1
|
Peng Z, Zhong L, Li Y, Feng S, Mou J, Miao Y, Lin CSK, Wang Z, Li X. Harnessing oleaginous protist Schizochytrium for docosahexaenoic acid: Current technologies in sustainable production and food applications. Food Res Int 2025; 205:115996. [PMID: 40032480 DOI: 10.1016/j.foodres.2025.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Docosahexaenoic acid (DHA) exerts versatile roles in nutrition supplementation and numerous health disorders prevention. Global consumption demand for DHA has also been consistently increasing with enhanced health awareness. Oleaginous marine protist Schizochytrium is praised as a potential DHA source due to short growth cycle, convenient artificial culture, harmless to the human body, and easy manipulation of the DHA synthesis pathway. However, factors including strain performances, fermentation parameters, product harvest and extraction strategies, safety and stability maintenance, and also application limitations in health and functional properties affect the widespread adoption of Schizochytrium DHA products. This review provides a comprehensive summary of the current biotechnologies used for tackling factors affecting the Schizochytrium DHA production, with special focuses on Schizochytrium strain improvement technologies, fermentation optimization projects, DHA oil extraction strategies, safety evaluations and stability maintenance schemes, and DHA product application approaches in foods. Inspired by systematic literature investigations and recent advances, suggestive observations composed of improving strain with multiple breeding technologies, considering artificial intelligence and machine learning to optimize the fermentative process, introducing nanoparticles packing technology to improve oxidation stability of DHA products, covering up DHA odor defect with characteristic flavor foods, and employing synthetic biology to construct the structured lipids with DHA to exploit potential functions are formed. This review will give a guideline for exploring more Schizochytrium DHA and propelling the application development in food and health.
Collapse
Affiliation(s)
- Zongfan Peng
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Liang Zhong
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yuqin Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| | - Siran Feng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Cao X, Cong P, Song Y, Meng N, Fan X, Liu Y, Wang X, Xu J, Xue C. Comprehensive Lipidomic Analysis of Three Edible Microalgae Species Based on RPLC-Q-TOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39022817 DOI: 10.1021/acs.jafc.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microalgae, integral to marine ecosystems for their rich nutrient content, notably lipids and proteins, were investigated by using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF-MS/MS). This study focused on lipid composition in three commonly used microalgae species (Spirulina platensis, Chlorella vulgaris, and Schizochytrium limacinum) for functional food applications. The analysis unveiled more than 700 lipid molecular species, including glycolipids (GLs), phospholipids (PLs), sphingolipids (SLs), glycerolipids, and betaine lipids (BLs). GLs (19.9-64.8%) and glycerolipids (24.1-70.4%) comprised the primary lipid. Some novel lipid content, such as acylated monogalactosyldiacylglycerols (acMGDG) and acylated digalactosyldiacylglycerols (acDGDG), ranged from 0.62 to 9.68%. The analysis revealed substantial GLs, PLs, and glycerolipid variations across microalgae species. Notably, S. platensis and C. vulgaris displayed a predominance of fatty acid (FA) 18:2 and FA 18:3 in GLs, while S. limacinum exhibited a prevalence of FA 16:0, collectively constituting over 60% of the FAs of GLs. In terms of PLs and glycerolipids, S. platensis and C. vulgaris displayed elevated levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA), whereas S. limacinum exhibited a significant presence of docosahexaenoic acid (DHA). Principal component analysis (PCA) revealed MGDG (16:0/18:1), DG (16:0/22:5), Cer (d18:1/20:0), and LPC (16:1) as promising lipid markers for discriminating between these microalgae samples. This study contributes to a comprehensive understanding of lipid profiles in three microalgae species, emphasizing their distinct biochemical characteristics and potentially informing us of their high-value utilization in the food industry.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
- Qingdao Marine Science and Technology Center, Qingdao 266235, China
| |
Collapse
|
3
|
Quality Evaluation and Lipidomics Analysis of Salted Duck Egg Yolk under Low-Salt Pickling Process. Food Chem X 2022; 16:100502. [DOI: 10.1016/j.fochx.2022.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
4
|
Wu H, Wang S, Tian Y, Zhou N, Wu C, Li R, Xu W, Xu T, Gu L, Ji F, Xu L, Lu L. Effects of Hydroxylated Lecithin on Growth Performance, Serum Enzyme Activity, Hormone Levels Related to Lipid Metabolism and Meat Quality in Jiangnan White Goslings. Front Vet Sci 2022; 9:829338. [PMID: 35296058 PMCID: PMC8920548 DOI: 10.3389/fvets.2022.829338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to evaluate the effects of hydroxylated lecithin on growth performance, serum enzyme activity, hormone levels related to lipid metabolism and meat quality in Jiangnan White goslings. Six hundred 1-day-old goslings were randomly divided into five treatments with six replicates and 20 for each replicate. The control group (CG) was fed the basal diet, while the experimental group was fed the basal diet with 50, 100, 200 mg/kg hydroxylated lecithin and 100 mg/kg soy lecithin (HLG50, HLG100, HLG200, and LG100, respectively) in the form of powder. Feed and water were provided ad libitum for 32 days. Compared with the CG, (a) the average daily feed intake was higher (P < 0.05) in HLG100, the final body weight and average daily gain were higher (P < 0.05), and the feed conversion ratio was lower in the HLG200; (b) the alanine aminotransferase, malate dehydrogenase, leptin, glucagon, thyroid hormone, Triiodothyronine contents in the HLG200 were lower (P < 0.05); (c) The breast muscle water holding capacity was higher (P < 0.05) in groups with hydroxylated lecithin, the breast muscle shear force and fiber diameter were lower (P < 0.05) in the HLG100; (d) the inositic acid, intramuscular fat, phospholipid contents were higher (P < 0.05), the triglyceride content was lower (P < 0.05) in HLG100 of the breast muscle; (e) the relative expression of sterol regulatory element-binding protein-1 genes were higher (P < 0.05) in the treated groups of muscles, the phosphorylase kinase gamma subunit 1 gene expression was shown an opposite trend. In comparison with LG100, (a) the feed conversion ratio was lower (P < 0.05) in HLG200; (b) the alanine aminotransferase and adiponectin contents were higher (P < 0.05), the malondialdehyde and free fatty acid contents were lower (P < 0.05) in HLG200; (c) the water holding capacity and intramuscular fat contents in the breast and leg muscles were higher (P < 0.05) in HLG200. The hydroxylated lecithin concentration of 200 mg/kg improved the growth performance, serum enzyme activity, hormone levels related to lipid metabolism, and the meat quality of Jiangnan White goslings.
Collapse
Affiliation(s)
- Hongzhi Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sibo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Ning Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chunqin Wu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary, Hainan Academy of Agricultural Science, Haikou, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Li Xu
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Lizhi Lu
| |
Collapse
|
5
|
Kalia S, Lei XG. Dietary microalgae on poultry meat and eggs: explained versus unexplained effects. Curr Opin Biotechnol 2022; 75:102689. [PMID: 35114601 DOI: 10.1016/j.copbio.2022.102689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Different types and sources of microalgae are used to feed broiler chickens and laying hens. This review provides a concise update on various impacts of feeding these novel ingredients on physical, chemical, and nutritional attributes of the resultant meat and eggs. Some of the observed effects may be associated with biochemical and molecular mechanisms derived from unique chemical compositions and nutritional values of microalgae. However, the full potential and the accurate mechanism of microalgae in producing health-promoting poultry foods remain to be explored.
Collapse
Affiliation(s)
- Sahil Kalia
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
6
|
Astaxanthin improved the storage stability of docosahexaenoic acid-enriched eggs by inhibiting oxidation of non-esterified poly-unsaturated fatty acids. Food Chem 2022; 381:132256. [PMID: 35123229 DOI: 10.1016/j.foodchem.2022.132256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023]
Abstract
This study assessed the potential and mechanism of action of astaxanthin, to improve the stability of docosahexaenoic acid (22:6(n-3); DHA) enriched egg products, during storage at 4 °C. The reduction in DHA content after 42 days of storage in astaxanthin-DHA eggs (from hens fed supplemental astaxanthin and DHA) was <3%, whereas the reduction in regular-DHA eggs (hens fed DHA only) was over 17%. Astaxanthin also decreased production of oxidation products including 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and malondialdehyde in eggs during storage, thus markedly improving the oxidative stability of DHA-enriched eggs. The yolk lipidomic profile showed higher intensities for most DHA-containing lipids, especially DHA-phosphatidylcholine, DHA-phosphatidylethanolamine and DHA-non-esterified fatty acid, compared with regular-DHA eggs. Astaxanthin acts primarily by suppressing oxidation of DHA-non-esterified fatty acid, which minimizes the degradation of DHA and appears to be the primary protection mode of yolk DHA during storage.
Collapse
|
7
|
Gao Z, Zhang J, Li F, Zheng J, Xu G. Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens. Animals (Basel) 2021; 11:3482. [PMID: 34944258 PMCID: PMC8698086 DOI: 10.3390/ani11123482] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
With the development of a large-scale and intensive production industry, the number of laying hens in China is rapidly increasing. Oils, as an important source of essential fatty acids, can be added to the diet to effectively improve the production performance and absorption of other nutrients. The present review discusses the practical application of different types and qualities of oils in poultry diets and studies the critical effects of these oils on production performance, such as the egg weight, feed intake, feed conversion ratio (FCR), and various egg quality parameters, including the albumen height, Haugh units, yolk color, and saturated/unsaturated fatty acids. This article reviews the effects of different dietary oil sources on the production performance and egg quality of laying hens and their potential functional mechanisms and provides a reference for the selection of different sources of oils to include in the diet with the aim of improving egg production. This review thus provides a reference for the application of oils to the diets of laying hens. Future studies are needed to determine how poultry products can be produced with the appropriate proper oils in the diet and without negative effects on production performance and egg quality.
Collapse
Affiliation(s)
- Zhouyang Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Junnan Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Jiangxia Zheng
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Guiyun Xu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| |
Collapse
|
8
|
Kopacz M, Drażbo AA, Śmiecińska K, Ognik K. Performance and Egg Quality of Laying Hens Fed Diets Containing Raw, Hydrobarothermally-Treated and Fermented Rapeseed Cake. Animals (Basel) 2021; 11:3083. [PMID: 34827815 PMCID: PMC8614455 DOI: 10.3390/ani11113083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
The present study was conducted to investigate how raw rapeseed cake (RRC), hydrobarothermally-treated rapeseed cake (HRC) and fermented rapeseed cake (FRC) fed to laying hens over a period of 12 weeks affected their performance, and the quality, fatty acid (FA) profile and oxidative stability of eggs. A total of 304 Hy-Line Brown laying hens at 36 weeks of age were distributed in a completely randomized design to four treatment groups with 38 replicates per treatment and two hens per replicate. The birds had ad libitum access to feed and water throughout the study. During the experiment, the birds were fed isonitrogenous and isocaloric diets in mash form, with various protein sources. In the control group (C), soybean meal (SBM) was the main source of dietary protein, whereas the experimental groups were fed diets containing 20% of RRC, HRC or FRC. Hydrobarothermal treatment and fermentation decreased the glucosinolate (GLS) content of RC, and fermentation reduced the concentration of phytate phosphorus (PP). In comparison with the RRC group, layers from the HRC and FRC groups were characterized by higher laying performance, comparable with that in group C. Irrespective of its physical form, RC added to layer diets adversely affected eggshell quality in all experimental groups, whereas albumen quality was highest in the FRC group. In comparison with group C, diets containing RRC, HRC and HRC led to a significant decrease in the content of saturated fatty acids (SFAs), an increase in the proportion of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in the total FA pool in egg yolks, and a decrease in the n-6/n-3 PUFA ratio. The inclusion of RRC, HRC and FRC in layer diets decreased the activity of superoxide dismutase (SOD) in egg yolks, relative to group C. Group FCR eggs were characterized by the highest activity of catalase (CAT) and the lowest lipid peroxides LOOH concentration, compared with the remaining groups. The addition of RC to layer diets did not compromise the sensory quality of eggs, and eggs produced in group FRC received the highest overall score. It can be concluded that the inclusion of 20% RRC, HRC and FRC in layer diets does not compromise the sensory quality of eggs and has a beneficial influence on the FA profile and antioxidant potential of egg yolks. The use of FRC is recommended because it contributes to the highest laying performance, superior albumen quality and the highest sensory quality of eggs, relative to RRC and HRC.
Collapse
Affiliation(s)
- Magdalena Kopacz
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Aleksandra Alicja Drażbo
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Katarzyna Śmiecińska
- Department of Commodity Science and Animal Raw Material Processing, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
9
|
Jin Y, Li H, Wang H. Dietary rumen-protected choline supplementation regulates blood biochemical profiles and urinary metabolome and improves growth performance of growing lambs. Anim Biotechnol 2021:1-11. [PMID: 34658301 DOI: 10.1080/10495398.2021.1984247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to assess the growth performance and blood metabolites, as well as metabolic profiles in the urine of lambs fed on dietary rumen-protected choline (RPC). Thirty-six Dorper × Hu lambs weighing approximately 20 kg were equally assigned to three groups, and fed on three diets supplemented with different RPC concentrations (0, 0.25% and 0.75%) for 45 days. Supplementation of RPC significantly increased average daily gain (ADG) and decreased feed-to-gain ratio (F/G) of lambs (p < 0.05). Dietary RPC was significantly associated with elevated plasma high-density lipoprotein (HDL) and suppressed low-density lipoprotein (LDL) levels when compared to the control group (p < 0.05). Moreover, concentrations of very-low-density lipoprotein (VLDL) exhibited an increasing trend (p = 0.065), whereas β-hydroxybutyrate (BHBA) levels decreased (p = 0.086) in plasma. Analysis of urine metabolome revealed that RPC supplementation significantly suppressed urinary concentrations of pyruvate (p < 0.05), while increased urinary concentrations of trimethylamine oxide, p-cresol, phenylacetylglycine and hippurate (p < 0.05). These findings suggest that RPC supplementation can promote weight gain, alter plasma lipid metabolism and modify urinary metabolome which is correlated with energy metabolism, lipid metabolism and intestinal microbial metabolism in lambs. In conclusion, based on our findings, we recommend 0.25% RPC as a supplement for growing lambs.
Collapse
Affiliation(s)
- Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Huawei Li
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China.,Department of Scientific Research, Tangshan Normal University, Tangshan, P. R. China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
10
|
Beheshti Moghadam MH, Aziza AE, Cherian G. Choline and methionine supplementation in layer hens fed flaxseed: effects on hen production performance, egg fatty acid composition, tocopherol content, and oxidative stability. Poult Sci 2021; 100:101299. [PMID: 34271229 PMCID: PMC8287215 DOI: 10.1016/j.psj.2021.101299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022] Open
Abstract
Choline is an essential nutrient in laying hen diets and is needed for the formation of phosphatidylcholine (PC), that serves as a rich source of long chain (≥20 C) n-3 fatty acids (FA) in eggs. Methionine (Met) is the first limiting amino acid in layer hen diets and serves as a lipotropic agent with antioxidant properties. The objectives of the current study is based on the hypothesis that choline and Met supplementation will enhance egg PC and n-3 FA status, lipid stability, and production indices in layer hens fed flaxseed. Ninety-six, 40-wk-old laying hens (W-36 White Leghorns) were randomly allocated to 4 treatment groups, with 6 replicates containing four hens per cage. Hens were fed corn-soybean meal-based diet containing 0% flaxseed (Control), 15/100 g flaxseed (Flax), Flax+50% more methionine requirement for W-36 White Leghorns (Flax+Met), or Flax+0.15g/100g choline chloride (Cho) (Flax+Cho). All experimental diets were isocaloric and isonitrogenous and fed for a period of 120 d. Egg production and egg mass (g/hen/d) was higher for Flax+Met and Flax+Cho when compared to Flax and Control (P < 0.05). Egg weight was greater (P < 0.05) among hens fed the Control and Flax+Cho diets compared to Flax diet. Feeding flaxseed to hens led to over 6-fold increase in total n-3 FA. Choline supplementation increased egg α-tocopherol content (P < 0.05) while reducing lipid oxidation products measured as thiobarituric acid reactive substances in egg yolk (P < 0.05). Neither Met nor Cho had any impact on docosahexaenoic (22:6 n-3) acid concentration in eggs from hens fed flaxseed. However, addition of Met and Cho to layer diets increased docosapentaenoic acid (22:5 n-3) levels in eggs from hens fed flaxseed (P < 0.05). The PC content was lower in Control and Flax+Met (P < 0.05) when compared to Flax+Cho group. No difference was found in total lipid or phosphatidylethanolamine content of eggs (P > 0.05). The results from the current study suggest that n-3 FA content of egg yolk can be greatly increased by feeding flaxseed but reduced egg production. However, dietary Met and Cho can improve production performance in hens fed flaxseed-containing diets. Addition of Cho to flaxseed increased in egg weight, yolk α-tocopherol levels, PC content and oxidative stability of eggs when compared to hens fed flaxseed. Met and choline could be used in flaxseed (>15%) to increase egg production and egg mas.
Collapse
Affiliation(s)
- M H Beheshti Moghadam
- Department of Animal and Rangeland Sciences, Oregon State University, 122 Withycombe Hall, 2921 SW Campus Way, Corvallis, OR 97331, USA
| | - A E Aziza
- Department of Animal and Rangeland Sciences, Oregon State University, 122 Withycombe Hall, 2921 SW Campus Way, Corvallis, OR 97331, USA
| | - G Cherian
- Department of Animal and Rangeland Sciences, Oregon State University, 122 Withycombe Hall, 2921 SW Campus Way, Corvallis, OR 97331, USA.
| |
Collapse
|
11
|
Li J, Zhang J, Yang Y, Zhu J, He W, Zhao Q, Tang C, Qin Y, Zhang J. Comparative characterization of lipids and volatile compounds of Beijing Heiliu and Laiwu Chinese black pork as markers. Food Res Int 2021; 146:110433. [PMID: 34119242 DOI: 10.1016/j.foodres.2021.110433] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023]
Abstract
Chinese black pork is preferred by consumers due to its unique organoleptic characteristics, which are closely related to lipids and volatiles. The primary aim of this study was to reveal key lipids and volatiles for the differentiation of Duroc × (Landrace × Yorkshire) (DLY), and Beijing Heiliu and Laiwu black (BHLB) pork. Here, lipid and volatile profiles were comprehensively characterized and compared using untargeted lipidomic and volatilomic analysis. The BHLB pork showed higher intramuscular fat content (p < 0.05). The content of total monounsaturated fatty acids, along with C16:1, C17:1, C18:1, and C20:1, was higher in BHLB pork compared with DLY pork (p < 0.05). Lipidomic analysis showed that DLY and BHLB pork significantly differed in lipids at the class and molecular levels. The BHLB pork had significantly more triglyceride and less lysophosphatidylcholine compared with DLY pork (p < 0.05). In positive and negative modes, 34 and 21 potential lipid markers, respectively, were selected for the discrimination of DLY and BHLB pork. In addition, volatilomic analysis showed that DLY and BHLB pork were well distinguished, and 13 volatiles were considered as potential discriminatory markers. Our findings provide a comprehensive lipidomic and volatilomic profiles characteristic of BHLB pork and will hopefully provide an important basis for the effective identification of Chinese black pork.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanyuan Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weizhao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Zhao YC, Shi HH, Wang CC, Yang JY, Xue CH, Jiang XM, Chen GD, Zhang TT, Wang YM. The enrichment of eggs with docosahexaenoic acid and eicosapentaenoic acid through supplementation of the laying hen diet. Food Chem 2020; 346:128958. [PMID: 33418418 DOI: 10.1016/j.foodchem.2020.128958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 11/28/2022]
Abstract
The enrichment and transformation of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) enriched phospholipids for eggs deserve attention. The aim of the present study was to elucidate the comparative effects of DHA and EPA enriched phospholipids and triacylglycerols on egg fortification by determining the fatty acid composition of egg yolk after intervention with fish oil (15 g/kg) and krill oil (15 and 30 g/kg) for three consecutive weeks. The results indicated that laying hens could incorporate over 300 mg DHA and EPA into one egg. Greater retention efficiency of DHA and EPA in eggs was observed in fish oil supplementation compared with krill oil at equivalent dietary levels. DHA and EPA were prone to locate at the sn-2 position of phosphatidylcholine. Consequently, fish oil possessed high DHA content and conversion rate, and krill oil could raise the proportion of DHA-containing phospholipids in eggs.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Xiao-Ming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China
| | - Gui-Dong Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China.
| |
Collapse
|
13
|
Zhang J, Zhang M, Liang W, Geng Z, Chen X. Green tea powder supplementation increased viscosity and decreased lysozyme activity of egg white during storage of eggs from Huainan partridge chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1769512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Junzhi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Minghui Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weiwei Liang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
Semba RD. Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease. Adv Nutr 2020; 11:760-772. [PMID: 32190891 PMCID: PMC7360459 DOI: 10.1093/advances/nmaa024] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease (AD), the most common cause of dementia, is a progressive disorder involving cognitive impairment, loss of learning and memory, and neurodegeneration affecting wide areas of the cerebral cortex and hippocampus. AD is characterized by altered lipid metabolism in the brain. Lower concentrations of long-chain PUFAs have been described in the frontal cortex, entorhinal cortex, and hippocampus in the brain in AD. The brain can synthesize only a few fatty acids; thus, most fatty acids must enter the brain from the blood. Recent studies show that PUFAs such as DHA (22:6) are transported across the blood-brain barrier (BBB) in the form of lysophosphatidylcholine (LPC) via a specific LPC receptor at the BBB known as the sodium-dependent LPC symporter 1 (MFSD2A). Higher dietary PUFA intake is associated with decreased risk of cognitive decline and dementia in observational studies; however, PUFA supplementation, with fatty acids esterified in triacylglycerols did not prevent cognitive decline in clinical trials. Recent studies show that LPC is the preferred carrier of PUFAs across the BBB into the brain. An insufficient pool of circulating LPC containing long-chain fatty acids could potentially limit the supply of long-chain fatty acids to the brain, including PUFAs such as DHA, and play a role in the pathobiology of AD. Whether adults with low serum LPC concentrations are at greater risk of developing cognitive decline and AD remains a major gap in knowledge. Preventing and treating cognitive decline and the development of AD remain a major challenge. The LPC pathway is a promising area for future investigators to identify modifiable risk factors for AD.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Yonke JA, Cherian G. Choline supplementation alters egg production performance and hepatic oxidative status of laying hens fed high-docosahexaenoic acid microalgae. Poult Sci 2020; 98:5661-5668. [PMID: 31222319 DOI: 10.3382/ps/pez339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
The purpose of the current study was to investigate the effect of choline as a means of increasing docosahexaenoic acid (22:6 n-3, DHA) deposition in egg yolks of hens fed a high-DHA microalgae product. Fifty-six, 26-wk-old, White Leghorn hens were kept in individual cages and randomly allocated to 1 of 4 dietary treatments, each with 7 replicate groups of 2 hens (n = 7 per treatment). The experimental diets were corn and soybean meal based, with 0% microalgae (control), 1% microalgae and no additional choline chloride (Alg), and Alg plus choline chloride at 0.1% (Ch0.1) and 0.2% (Ch0.2). The feeding trial lasted 16 wk. The data were fit as a general linear mixed model to generate least square means in response to diet. Variables measured multiple times during the study were fit as repeated measures. Using orthogonal contrasts, Alg was compared to control, and Ch0.1 and Ch0.2 were compared separately to Alg. Ch0.1 increased hen day egg production (P < 0.05) and Haugh unit (P < 0.05), and reduced feed conversion ratio (P < 0.05) compared to Alg, but Ch0.2 did not. Alg increased egg DHA (P < 0.001), phosphatidylethanolamine (P < 0.05), and phosphatidylcholine (P < 0.001) compared to control, but Ch0.1 or Ch0.2 had no effect compared to Alg (P > 0.05). In the liver, Alg increased lipid peroxidation products compared to control (P < 0.01), and Ch0.1 reduced them compared to Alg (P < 0.01). Both Ch0.1 and Ch0.2 increased hepatic concentrations of γ- (P < 0.05; P < 0.001) and α-tocopherol (P < 0.01; P < 0.001), and Ch0.1 increased γ-tocopherol concentration in eggs compared to Alg (P < 0.05). The results from the current study suggest that supplemental choline chloride in hen diets containing microalgae can improve production performance and egg quality, and protect the liver from oxidative stress.
Collapse
Affiliation(s)
- Joseph A Yonke
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Gita Cherian
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
16
|
Ma Y, Zhou W, Chen P, Urriola PE, Shurson GC, Ruan R, Chen C. Metabolomic Evaluation of Scenedesmus sp. as a Feed Ingredient Revealed Dose-Dependent Effects on Redox Balance, Intermediary and Microbial Metabolism in a Mouse Model. Nutrients 2019; 11:E1971. [PMID: 31438641 PMCID: PMC6770930 DOI: 10.3390/nu11091971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/10/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Scenedesmus is a common green algae genus with high biomass productivity, and has been widely used in biofuel production and waste water management. However, the suitability and metabolic consequences of using Scenedesmus as an animal feed ingredient have not been examined in detail. In this study, the influences of consuming Scenedesmus on the metabolic status of young mice were investigated through growth performance, blood chemistry, and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Compared to the control diet, feeding a diet containing 5% Scenedesmus improved growth performance while the diet containing 20% Scenedesmus suppressed it. Among common macronutrients-derived blood biochemicals, serum triacylglycerols and cholesterol levels were dramatically decreased by feeding the 20% Scenedesmus diet. Metabolomic analysis of liver, serum, feces, and urine samples indicated that Scenedesmus feeding greatly affected the metabolites associated with amino acid, lipid, purine, microbial metabolism, and the endogenous antioxidant system. The growth promotion effect of feeding the 5% Scenedesmus diet was associated with elevated concentrations of antioxidants, an expanded purine nucleotide cycle, and modified microbial metabolism, while the growth suppression effect of feeding the 20% Scenedesmus diet was correlated to oxidative stress, disrupted urea cycle, upregulated fatty acid oxidation, and an imbalanced lipidome. These correlations among Scenedesmus dietary inclusion rate, individual metabolite markers, and growth performance suggest the need to define the dietary inclusion rate threshold for using Scenedesmus and other microalgae supplements as feed ingredients, and also warrant further mechanistic investigations on the biological processes connecting specific constituents of Scenedesmus with the metabolic effects observed in this study.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Wenguang Zhou
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Paul Chen
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
17
|
Wu YB, Li L, Wen ZG, Yan HJ, Yang PL, Tang J, Xie M, Hou SS. Dual functions of eicosapentaenoic acid-rich microalgae: enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poult Sci 2019; 98:350-357. [PMID: 30203026 DOI: 10.3382/ps/pey372] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 08/24/2018] [Indexed: 11/20/2022] Open
Abstract
Microalgae (Nannochloropsis sp., NS), with high contents of eicosapentaenoic acid (EPA) and crude protein, may be one of the important n-3 polyunsaturated fatty acid (PUFA) sources and potential protein feed ingredient. The purposes of this study were to enrich yolk with n-3 PUFA by dietary EPA-rich NS supplementation and to evaluate whether it is feasible to partly substitute for soybean meal in laying hens diet. A total of 360 37-wk-old healthy Lohmann Brown laying hens, with similar laying rate and body weight, were randomly allotted to 5 groups (6 replicates, 12 birds/replicate) and fed 5 experimental diets (0, 1, 2, 4, and 8% NS) for 4 wk. The hen performance and egg quality (except yolk color) were not affected (P > 0.05) by the NS supplemental diets. Yolk color score was increased as NS supplementation in diets (P < 0.001), and peaked on about the seventh day in all NS supplemental groups. The concentration of total n-3 PUFA was increased (P < 0.001), while total n-6 PUFA and n-6/n-3 ratio were decreased (P < 0.001) in yolk with increasing NS levels in diets. The 8% NS group had highest docosahexaenoic acid (DHA) and total n-3 PUFA levels, reaching 111.6 mg DHA and 148.6 mg total n-3 PUFA per egg. Maximum DHA, total n-3 PUFA, very long-chain (LC-) n-3 PUFA, and LC-PUFA levels were all observed at day 13 of NS supplementation. In conclusion, dietary NS supplementation enriched yolk with n-3 PUFA (especially DHA) and enhanced yolk color score without adverse effects on performance and egg quality, and indicated the practical feasibility of partial replacement for soybean meal in laying hens diet.
Collapse
Affiliation(s)
- Y B Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - L Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Z G Wen
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H J Yan
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - P L Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - M Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S S Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|