1
|
Dai J, Song C, Tan L, Sun Y, Tang N, Qu Y, Liao Y, Qiu X, Ding C. Onset and long-term duration of immunity provided by a single vaccination with recombinant a Marek's disease virus with REV-LTR insertion. Front Vet Sci 2024; 11:1510834. [PMID: 39735581 PMCID: PMC11681624 DOI: 10.3389/fvets.2024.1510834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Marek's Disease (MD), caused by Marek's disease virus (MDV), is a highly contagious lymphoproliferative disease in poultry. Despite the fact that MD has been effectively controlled by vaccines, the virulence of field isolates of MDV has continued to evolve, becoming more virulent under the immune pressure of vaccines. Our previous research has confirmed that the recombinant rMDV strain with REV-LTR insertion can be used as a live attenuated vaccine candidate. The aim of this research was to evaluate the onset and duration of immunity of the rMDV strain through two experiments. In both experiments, 1-day-old SPF chickens were vaccinated subcutaneously with the rMDV strain at a dose of 3,000 Plaque Formation Unit (PFU) per chick in 0.2 mL of the MD diluent. Then, in Experimental design 1, the chicks in the groups Vac-3d/CC-3d, Vac-5d/CC-5d, and Vac-7d/CC-7d were challenged separately with 500 PFU vvMDV strain MD5 at 3 days, 5 days, and 7 days after vaccination; in Experimental design 2, the chicks in group Vac-60d/CC-60d, Vac-120d/CC-120d, and Vac-180d/CC-180d were challenged at 60 days, 120 days, and 180 days after vaccination. The clinical symptoms and weight gain of chickens in each group were observed and recorded. The results showed that the rMDV strain with REV-LTR insertion provides protection starting from 3 days of age and achieves good immune effects at 5 days of age after 1-day-old immunization, and the immunization duration can reach for at least 180 days. Given age-related resistance, it can be confirmed that our vaccine can actually provide lifelong immunity. This study provides valuable insights into the onset and duration of immunity of the rMDV strain, which will provide a basis for the development and improvement of MD vaccines.
Collapse
Affiliation(s)
- Jun Dai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Chacón RD, Sánchez-Llatas CJ, L Pajuelo S, Diaz Forero AJ, Jimenez-Vasquez V, Médico JA, Soto-Ugaldi LF, Astolfi-Ferreira CS, Piantino Ferreira AJ. Molecular characterization of the meq oncogene of Marek's disease virus in vaccinated Brazilian poultry farms reveals selective pressure on prevalent strains. Vet Q 2024; 44:1-13. [PMID: 38465827 DOI: 10.1080/01652176.2024.2318198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Christian J Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - Andrea J Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jack A Médico
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | | | | |
Collapse
|
3
|
Chacón RD, Sánchez-Llatas CJ, Astolfi-Ferreira CS, Raso TF, Piantino Ferreira AJ. Diversity of Marek's Disease Virus Strains in Infections in Backyard and Ornamental Birds. Animals (Basel) 2024; 14:2867. [PMID: 39409816 PMCID: PMC11482489 DOI: 10.3390/ani14192867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Marek's disease is caused by Mardivirus gallidalpha2, commonly known as Marek's disease virus (MDV). This pathogen infects various bird species resulting in a range of clinical manifestations. The meq gene, which is crucial for oncogenesis, has been extensively studied, but molecular investigations of MDV in noncommercial South American birds are limited. This study detected MDV in backyard and ornamental birds from Brazil and Peru and characterized the meq gene. MDV was confirmed in all seven outbreaks examined. Three isoforms of meq (S-meq, meq, and L-meq) and two to seven proline repeat regions (PRRs) were detected among the sequenced strains. At the amino acid level, genetic profiles with low and high virulence potential were identified. Phylogenetic analysis grouped the sequences into three distinct clusters. Selection pressure analysis revealed 18 and 15 codons under positive and negative selection, respectively. The results demonstrate significant MDV diversity in the studied birds, with both high and low virulence potentials. This study highlights the importance of monitoring and characterizing circulating MDV in backyard and ornamental birds, as they can act as reservoirs for future epidemiological outbreaks.
Collapse
Affiliation(s)
- Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Tânia Freitas Raso
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| |
Collapse
|
4
|
Wannaratana S, Tunterak W, Prakairungnamthip D, Sasipreeyajan J, Thontiravong A. Genetic characterization of Marek's disease virus in chickens in Thailand reveals a high genetic diversity of circulating strains. Transbound Emerg Dis 2022; 69:3771-3779. [PMID: 36315934 DOI: 10.1111/tbed.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Marek's disease (MD) is a highly contagious lymphoproliferative disease of chickens caused by Gallid alphaherpesvirus 2, commonly known as serotype 1 Marek's disease virus (MDV-1). Despite widespread vaccination, MD-related cases have been frequently observed worldwide, including in Thailand. However, no information is available on the genetic characteristics of MDV-1 field strains circulating in chickens in Thailand. This study investigated the geographic distribution and genetic characteristics of MDV-1 field strains circulating in chickens in Thailand between 2013 and 2021 by analysing the Meq and pp38 genes. Out of a total of the 286 clinical samples obtained from 70 chicken farms located in major chicken raising areas of Thailand, 138 samples (48.25%) from 46 chicken farms (65.71%) tested positive for MDV-1 field strains. Results demonstrated that MDV-1 field strains were extensively distributed in major chicken raising areas. Phylogenetic analyses based on the Meq gene revealed that four clusters of MDV-1 circulated in chickens in Thailand between 2013 and 2021. Among these clusters, cluster 1 was the predominant cluster circulating in chickens in Thailand. Additionally, our findings based on molecular characteristics of Meq and pp38 gene/protein suggested that most of the Thai MDV-1 field strains were potentially highly virulent. In conclusion, our data demonstrated the circulation of different clusters of MDV-1 with virulence characteristics in chickens in Thailand, indicating high genetic diversity of MDV-1 in Thailand. This study highlights the importance of more effective vaccine development and routine MDV-1 surveillance for early detection and control of highly virulent MDV-1.
Collapse
Affiliation(s)
- Suwarak Wannaratana
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Bang Phra, Chonburi, Thailand
| | - Wikanda Tunterak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Duangduean Prakairungnamthip
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jiroj Sasipreeyajan
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Aunyaratana Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Vector-Borne Disease Research Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Ghalyanchilangeroudi A, Hosseini H, Nazarpak HH, Molouki A, Dezfoulian O, Morshed R. Molecular Characterization and Phylogenetic Analysis of Marek's Disease Virus in Iran. Avian Dis 2022; 66:1-5. [PMID: 36106908 DOI: 10.1637/aviandiseases-d-22-00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Marek's disease (MD) is a highly contagious, lymphoproliferative poultry disease caused by the oncogenic herpesvirus, serotype 1 Marek's disease virus (MDV-1), or Gallid herpesvirus 2 (GaHV-2). MDV strains have shown a continued evolution of virulence leading to immune failure, and MD cases continue to occur or surge. Meq, the major MDV-1 oncoprotein, induces T-cell neoplastic transformation through several mechanisms including inhibition of apoptosis, cell cycle regulation, and serum-anchorage independent growth. There is no current information on the MDV serotypes and pathotypes circulating in vaccinated commercial farms in Iran, where the birds are vaccinated at the hatchery with GaHV-2 and Meleagrid herpesvirus 1 (MeHV-1) vaccines. This study reports the molecular characterization of a GaHV-2 strain detected in 19 flocks of Iranian layer farms exhibiting MDV-1-like clinical signs and visceral lymphomas. Based on sequencing and phylogenetic analysis of the Meq gene, the Iranian GaHV-2 isolates could be divided into two separate clades regarding molecular features. The clade containing strains was closely related to Italian, Indian, and Hungarian virulent isolates, and the clade was related to American very virulent plus (vv+) isolates. For the first time, the MDV-1 virus was characterized by an outbreak in poultry flocks in Iran. Although MDV-1 strains obtained in Iran's present outbreak are presumably related to virulent (v) and vv+ pathotypes based on nucleotide, amino acid, and phylogenetic analysis of the viruses, they are not confirmed so far. Thus, it is highly recommended to perform further analyses to demonstrate the pathotype characteristics in vivo.
Collapse
Affiliation(s)
- Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran 1419963111
| | - Hossein Hosseini
- Department of Clinical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran 3149968111,
| | - Hadi Haghbin Nazarpak
- Department of Clinical Sciences, Garmsar Branch, Islamic Azad University, Semnan, Iran 3581631167
| | - Aidin Molouki
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran 3197619751
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran 6815144316
| | - Rima Morshed
- Department of Basic Sciences, Faculty of Encyclopedia, Tehran, Iran 1997743881
| |
Collapse
|
6
|
Li H, Ge Z, Luo Q, Fu Q, Chen R. A highly pathogenic Marek's disease virus isolate from chickens immunized with a bivalent vaccine in China. Arch Virol 2022; 167:861-870. [PMID: 35129660 DOI: 10.1007/s00705-021-05355-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Marek's disease virus (MDV) is an important oncogenic poultry pathogen that can generally be controlled by vaccination. However, MDV infections still occur occasionally on vaccinated farms, possibly due to genetic variation among MDV strains or management-related issues. In this study, a novel MDV strain, designated LZ1309, was isolated from a poultry flock that had been vaccinated with the HVT and CVI988 vaccine strains. Animal experiments showed that LZ1309 infection led to high morbidity (100%) and mortality (90%). Moreover, existing vaccines provided only partial protection against LZ1309, with protection rates of 68.4%, 85%, and 90% for HVT, CVI988, and HVT plus CVI988, respectively. This study demonstrates the presence of a more virulent strain of MDV in vaccinated chickens in China that poses a new potential threat to poultry farms. In future studies, the development of new treatment strategies should be of high priority.
Collapse
Affiliation(s)
- Huimin Li
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zengxu Ge
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, 510642, Guangdong, China.,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China
| | - Qiang Fu
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, 510642, Guangdong, China. .,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China.
| |
Collapse
|
7
|
Ongor H, Timurkaan N, Abayli H, Karabulut B, Kalender H, Tonbak S, Eroksuz H, Çetinkaya B. First report of Serotype-1 Marek's disease virus (MDV-1) with oncogenic form in backyard turkeys in Turkey: a molecular analysis study. BMC Vet Res 2022; 18:30. [PMID: 35016700 PMCID: PMC8753842 DOI: 10.1186/s12917-021-03130-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Background Marek’s disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2, MDV-1), which primarily affects chickens. However, the virus is also able to induce tumors and polyneuritis in turkeys, albeit less frequently than in chickens. Results This is the first study in Turkey reporting the molecular characterization of a MDV-1 strain detected in a flock of backyard turkeys exhibiting visceral lymphoma. Here, MEQ, vIL-8, pp38 and 132-bp tandem repeat regions, which are frequently preferred in the pathotyping of MDV-1, were examined. It was determined that the MEQ gene of MDV-1/TR-21/turkey strain obtained in the present study encoded 339 amino acids (1020 nt) and had four proline-rich repeat regions (PPPP). Based on the nucleotide sequence of the MEQ gene of the MDV-1/TR-21/turkey strain, a phylogenetic tree was created using the MEGA-X software with the Maximum Likelihood Method (in 1000 replicates). Our strain was highly identical (> 99.8) to the Italian/Ck/625/16, Polish (Polen5) and some Turkish (Layer-GaHV-2-02-TR-2017, Tr/MDV-1/19) MDV-1 strains. Also, nt and aa sequences of the MEQ gene of our strain were 99.1 and 99.41% identical to another Turkish strain (MDV/Tur/2019) originated from chickens. Sequence analysis of pp38 and vIL-8 genes also supported the above finding. The identity ratios of nucleotide and amino acid sequences of vIL-8 and pp38 genes of MDV-1/TR-21/turkey strain were 99.64–100% and 99.79–100%, respectively, when compared with those of the Polish strain. According to 132-bp tandem repeat PCR results, the MDV-1/TR-21/turkey strain had five copies. Conclusions These results suggested that the MDV-1/TR-21/turkey strain obtained from backyard turkeys can be either very virulent or very virulent plus pathotype, though experimental inoculation is required for precise pathotyping.
Collapse
Affiliation(s)
- Hasan Ongor
- Department of Microbiology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey.
| | - Necati Timurkaan
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hasan Abayli
- Department of Virology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Burak Karabulut
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hakan Kalender
- Department of Microbiology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| | - Sukru Tonbak
- Department of Virology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hatice Eroksuz
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Burhan Çetinkaya
- Department of Microbiology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| |
Collapse
|
8
|
Kannaki TR, Priyanka E, Nishitha Y, Krishna SV, Haunshi S, Subbiah M. Molecular detection and phylogenetic analysis of Marek's disease virus virulence-associated genes from vaccinated flocks in southern India reveals circulation of virulent MDV genotype. Transbound Emerg Dis 2021; 69:e244-e253. [PMID: 34403565 DOI: 10.1111/tbed.14289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Marek's disease (MD) is a re-emerging viral disease of chickens and a serious economic threat to the poultry industry worldwide. Continuous surveillance with molecular investigation is essential to monitor the emergence of virulent Marek's disease virus (MDV) strains and to devise any appropriate vaccination strategy and implement bio-security programmes. In the present study, we investigated the cases of MD outbreaks in vaccinated poultry flocks. The MD outbreak was confirmed through necropsy (mainly visceral tumours), histopathology and viral gene specific PCR. The pathotypes of the field MDV strains were assessed by molecular analysis of three virulence-associated genes, meq, pp38 and vIL-8. The Meq sequence of the field strains analyzed in this study lacked the 59 aa unique to mild strains, indicating that they are potentially virulent strains. Mutation at position 71 and the presence of five proline rich repeats in the transactivation domain, both associated with virulence were observed in these strains; however, the signature sequences specific to very virulent plus strains were absent. Phylogenetic analysis of meq oncogene sequences revealed clustering of the field strains with North Indian strains and with a very virulent plus ATE 2539 strain from Hungary. Analyses of pp38 protein at positions 107 and 109 and vIL-8 protein at positions 4 and 31 showed signatures of virulence. Sequence and phylogenetic analysis of oncogene and virulence-associated genes of field MDVs from vaccinated flock indicated that these strains possessed molecular features of virulent strains.
Collapse
Affiliation(s)
- T R Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - E Priyanka
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Y Nishitha
- Department of Veterinary Microbiology, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - S Vamshi Krishna
- Department of Veterinary Microbiology, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - Santosh Haunshi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Ozan E, Muftuoglu B, Sahindokuyucu I, Kurucay HN, Inal S, Kuruca N, Elhag AE, Karaca E, Tamer C, Gumusova S, Albayrak H, Barry G, Gulbahar MY, Yazici Z. Marek's disease virus in vaccinated poultry flocks in Turkey: its first isolation with molecular characterization. Arch Virol 2021; 166:559-569. [PMID: 33409548 DOI: 10.1007/s00705-020-04943-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/15/2020] [Indexed: 12/28/2022]
Abstract
Marek's disease (MD) is an important disease of avian species and a potential threat to the poultry industry worldwide. In this study, 16 dead commercial chickens from flocks with suspected MD were necropsied immediately after death. Pathological findings were compatible with MD, and gallid alphaherpesvirus 2 was identified in PCR of spleen samples. Virus isolation was performed in primary cell culture, and partial sequencing of the meq gene of the isolate revealed >99% nucleotide sequence identity to virulent and very virulent plus strains from a number of European countries, placing it in the same subclade of clade III as two virulent Italian strains and a very virulent plus Polish strain as well as virulent strains of geese and ducks. The data reported here indicate that a virulent strain of Marek's disease virus is circulating in Turkey and has not been stopped by the current national vaccination programme.
Collapse
Affiliation(s)
- Emre Ozan
- Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey.
| | - Bahadir Muftuoglu
- Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, 35010, Izmir, Turkey
| | - Hanne Nur Kurucay
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Sinem Inal
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Nilufer Kuruca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Ahmed Eisa Elhag
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Efe Karaca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Cuneyt Tamer
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Semra Gumusova
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Harun Albayrak
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Gerald Barry
- Veterinary Science Centre, School of Veterinary Medicine, University College of Dublin, Belfield, Dublin 4, Ireland
| | - Mustafa Yavuz Gulbahar
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| | - Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey
| |
Collapse
|
10
|
Brito AF, Baele G, Nahata KD, Grubaugh ND, Pinney JW. Intrahost speciations and host switches played an important role in the evolution of herpesviruses. Virus Evol 2021; 7:veab025. [PMID: 33927887 PMCID: PMC8062258 DOI: 10.1093/ve/veab025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In times when herpesvirus genomic data were scarce, the cospeciation between these viruses and their hosts was considered to be common knowledge. However, as more herpesviral sequences were made available, tree reconciliation analyses started to reveal topological incongruences between host and viral phylogenies, indicating that other cophylogenetic events, such as intrahost speciation and host switching, likely played important roles along more than 200 million years of evolutionary history of these viruses. Tree reconciliations performed with undated phylogenies can identify topological differences, but offer insufficient information to reveal temporal incongruences between the divergence timing of host and viral species. In this study, we performed cophylogenetic analyses using time-resolved trees of herpesviruses and their hosts, based on careful molecular clock modelling. This approach enabled us to infer cophylogenetic events over time and also integrate information on host biogeography to better understand host-virus evolutionary history. Given the increasing amount of sequence data now available, mismatches between host and viral phylogenies have become more evident, and to account for such phylogenetic differences, host switches, intrahost speciations and losses were frequently found in all tree reconciliations. For all subfamilies in Herpesviridae, under all scenarios we explored, intrahost speciation and host switching were more frequent than cospeciation, which was shown to be a rare event, restricted to contexts where topological and temporal patterns of viral and host evolution were in strict agreement.
Collapse
Affiliation(s)
- Anderson F Brito
- Department of Life Sciences, Imperial College London, South Kensington Campus. London SW7 2AZ, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Kanika D Nahata
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - John W Pinney
- Department of Life Sciences, Imperial College London, South Kensington Campus. London SW7 2AZ, UK
| |
Collapse
|
11
|
Murata S, Machida Y, Isezaki M, Maekawa N, Okagawa T, Konnai S, Ohashi K. Genetic characterization of a Marek's disease virus strain isolated in Japan. Virol J 2020; 17:186. [PMID: 33228722 PMCID: PMC7684920 DOI: 10.1186/s12985-020-01456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 01/29/2023] Open
Abstract
Background Marek’s disease virus (MDV) causes malignant lymphomas in chickens (Marek’s disease, MD). MD is currently controlled by vaccination; however, MDV strains have a tendency to develop increased virulence. Distinct diversity and point mutations are present in the Meq proteins, the oncoproteins of MDV, suggesting that changes in protein function induced by amino acid substitutions might affect MDV virulence. We previously reported that recent MDV isolates in Japan display distinct mutations in Meq proteins from those observed in traditional MDV isolates in Japan, but similar to those in MDV strains isolated from other countries. Methods To further investigate the genetic characteristics in Japanese field strains, we sequenced the whole genome of an MDV strain that was successfully isolated from a chicken with MD in Japan. A phylogenetic analysis of the meq gene was also performed. Results Phylogenetic analysis revealed that the Meq proteins in most of the Japanese isolates were similar to those of Chinese and European strains, and the genomic sequence of the Japanese strain was classified into the Eurasian cluster. Comparison of coding region sequences among the Japanese strain and MDV strains from other countries revealed that the genetic characteristics of the Japanese strain were similar to those of Chinese and European strains. Conclusions The MDV strains distributed in Asian and European countries including Japan seem to be genetically closer to each other than to MDV strains from North America. These findings indicate that the genetic diversities of MDV strains that emerged may have been dependent on the different vaccination-based control approaches.
Collapse
Affiliation(s)
- Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan. .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Yuka Machida
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
12
|
An outbreak in three-yellow chickens with clinical tumors of high mortality caused by the coinfection of reticuloendotheliosis virus and Marek's disease virus: a speculated reticuloendotheliosis virus contamination plays an important role in the case. Poult Sci 2020; 100:19-25. [PMID: 33357681 PMCID: PMC7772669 DOI: 10.1016/j.psj.2020.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Both reticuloendotheliosis and Marek's disease are neoplastic diseases of chickens caused by reticuloendotheliosis virus (REV) and Marek's disease virus (MDV), respectively. The infection of REV or MDV may lead to clinical tumors and also result in immunosuppression and easily allow secondary infection by other pathogens. Here, we investigated a breeder flock of three-yellow chickens in southern China that had been vaccinated with CVI988/Rispens at hatching and had experienced depression, weakness, reduction in weight gain, and an increased death rate after 120 d of age. The morbidity and mortality were 20% and 10%, respectively, at 140 d of age when this infection was diagnosed. The necropsy of the birds revealed significant tumor-like lesions in the heart, liver, spleen, and ceca. Peripheral blood lymphocytes and tumor-like tissues were sampled for PCR detection and for histopathological observation, for virus isolation and the subsequent immunofluorescent assay on the cell cultures and for gene sequencing of the isolated viruses. A REV isolate GX18NNR1 and a MDV isolate GX18NNM5 were both recovered from the sampled bird. Further phylogenetic analysis based on the env gene of REV and the meq gene of MDV demonstrated that GX18NNR1 was closely related to the reference REV strain MD-2, which was isolated from a contaminated commercial turkey herpesvirus vaccine. In addition, the GX18NNM5 was found to belong to the Chinese very virulent MDV strains' cluster. The coinfection of REV and MDV may contribute to tumor outbreaks with high morbidity and mortality in three-yellow chicken flocks.
Collapse
|
13
|
Shi MY, Li M, Wang WW, Deng QM, Li QH, Gao YL, Wang PK, Huang T, Wei P. The Emergence of a vv + MDV Can Break through the Protections Provided by the Current Vaccines. Viruses 2020; 12:v12091048. [PMID: 32962247 PMCID: PMC7551601 DOI: 10.3390/v12091048] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Marek’s disease (MD) is an infectious malignant T-cell lymphoma proliferative disease caused by Marek’s disease virus (MDV). In recent years, the emergence of very virulent (vv) and/or very virulent plus (vv +) strains of MDV in the field has been suggested as one of the causes of vaccination failure. The pathogenicity of the MDV strain GX18NNM4, isolated from a clinical outbreak in a broiler breeder flock that was vaccinated with CVI988/Rispens, was investigated. In the vaccination-challenge test, GX18NNM4 was able to break through the protections provided by the vaccines CVI988 and 814. It also significantly reduced body weight gain and caused marked gross lesions and a large area of infiltration of neoplastic lymphocyte cells in the heart, liver, pancreas, etc. of the infected birds. In addition, the expressions of programmed death 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1), in the spleens and cecal tonsils (CTs) of the unvaccinated challenged birds were significantly increased compared to those in the vaccinated challenged birds, indicating that the PD-1/PD-L1 pathway is related to immune evasion mechanisms. The results showed that the GX18NNM4 strain could cause severe immunosuppression and significantly decrease the protections provided by the current commercial vaccines, thus showing GX18NNM4 to be a vv + MDV strain.
Collapse
Affiliation(s)
- Meng-ya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
| | - Wei-wei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
| | - Qiao-mu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
| | - Qiu-hong Li
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
| | - Yan-li Gao
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
| | - Pei-kun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi 276005, China;
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China; (M.-y.S.); (M.L.); (W.-w.W.); (Q.-m.D.); (Q.-h.L.); (Y.-l.G.); (T.H.)
- Correspondence:
| |
Collapse
|
14
|
Lachheb J, Mastour H, Nsiri J, Kaboudi K, Choura I, Ammouna F, Amara A, Ghram A. Newly detected mutations in the Meq oncogene and molecular pathotyping of very virulent Marek's disease herpesvirus in Tunisia. Arch Virol 2020; 165:2589-2597. [PMID: 32876794 PMCID: PMC7547972 DOI: 10.1007/s00705-020-04790-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
Marek's disease (MD) is a contagious avian viral disease that is responsible for large economic losses to farmers. The disease is caused by Marek's disease virus (species Gallid alphaherpesvirus 2), which causes neurological lesions, immune suppression, and tumor proliferation of lymphoid cells that invade a large number of organs and tissues. Despite widespread vaccination, Marek's disease virus (MDV), has shown a continuous increase in its virulence and has acquired the ability to overcome immune responses induced by vaccines. In the present study, the oncogenic serotype MDV-1 was detected by real-time PCR in DNA samples extracted from organs developing tumor infiltrations. Identification of the pathotype based on a 132-bp tandem repeat and sequencing and phylogenetic analysis of the Meq gene and its encoded protein allowed classification of the isolated viruses as "very virulent", with two new and unique mutations in the Meq gene resulting in amino acid substitutions. Sequencing of pp38, vIl-8, UL1 and UL44 genes did not reveal any new mutations that were characteristic of the Tunisian isolates or correlated with virulence. These results raised concerns about the ability of HVT and CVI988 vaccines, which are currently used in Tunisia and other countries, to protect chickens against highly virulent virus strains.
Collapse
Affiliation(s)
- Jihene Lachheb
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Houssem Mastour
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Khaled Kaboudi
- Department of Poultry Farming and Pathology, National School of Veterinary Medicine, University of Carthage, Sidi Thabet, Tunis, Tunisia
| | - Imed Choura
- Society of Animal Nutrition (SNA), Tunis, Tunisia
| | - Faten Ammouna
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Abdelkader Amara
- Department of Poultry Farming and Pathology, National School of Veterinary Medicine, University of Carthage, Sidi Thabet, Tunis, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
15
|
Yilmaz A, Turan N, Bayraktar E, Tali HE, Aydin O, Umar S, Cakan B, Sadeyen JR, Baigent S, Iqbal M, Nair V, Yilmaz H. Molecular characterisation and phylogenetic analysis of Marek's disease virus in Turkish layer chickens. Br Poult Sci 2020; 61:523-530. [PMID: 32316760 DOI: 10.1080/00071668.2020.1758301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. There is no current data about the genotypes of Marek's disease virus (MDV) in Turkish poultry flocks; hence, this study was performed to analyse CVI988/Rispens, turkey herpesvirus (HVT) vaccine viruses and MDV field viruses as well as to perform phylogenetic analysis of MDV in Turkish layer chickens. 2. In 2017 and 2018, a total of 602 spleen samples from 49 layer flocks were collected from the Marmara, West Black Sea and Aegean regions. DNA was extracted from the spleen samples and the samples were analysed by real-time PCR probe assay to detect CVI988/Rispens and HVT vaccine viruses and MDV field strains. Samples found positive for MDV by real-time PCR were subjected to PCR using the Meq gene primers for phylogenetic analysis. 3. Amongst 49 flocks, virulent MDV was detected in nine flocks. CVI988/Rispens and HVT vaccine strains were detected in 47 flocks and HVT in all 49 flocks. Splenomegaly, hepatomegaly and tumours in the oviduct were observed in chickens of affected flocks. Virulent MDV was detected in 120 out of 602 spleen samples. Sequencing and phylogenetic analyses showed that MDVs detected in this study were closely related to MDV strains from Italy, Poland, Saudi Arabia, Iraq, India and China but showed diversity with MDV strains from Egypt and Hungary. Multiple sequence analysis of the Meq protein revealed several point mutations in deduced amino acid sequences. Interestingly, CVI988/Rispens vaccine virus from China (AF493555) showed mutations at position 66 (G66R) and 71 (S66A) along with two other vaccine strains from China (GU354326.1) and Russia (EU032468.1), in comparison with the other vaccine strain CVI988/Rispens (DQ534538). The molecular analyses of the Meq gene suggested that Turkish field strains of MDV are in the class of virulent or very virulent pathotypes. 4. The results have shown that MDV still affects poultry health, and the phylogenetic and amino acid variation data obtained will help in vaccination and control strategies.
Collapse
Affiliation(s)
- A Yilmaz
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - N Turan
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - E Bayraktar
- Poultry Division, CEVA Animal Health , Maslak, Turkey
| | - H E Tali
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - O Aydin
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - S Umar
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - B Cakan
- Poultry Division, CEVA Animal Health , Maslak, Turkey
| | - J-R Sadeyen
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - S Baigent
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - M Iqbal
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - V Nair
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - H Yilmaz
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| |
Collapse
|
16
|
Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Catelli E. Marek's disease viruses circulating in commercial poultry in Italy in the years 2015-2018 are closely related by their meq gene phylogeny. Transbound Emerg Dis 2019; 67:98-107. [PMID: 31411371 DOI: 10.1111/tbed.13327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Marek's disease (MD) is a lymphoproliferative disease important to the poultry industry worldwide; it is caused by Gallid alphaherpesvirus 2 (GaHV-2). The virulence of GaHV-2 isolates has shifted over the years from mild to virulent, very virulent and very virulent +. Nowadays the disease is controlled by vaccination, but field strains of increased virulence are emerging worldwide. Economic losses due to MD are mostly associated with its acute form, characterized by visceral lymphomas. The present study aimed to molecularly classify a group of 13 GaHV-2 strains detected in vaccinated Italian commercial chicken flocks during acute MD outbreaks, and to scrutinize the ability of predicting GaHV-2 virulence, according to the meq gene sequence. The full-length meq genes were amplified, and the obtained amino acid (aa) sequences were analysed, focusing mainly on the number of stretches of four proline molecules (PPPP) within the transactivation domain. Phylogenetic analysis was carried out with the Maximum Likelihood method using the obtained aa sequences, and the sequences of Italian strains detected in backyard flocks and of selected strains retrieved from GenBank. All the analysed strains showed 100% sequence identity in the meq gene, which encodes a Meq protein of 339 aa. The Meq protein includes four PPPP motifs in the transactivation domain and an interruption of a PPPP motif due to a proline-to-serine substitution at position 218. These features are typically encountered in highly virulent isolates. Phylogenetic analysis revealed that the analysed strains belonged to a cluster that includes high-virulence GaHV-2 strains detected in Italian backyard flocks and a hypervirulent Polish strain. Our results support the hypothesis that the virulence of field isolates can be suggested by meq aa sequence analysis.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
17
|
Mescolini G, Lupini C, Felice V, Guerrini A, Silveira F, Cecchinato M, Catelli E. Molecular characterization of the meq gene of Marek's disease viruses detected in unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains. Poult Sci 2019; 98:3130-3137. [PMID: 30850833 DOI: 10.3382/ps/pez095] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) is an important lymphoproliferative disease of chickens, caused by Gallid alphaherpesvirus 2 (GaHV-2). Outbreaks are commonly reported in commercial flocks, but also in backyard chickens. Whereas the molecular characteristics of GaHV-2 strains from the commercial poultry sector have been reported, no recent data are available for the rural sector. To fill this gap, 19 GaHV-2 strains detected in 19 Italian backyard chicken flocks during suspected MD outbreaks were molecularly characterized through an analysis of the meq gene, the major GaHV-2 oncogene. The number of four consecutive prolines (PPPP) within the proline-rich repeats of the Meq transactivation domain, the proline content, and the presence of amino acid (aa) substitutions were determined. Phylogenetic analysis was performed using the Maximum Likelihood method. Sequence analysis revealed a heterogeneous population of GaHV-2 strains circulating in Italian backyard flocks. Seven strains, detected from birds affected by classical MD, showed a unique meq isoform of 418 aa with a very high number of PPPP motifs. Molecular and clinical features are suggestive of a low oncogenic potential of these strains. The remaining 12 strains, detected from flocks experiencing acute MD, transient paralysis, or sudden death, had shorter Meq protein isoforms (298 or 339 aa) with a lower number of PPPP motifs and point mutations interrupting PPPP. These features allow us to assert the high virulence of these strains. These findings reveal the circulation of low- and high-virulence GaHV-2 strains in the Italian rural sector.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Viviana Felice
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Alessandro Guerrini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Flavio Silveira
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro (PD), Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
18
|
Torres ACD, Marin SY, Costa CS, Martins NRS. An Overview on Marek’s Disease Virus Evolution and Evidence for Increased Virulence in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- ACD Torres
- Universidade Federal de Minas Gerais, Brazil
| | - SY Marin
- Universidade Federal de Minas Gerais, Brazil
| | - CS Costa
- Universidade Federal de Minas Gerais, Brazil
| | - NRS Martins
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
19
|
Li H, Zhu J, He M, Luo Q, Liu F, Chen R. Marek's Disease Virus Activates the PI3K/Akt Pathway Through Interaction of Its Protein Meq With the P85 Subunit of PI3K to Promote Viral Replication. Front Microbiol 2018; 9:2547. [PMID: 30405592 PMCID: PMC6206265 DOI: 10.3389/fmicb.2018.02547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/05/2018] [Indexed: 11/25/2022] Open
Abstract
It is known that viruses can active the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in host cells to support cell survival and viral replication; however, the role of PI3K/Akt signaling in the pathogenic mechanisms induced by Marek’s disease virus (MDV) which causes a neoplastic Marek’s disease in poultry, remains unknown. In this study, we showed that MDV activated the PI3K/Akt pathway in chicken embryo fibroblasts (CEFs) at the early phase of infection, whereas treatment with a PI3K inhibitor LY294002 prior to MDV infection decreased viral replication and DNA synthesis. Flow cytometry analysis showed that inhibition of the PI3K/Akt pathway could significantly increase apoptosis in MDV-infected host cells, indicating that activation of PI3K/Akt signaling could facilitate viral replication through support of cell survival during infection. Evaluation of the underlying molecular mechanism by co-immunoprecipitation and laser confocal microscopy revealed that a viral protein Meq interacted with both p85α and p85β regulatory subunits of PI3K and could induce PI3K/Akt signaling in Meq-overexpressing chicken fibroblasts. Our results showed, for the first time, that MDV activated PI3K/Akt signaling in host cells through interaction of its Meq protein with the regulatory p85 subunit of PI3K to delay cell apoptosis and promote viral replication. This study provides clues for further studies of the molecular mechanisms underlying MDV infection and pathogenicity for the host.
Collapse
Affiliation(s)
- Huimin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaojiao Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Minyi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|