have stopped using antibiotic growth promoters. Since the banning of such antibiotic growth promoters, several strategies for Cp. control have been proposed, including dietary modifications, probiotics, prebiotics, synbiotics, phytogenics, organic acids, and vaccines. However, there are aspects of the pathology that still need to be clarified to establish better actions to control and prevention. This paper reviews the current knowledge about Cp. as foodborne pathogen, the pathophysiology of NE, and recent findings on potential strategies for its control.
Collapse
Affiliation(s)
- Zuamí Villagrán-de la Mora
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico; (Z.V.-d.l.M.); (Y.S.G.-T.)
| | - María Esther Macías-Rodríguez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica 44430, Guadalajara, Mexico;
| | - Jenny Arratia-Quijada
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco 45425, Tonalá, Mexico;
| | - Yesica Sughey Gonzalez-Torres
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico; (Z.V.-d.l.M.); (Y.S.G.-T.)
| | - Karla Nuño
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco 45425, Tonalá, Mexico;
| | - Angélica Villarruel-López
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica 44430, Guadalajara, Mexico;
| |
Collapse
|
31
|
Shi H, Zhang WL, Kim IH. Effects of dietary Bacillus subtilis RX7 and B2A supplementation on productive performance, egg quality, blood profiles, and excreta Salmonella counts in laying hens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An experiment was carried out to investigate the effect of Bacillus subtilis RX7 and B2A supplementation on egg production, egg quality, blood profile, and excreta Salmonella population in laying hens. A total of 192 Hy-Line Brown laying hens (40-wk-old) were randomly assigned into four dietary treatments, each of which was replicated eight times with six hens per replicate in a 5 wk trial. The dietary treatments were NC, which is a basal diet without antibiotics or Bacillus subtilis; PC, which is an NC + 0.5 g kg−1 antibiotic (virginiamycin) diet; BSR, which is an NC + 0.5 g kg−1 Bacillus subtilis RX7 (1.0 × 109 colony forming units g−1); and BSB, which is an NC + 0.5 g kg−1 Bacillus subtilis B2A (1.0 × 109 colony forming units g−1). The results showed that hens receiving BSB diets had increased (P < 0.05) eggshell thickness over hens fed the NC, PC, and BSR diets (week 3). The excreta Salmonella counts in the PC, BSR, and BSB groups were lower than the NC group (P < 0.05). These results indicate that dietary inclusion of Bacillus subtilis RX7 and B2A strains effectively decreased excreta Salmonella counts without any detrimental effects on the performance of laying hens.
Collapse
Affiliation(s)
- Huan Shi
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| | - Wan Lin Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| |
Collapse
|
32
|
Zhang B, Sui F, Wang B, Wang Y, Li W. Dietary combined supplementation of iron and Bacillus subtilis enhances reproductive performance, eggshell quality, nutrient digestibility, antioxidant capacity, and hematopoietic function in breeder geese. Poult Sci 2020; 99:6119-6127. [PMID: 33142530 PMCID: PMC7647764 DOI: 10.1016/j.psj.2020.06.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/04/2023] Open
Abstract
A 3 × 2 factorial arrangement of treatments was conducted to investigate the effects of iron (Fe, 40, 60, and 80 mg/kg) and Bacillus subtilis (2.5 × 109 and 5.0 × 109 CFU/kg) supplementation on reproductive performance, egg quality, nutrient digestibility, hormone levels, antioxidant indices, and hematological parameters in breeder geese. A total of one hundredtwenty 46-week-old Wulong breeder geese were randomly assigned to 1 of 6 dietary treatments with 4 replicates per treatment and 5 geese per replicate for 10 wk following 1 wk of adaption. Dietary Fe supplementation increased egg weight (P = 0.036), fertility (P = 0.022), serum total antioxidant capacity (P = 0.022), red blood cell (P = 0.001), hematocrit (HCT, P < 0.001), hemoglobin (HGB, P = 0.005), and mean corpuscular volume (MCV, P < 0.001). Dietary B. subtilis supplementation increased egg production (P = 0.025), eggshell thickness (P = 0.020), apparent phosphorus digestibility (P < 0.001), serum follicle stimulating hormone (P = 0.043), total antioxidant capacity (P < 0.001), HCT (P < 0.001), HGB (P < 0.001), and MCV (P = 0.025), and reduced malondialdehyde level (P = 0.008). The birds fed diets supplemented with 60 mg/kg Fe and 5 × 109 CFU/kg B. subtilis showed the highest percentage of hatched eggs (P = 0.004) and mean corpuscular hemoglobin (P < 0.001) among the 6 groups. Supplementation of 40 and 60 mg/kg Fe significantly increased the apparent digestibility of calcium compared with that of 80 mg/kg Fe in the birds fed 5.0 × 109 CFU/kg B. subtilis (P = 0.004). Supplementation with 60 and 80 mg/kg Fe in the birds fed 5 × 109 CFU/kg B. subtilis significantly decreased serum urea nitrogen level compared with other 4 groups (P = 0.022). In conclusion, the combination of Fe and B. subtilis effectively improves reproductive performance, eggshell quality, nutrient digestibility, antioxidant status, and hematopoietic function of breeder geese. Dietary addition of 60 mg/kg Fe and 5.0 × 109 CFU/kg B. subtilis was an optimum supplementation dose.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Fuliang Sui
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Baowei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
33
|
Adhikari B, Jun SR, Kwon YM, Kiess AS, Adhikari P. Effects of Housing Types on Cecal Microbiota of Two Different Strains of Laying Hens During the Late Production Phase. Front Vet Sci 2020; 7:331. [PMID: 32656252 PMCID: PMC7324799 DOI: 10.3389/fvets.2020.00331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/12/2020] [Indexed: 02/01/2023] Open
Abstract
Due to animal welfare issues, European Union has banned the use of conventional cages (CC) and non-EU countries including the US are also under constant public pressure to restrict their use in egg production. Very limited information is available on the composition of the microbial community of hens raised in different housing environments. This study was conducted to determine the effects of CC and enriched colony cages (EC) on cecal microbiota of two commercial laying hen strains, Hy-Line W36 (W36) and Hy-Line Brown (HB) during the late production stage (53, 58, 67, and 72 weeks of age). Cecal microbiota was studied by analyzing 16S rRNA gene sequences with Quantitative Insights Into Microbial Ecology (QIIME) 2 ver. 2018.8. Differentially abundant taxa were identified by Linear discriminant analysis Effect Size (LEfSe) analysis (P < 0.05, LDA score > 2.0). At phylum level, Actinobacteria was significantly enriched in W36 at all time points while Synergistetes (53 weeks), Spirochaetes (58 weeks), and Synergistetes and Spirochaetes (67 weeks) were significantly higher in HB. At genus level, Bifidobacterium (at all time points) and butyric acid producing genera such as Butyricicoccus and Subdoligranulum (58 and 72 weeks) were significantly higher in W36 as compared to HB. Moreover, Proteobacteria (72 weeks) and its associated genus Campylobacter (67 and 72 weeks) were significantly enriched in EC as compared to CC. Alpha diversity was significantly higher in HB (at all time points) and in EC (67 weeks) as compared to W36 and CC, respectively. Similarly, there was a significant difference in community structure (beta diversity) between W36 and HB (all time points) as well as between EC and CC (67 weeks). The effect of housing and strains was not only seen at the bacterial composition and structure but also reflected at their functional level. Notably, KEGG metabolic pathways predicted to be involved in carbohydrates degradation and amino acids biosynthesis by PICRUSt analysis were significantly different between W36 and HB housed at CC and EC. In sum, cecal microbiota composition, diversities, and their functional pathways were affected by housing type which further varied between two commercial laying hen strains, HB and W36. This suggests that both housing and genetic strains of laying hens should be considered for selection of the alternative housing systems such as enriched colony cage.
Collapse
Affiliation(s)
- Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Young M Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Aaron S Kiess
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States
| | - Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
34
|
Chen JF, Xu MM, Kang KL, Tang SG, He CQ, Qu XY, Guo SC. The effects and combinational effects of Bacillus subtilis and montmorillonite on the intestinal health status in laying hens. Poult Sci 2020; 99:1311-1319. [PMID: 32111307 PMCID: PMC7587652 DOI: 10.1016/j.psj.2019.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/25/2023] Open
Abstract
This study was conducted to evaluate the effects and combinational effects of Bacillus subtilis (BS) and montmorillonite (MMT) on laying performance, gut mucosal oxidation status, and intestinal immunological and physical barrier functions of laying hens. Three hundred sixty laying hens (29-week-old) were randomly assigned to a 2 × 2 factorial arrangement of treatments (n = 6) for 10 wk as follows: (1) basal diet; (2) the basal diet plus 5 × 108 cfu BS/kg; (3) the basal diet plus 0.5 g MMT/kg; and (4) the basal diet plus 5 × 108 cfu BS/kg and 0.5 g MMT/kg. Dietary supplementation with BS increased egg production and egg mass, the activities of catalase (CAT) and total superoxide dismutase in the intestinal mucosa, and villus height and villus height-to-crypt depth ratio of the jejunum (P < 0.05) but downregulated the mRNA expression levels of toll-like receptor 4 and myeloid differentiation factor 88 (MyD88) in the duodenum and jejunum, interleukin 1 beta in the duodenum, and nuclear factor kappa B P65 (NF-κB P65) and tumor necrosis factor alpha in the jejunum (P < 0.05). Dietary supplementation with MMT increased egg production and egg mass, the concentration of secretory immunoglobulin A in the duodenum, and the occludin mRNA expression level in the jejunum (P < 0.05) but reduced feed conversion ratio, malondialdehyde concentration in the duodenum and jejunum, and the mRNA expression level of MyD88 in the jejunum (P < 0.05). In addition, there was an interaction effect between BS and MMT supplementation on the CAT activity and the MyD88 mRNA expression level in the duodenum and the mRNA expression level of occludin in the jejunum (P < 0.05). In conclusion, dietary BS and MMT and their combination may improve the intestinal health status of laying hens, which may contribute to the increase in hens' laying performance.
Collapse
Affiliation(s)
- J F Chen
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, P. R. China; College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, P. R. China
| | - M M Xu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, P. R. China
| | - K L Kang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, P. R. China
| | - S G Tang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, P. R. China
| | - C Q He
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, P. R. China
| | - X Y Qu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, P. R. China.
| | - S C Guo
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, P. R. China.
| |
Collapse
|
35
|
Upadhaya SD, Rudeaux F, Kim IH. Efficacy of dietary Bacillus subtilis and Bacillus licheniformis supplementation continuously in pullet and lay period on egg production, excreta microflora, and egg quality of Hyline-Brown birds. Poult Sci 2019; 98:4722-4728. [PMID: 31065703 DOI: 10.3382/ps/pez184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/23/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to evaluate the efficacy of Bacillus-based probiotic in pullet to lay period. A total of 12-wk-old 384 Hy-line Brown pullets (initial BW of 1.05 kg, 8 replications; 16 birds per replication pen) were used in a 6-wk feeding trial. Birds were blocked based on BW and randomly allotted to 1 of 3 dietary treatments that consisted of basal diet as CON; GPM, basal diet+ (GalliPro Max/B. subtilis, 500 g/ton); GPT, basal diet+ (GalliPro Tect/B. licheniformis, 500 g/ton). During the pullet stage, birds that were fed CON diet and CON diet supplemented with either 500 g/ton B. sublitis or B. licheniformis were randomly assigned to 1 of 7 treatments with 9 replications (6 birds per replication) during lay period. For this, a total of 162 birds fed CON diets were randomly chosen and subdivided into 3 groups and fed CON, GPM, and GPT diets. From the birds that were fed either GPM or GPT diet at pullet phase, about 108 birds from each treatment were randomly chosen and were subdivided into 2 treatments and fed either GPM or GPT diet. The feed intake was higher (P < 0.05) in GPT treatment and lower (P < 0.05) in GPM treatment compared with CON during the pullet period. In addition, the excreta Escherichia coli counts were reduced (P < 0.05) in pullets fed GPT diet. The egg production rate significantly increased (P < 0.05) for layers fed GPM diet and a slight increase was also seen for GPT treatment birds compared with CON during week 32. During the lay period, the average mean values for albumen height and yolk color at week 25 to 45 were higher (P < 0.05) for GPM fed birds compared with those fed GPT and CON diets. In conclusion, Bacillus-based probiotic supplementation in the diet conferred some positive effects during pullet to lay period.
Collapse
Affiliation(s)
- S D Upadhaya
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Choongnam 330-714, Korea
| | - Florence Rudeaux
- Poultry Animal Health and Nutrition, Chr Hansen Holding A/S, Boege Alle 10-12, DK-2970 Hørsholm, Denmark
| | - I H Kim
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Choongnam 330-714, Korea
| |
Collapse
|
36
|
Gaboardi GC, Alves D, Gil de Los Santos D, Xavier E, Nunes AP, Finger P, Griep E, Roll V, Oliveira P, Silva A, Moreira Â, Conceição F. Influence of Pichia pastoris X-33 produced in industrial residues on productive performance, egg quality, immunity, and intestinal morphometry in quails. Sci Rep 2019; 9:15372. [PMID: 31653947 PMCID: PMC6814787 DOI: 10.1038/s41598-019-51908-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
This study was conducted in quails to evaluate the probiotic potential of Pichia pastoris X-33, cultivated in parboiled rice effluent supplemented with biodiesel glycerol or in standard medium Yeast Extract–Peptone–Dextrose (YPD). Forty-days-old female quails were divided into three treatments: T1 (Control) received a basal diet without P. pastoris; T2 (Pichia Effluent) received a basal diet supplemented with P. pastoris grown in parboiled rice effluent and biodiesel glycerol, and T3 (Pichia YPD) received a basal diet supplemented with P. pastoris produced in YPD. The birds were vaccinated against Newcastle Disease (NDV), Avian Infectious Bronchitis (IBV), and Gumboro Disease on days 1 and 28. The following parameters were analyzed: performance, egg quality, humoral immune response to the vaccines, organ weight, and intestinal morphometry. P. pastoris grown in YPD increased egg weight (p < 0.05). The lowest liver weight on day 14 was obtained in Pichia Effluent, whereas both P. pastoris supplemented groups had the lowest duodenum weights on day 14. Besides that, livers and duodenums presented no morphological changes in any of the three treatments. Supplementation of P. pastoris modulated the immune system of the birds, increasing anti-IBV, anti-NDV, and anti-Gumboro antibodies levels compared to the Control (p < 0.05). In conclusion, quail’s immune response was improved by Pichia pastoris X-33, either it was grown in YPD or industrial residues, and the egg weight increased with Pichia pastoris X-33 grown in YPD, thereby demonstrating to be a promising probiotic for poultry.
Collapse
Affiliation(s)
- Giana Carla Gaboardi
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Débora Alves
- Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Eduardo Xavier
- Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Ana Paula Nunes
- Faculdade de Medicina, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Paula Finger
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Emili Griep
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Victor Roll
- Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Patrícia Oliveira
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Arthur Silva
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Ângela Moreira
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabricio Conceição
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
37
|
Chen J, Kuang Y, Qu X, Guo S, Kang K, He C. The effects and combinational effects of Bacillus subtilis and montmorillonite supplementation on performance, egg quality, oxidation status, and immune response in laying hens. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Wang WW, Jia HJ, Zhang HJ, Wang J, Lv HY, Wu SG, Qi GH. Supplemental Plant Extracts From Flos lonicerae in Combination With Baikal skullcap Attenuate Intestinal Disruption and Modulate Gut Microbiota in Laying Hens Challenged by Salmonella pullorum. Front Microbiol 2019; 10:1681. [PMID: 31396190 PMCID: PMC6668501 DOI: 10.3389/fmicb.2019.01681] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary inclusions of baicalin and chlorogenic acid were beneficial for intestinal health in pigs. Nevertheless, it is unknown whether these plant-derived products had protection for intestine against bacterial challenge in chickens. This study was aimed at evaluating the potential mitigating effects of plant extracts (PE) from Flos lonicerae combined with Baikal skullcap (the active components are chlorogenic acid and baicalin) on intestinal disruption and dysbacteriosis induced by Salmonella pullorum in laying hens. A total of 216 41-week-old layers were randomly divided into 3 groups (6 replicates per group): negative control (NC), S. pullorum-infected positive control (PC), and the S. pullorum-infected group with supplementation of PE at 1000 mg/kg. All birds except those in NC were challenged with S. pullorum at the end of 4 weeks of the experiment. S. pullorum challenge impaired (P < 0.05) the production performance (egg production, feed intake, and feed efficiency) of laying hens, increased (P < 0.05) serum endotoxin content and frequency of Salmonella-positive organs, as well as up-regulated (P < 0.05) ileal expression of pro-inflammatory cytokines including IFNG, TNFA, IL8, and IL1B, whereas PE addition reversed (P < 0.05) these changes and increased (P < 0.05) ileal IL10 expression. Supplemental PE moderated ileal microbiota dysbiosis in challenged birds, characterized by a reduced abundance of Firmicutes along with increased abundances of Bacteroidetes (Bacteroides), Deferribacteres and several butyrate-producers such as Prevotellaceae, Faecalibacterium, Blautia, Butyricicoccus, Lachnoclostridium, and Olsenella, which may assist with energy harvesting and boost anti-inflammatory capacity of host. The decreased abundance of Firmicutes with the increased abundance of Bacteroidetes caused by PE addition had positive correlations with the decreased expression of ileal pro-inflammatory cytokines. The increased abundances of Bacteroidetes (Bacteroides) and Prevotellaceae following PE addition were also positively correlated with the improvement of performance (egg production and feed intake) of laying hens. Collectively, supplemental PE from Flos lonicerae in combination with Baikal skullcap alleviated S. pullorum-induced intestinal disruption and performance impairment in laying hens, which could be at least partially responsible by the modulation of gut microbial composition.
Collapse
Affiliation(s)
- Wei-wei Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-jie Jia
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Shu-geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Zhan HQ, Dong XY, Li LL, Zheng YX, Gong YJ, Zou XT. Effects of dietary supplementation with Clostridium butyricum on laying performance, egg quality, serum parameters, and cecal microflora of laying hens in the late phase of production. Poult Sci 2019; 98:896-903. [PMID: 30285187 DOI: 10.3382/ps/pey436] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
This experiment was conducted to evaluate the effects of dietary supplementation with Clostridium butyricum on laying performance, egg quality, serum parameters, and cecal microflora of laying hens in the late phase of production. Jinghong-1 strain laying hens (n = 960; 48 wk of age) were randomly allocated to 5 treatment groups with 6 replicates of 32 hens. Hens were fed with basal diet (control) and basal diet supplemented with 2.5 × 104 (CB1), 5 × 104 (CB2), 1 × 105 (CB3), and 2 × 105 (CB4) cfu/g C. butyricum for 10 wk. The results showed that egg production, egg mass, and eggshell strength increased quadratically as supplemental C. butyricum increased, and these responses were maximized in the CB2 group (P < 0.05). Compared with the control group, the addition of C. butyricum resulted in quadratic effects on serum total protein, uric acid, calcium, complement component C3 and catalase concentrations, and these responses were maximized or minimized in the CB2 group (P < 0.05). Linear and quadratic increases were observed in serum IgM, total superoxide dismutase, and glutathione peroxidase concentrations, and these responses were maximized in CB2 or CB3 group (P < 0.05). The addition of C. butyricum in the CB2 group resulted in linearly increasing levels of serum IgG concentration as compared with the control group (P < 0.05). Spleen index increased (P < 0.05) in the CB2 group. Hens fed with C. butyricum reduced (P > 0.05) the population of E. coli, while Bifidobacterium counts increased quadratically and maximized in the CB2 group (P < 0.05). In conclusion, the results indicated that dietary supplementation with C. butyricum (5 × 104 or 1 × 105 cfu/g) could improve laying performance and egg quality by promoting immune function, enhancing antioxidative capacity, and benefiting the cecal microflora of laying hens in the late phase of production.
Collapse
Affiliation(s)
- H Q Zhan
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - X Y Dong
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - L L Li
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Y X Zheng
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Y J Gong
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - X T Zou
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
40
|
Probiotic Intake Increases the Expression of Vitellogenin Genes in Laying Hens. Probiotics Antimicrob Proteins 2019; 11:1324-1329. [DOI: 10.1007/s12602-019-9519-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Liu X, Peng C, Qu X, Guo S, Chen JF, He C, Zhou X, Zhu S. Effects of Bacillus subtilis C-3102 on production, hatching performance, egg quality, serum antioxidant capacity and immune response of laying breeders. J Anim Physiol Anim Nutr (Berl) 2018; 103:182-190. [PMID: 30484908 DOI: 10.1111/jpn.13022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
To investigate the supplemental effects of Bacillus subtilis C-3102 on the production, hatching performance, egg quality, serum antioxidant capacity and immune response of laying breeders, a total of 480 Xuefeng black-bone (25-week-old) hens were randomly assigned into four treatment groups: Hens fed the basal diets with 0 (CON), 3.0 × 105 (BS-1), 6.0 × 105 cfu/g (BS-2) and 9.0 × 105 (BS-3) cfu/g of B. subtilis C-3102. As the B. subtilis C-3102 level increased, egg weight (linear, p < 0.01; quadratic, p = 0.003), fertility (linear, p = 0.021; quadratic, p = 0.059), hatchability (linear, p = 0.038; quadratic, p = 0.119) and yolk colour (linear, p = 0.006; quadratic, p = 0.021) increased in a linear or quadratic manner. Yolk index increased quadratically (linear, p = 0.054; quadratic, p = 0.017), and eggshell thickness (linear, p = 0.036; quadratic, p = 0.128), the activity of GSH-Px (linear, p = 0.024; quadratic, p = 0.078), the concentration of IgM (linear, p = 0.016; quadratic, p = 0.056) and the level of AIV-Ab (linear, p = 0.034; quadratic, p = 0.103) in the serum increased linearly as dietary supplementation of B. subtilis C-3102 increased. The results showed that dietary treatments did not affect egg production, feed conversion ratio, egg mass, hatchability of fertile eggs, eggshell-breaking strength, egg-shape index, yolk percentage, Haugh unit, T-SOD, T-AOC, MDA, IgA and IgG concentrations and the level of NDV-Ab in the serum. In conclusion, dietary supplementation of 9.0 × 105 cfu/g B. subtilis C-3102 in laying breeders diets may be a feasible means of effectively increasing egg weight, fertility and hatchability, and improving egg quality such as eggshell thickness, yolk index and yolk colour. Besides, B. subtilis C-3102 can enhance the activity of GSH-Px, the concentration of IgM and the level of AIV-Ab in the serum.
Collapse
Affiliation(s)
- Xu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Canyang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Ji Fa Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xuebin Zhou
- Shanghai Naseco Products Company, Shanghai, China
| | - Shiwei Zhu
- Hunan Songyun Commercial Fowl Company, Huaihua, China
| |
Collapse
|
42
|
Li X, Wu S, Li X, Yan T, Duan Y, Yang X, Duan Y, Sun Q, Yang X. Simultaneous Supplementation of Bacillus subtilis and Antibiotic Growth Promoters by Stages Improved Intestinal Function of Pullets by Altering Gut Microbiota. Front Microbiol 2018; 9:2328. [PMID: 30369910 PMCID: PMC6194165 DOI: 10.3389/fmicb.2018.02328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Early nutrition of pullets could determine the overall development and the performance of laying hens. With the aim to reduce the use of antibiotic growth promoters (AGPs) and to maintain the growth and development of pullets, the effect of simultaneous short-termed supplementation of AGPs (bacitracin zinc 20 mg/kg and colistin sulfate 4 mg/kg) and Bacillus subtilis (B. subtilis) DSM17299 probiotic, as well as the effect of supplementation of AGPs (bacitracin zinc 20 mg/kg and colistin sulfate 4 mg/kg) during the whole period (0~16 weeks) on the overall growth and development, intestinal health, and caecal microbiota of pullets were evaluated. In the present study, a total of 630 one-day-old Hy-Line Brown layers were randomly distributed into five equal groups: including the AGPs group (supplemented with AGPs based on basal diets for 16 weeks), the BA3 group (supplemented with AGPs and B. subtilis based on basal diets for 3 weeks), the BA6 group (for 6 weeks), the BA12 group (for 12 weeks), and the BA16 group (for 16 weeks). When compared with the AGPs group, the supplementation of AGPs + B. subtilis for the first 3 weeks could maintain overall growth performance, including the average body weight, average feed intake, average daily weight gain, and feed conversion ratio of pullets at 3, 6, 12, and 16 weeks of age (P > 0.05). Meanwhile, the characteristic growth indexes in different periods were separately measured. At 3 weeks of age, the amylase activity in ileum was elevated (P = 0.028), and the length of tibia was up to the standard in the BA3 group. At 12 weeks of age, the increased villus height (P = 0.046) of jejunum, increased villus height (P = 0.023) and ratio of villus height to crypt depth (P = 0.012) of ileum, decreased crypt depth (P = 0.002) of ileum, and elevated mRNA levels of sucrase in jejunum (P < 0.05) were all identified in the BA3 group. At 16 weeks of age, the secreted immunoglobulin A (sIgA) content in the jejunum mucosa of the BA3 group was greater than the other groups (P < 0.001). Furthermore, altered intestinal microbiota was found in the BA3 group. Specifically, decreased amounts of Alistipes, Bacteroides, Odoribacter, Dehalobacterium, and Sutterella and increased amounts of Lactobacillus, Dorea, Ruminococcus, and Oscillospira were determined (P < 0.05) in the BA3 group at week 6. Meanwhile, decreased amounts of B. fragilis and C. leptum (P < 0.05) were identified in the BA3 group at week 12, which were found to be relevant for the improvement of intestinal morphology (P < 0.05) by Pearson analysis. In conclusion, simultaneous supplementation of AGP and B. subtilis for 0~3 weeks increased the relative abundance of beneficial microbiota in caecum in 0~6 weeks, then improved the intestinal morphology by elevating populations of B. fragilis and C. leptum in 7~16 weeks, and further upregulated sucrase expression and increased sIgA content in the intestinal mucosa in 13~16 weeks.
Collapse
Affiliation(s)
- Xueyuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongle Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulan Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Khadieva GF, Lutfullin MT, Mochalova NK, Lenina OA, Sharipova MR, Mardanova AM. New Bacillus subtilis Strains as Promising Probiotics. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|