1
|
Gao Y, Long M, Xu M, Yang T, Li J, Liu M, Ma J, Du Y, Xu Q. Alginate Oligosaccharide Attenuates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction in Balb/c Mice: Mechanistic Insights. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40367367 DOI: 10.1021/acs.jafc.4c12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Alginate oligosaccharide (AOS) is a structurally distinct carbohydrate derived from marine algae. In this study, AOS was obtained through the enzymatic hydrolysis of alginate, and the anti-inflammatory efficacy of AOS was assessed in lipopolysaccharide (LPS)-induced inflammatory Balb/c mice. AOS effectively suppressed the overexpression of TNF-α, IL-6, and MDA while restoring the reduced SOD activity. Histopathological analysis revealed that AOS significantly reduced the level of LPS-induced tissue edema, inflammatory infiltration, and villous destruction. Additionally, AOS notably upregulated tight junction proteins Claudin-1, Occludin, and ZO-1 expression. Transcriptomic and Western blot analyses indicated that AOS primarily mediated the restriction of the TLR4/MAPK/NF-κB pathway in the jejunum. Moreover, AOS ameliorated gut microbiota dysbiosis, such as increasing in Bacteroidota, alongside decreasing in Firmicutes, Campylobacter, and Desulfovibrio, respectively. Metabolomics demonstrated that AOS improved the LPS-induced reduction of short-chain fatty acids in the gut. These results provide compelling evidence supporting the potential of AOS against acute intestinal inflammation.
Collapse
Affiliation(s)
- Yujia Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mei Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jinlong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
2
|
Ribeiro RFN, Santos MR, Aquino M, de Almeida LP, Cavadas C, Silva MMC. The Therapeutic Potential of Melatonin and Its Novel Synthetic Analogs in Circadian Rhythm Sleep Disorders, Inflammation-Associated Pathologies, and Neurodegenerative Diseases. Med Res Rev 2025. [PMID: 40344229 DOI: 10.1002/med.22117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 02/27/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is a tryptophan-derived hormone mostly produced in the pineal gland, despite being synthesized locally at several tissues and organs. This production is rhythmically controlled by complex clock gene networks in the master pacemaker located in the suprachiasmatic nucleus of the hypothalamus. Melatonin is usually secreted only during the dark phase of the day and is essential to synchronize circadian rhythms and neuroendocrine physiological processes. Its main clinical use is associated with the treatment of jet lag and other circadian rhythm sleep disorders, with a growing number of other promising therapeutic applications due to the diverse physiological roles of melatonin. In this review, we explore melatonin and its receptors and provide an updated overview on research concerning the role of melatonin, either as an endogenous molecule or as a drug, in: sleep-wake cycle regulation; circadian rhythms; inflammatory processes that may compromise cardiovascular, respiratory, gastrointestinal, renal, and reproductive system functions; and neurodegenerative disorders such as Alzheimer's and Parkinson's disease. The most recent and promising research findings concerning melatonin synthetic analogs such as agomelatine and ramelteon are highlighted, pointing toward new compounds with promising pharmacological activity while emphasizing their structural differences and advantages when compared to melatonin.
Collapse
Affiliation(s)
- Rodrigo F N Ribeiro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | - Maria Aquino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria Manuel C Silva
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Li P, Guo C, Tong W, Han S, Sun X, Xiao L, Hu Q, Hou Y, Ding B, Yi D. Dietary supplementation with farnesol confers a protective effect on the intestine of broiler chickens challenged with lipopolysaccharide by reshaping intestinal flora structure and regulating TLR4/NF-κB signaling pathway. Poult Sci 2025; 104:104942. [PMID: 40010048 PMCID: PMC11910080 DOI: 10.1016/j.psj.2025.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025] Open
Abstract
Farnesol (FAN), one of plant essential oils, is widely found in a variety of natural plants. Studies demonstrated that FAN contributed to the antioxidant and immune function as well as improving the intestinal flora, however effects of it on the broiler chickens has not been fully characterized. In the present study, we present an undated report of its effects on growth performance, antioxidant and immune functions of broiler chickens challenged with lipopolysaccharide (LPS). One hundred healthy male AA+ broiler chickens with uniform body weight were divided into control and FAN groups, there were five replicates and 10 birds in each one. The trial lasted for 28 days, and two birds with uniform body weight were selected from each replicate to be treated with intraperitoneal injection of LPS at the end of the trial, and then samples were harvested after 3 h. Results showed that dietary supplementary with FAN tended to improve the feed conversion ratio (FCR) (P = 0.058). The levels of serum lactate dehydrogenase and IL-1β were elevated in the birds challenged with LPS, as well as the content of malondialdehyde in the ileal and liver (P < 0.05). Additionally, LPS treatment descended the levels of catalase and superoxide dismutase, and the ratio of villi height to crypt depth in the ileum (P < 0.05). Dietary supplementation with FAN was able to alleviate the abnormal changes of the above indexes caused by LPS. In addition, dietary supplementation with FAN also contributed to alleviating the up-regulation of Toll-like receptor 4 (TLR-4), nuclear transcription factor κB (NF-κB), myeloid differentiation primary response gene 88 (MYD88), tumor necrosis factor (TNF-α) and IL-1β transcription levels in the ileum and liver of birds challenged with LPS (P < 0.05). Results of intestinal flora demonstrated that the relative abundance of Candidatus Arthromitus was up-regulated in the ileal chyme of birds challenged with LPS, and dietary supplementation with FAN could reshape it. Intriguingly, the relative abundance of Candidatus Arthromitus was positively correlated with the mRNA levels of TLR-4, NF-κB, MYD88, TNF-α and IL-1β in the ileum (P < 0.05). In conclusion, dietary supplementation with FAN might confer a protective effect on the intestine of broiler chickens challenged with lipopolysaccharide by reshaping intestinal flora, especially Candidatus Arthromitus, and regulating TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education,Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Chenyu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education,Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Wenfei Tong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education,Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Shaochen Han
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education,Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Xiangxue Sun
- Hubei Lan Good microbial Technology Co., Ltd. Yichang, Hubei 443100, PR China
| | - Lei Xiao
- Hubei Lan Good microbial Technology Co., Ltd. Yichang, Hubei 443100, PR China
| | - Qunbing Hu
- Hubei Horwath Biotechnology Co., Ltd. Xianning, Hubei 437000, PR China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education,Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education,Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education,Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China.
| |
Collapse
|
4
|
Titon SCM, Neto PGG, Titon B, de Figueiredo AC, Markus RP, Gomes FR, Assis VR. Immune-pineal-ocular Axis in Amphibians: Unveiling A Novel Connection. Integr Comp Biol 2024; 64:1309-1319. [PMID: 38658196 DOI: 10.1093/icb/icae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Melatonin is a hormone known as an endogenous temporal marker signaling the dark phase of the day. Although the eyes seem to be the main site of melatonin production in amphibians, little information is available about the natural variation in ocular melatonin levels and its modulation following immune stimulation. We investigated the daily variation of plasma and ocular melatonin levels in bullfrogs (Lithobates catesbeianus) and their modulation following an immune stimulation with lipopolysaccharide (LPS) in yellow cururu toads (Rhinella icterica). For the daily variation, bullfrogs were bled and then euthanized for eye collection every 3 h over 24 h to determine plasma and ocular melatonin levels. We found a positive correlation between ocular and plasma melatonin levels, with maximum values at night (22 h) for both plasma and the eyes. For immune stimulation, yellow cururu toads received an intraperitoneal injection of LPS or saline solution during the day (10 h) or at night (22 h). Two hours after injection, toads were bled and euthanized for eye collection to obtain plasma and ocular melatonin levels. In addition, the liver and bone marrow were collected to investigate local melatonin modulation. Our results demonstrate that retinal light-controlled rhythmic melatonin production is suppressed while liver and bone marrow melatonin levels increase during the inflammatory assemblage in anurans. Interestingly, the LPS injection decreased only ocular melatonin levels, reinforcing the central role of the eyes (i.e., retina) as an essential organ of melatonin production, and a similar role to the pineal gland during the inflammatory response in amphibians. Together, these results point to a possible immune-pineal-ocular axis in amphibians, yet to be fully described in this group.
Collapse
Affiliation(s)
- Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Patrício G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Regina P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
- College of Public Health, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Calvo JR, Maldonado MD. Immunoregulatory properties of melatonin in the humoral immune system: A narrative review. Immunol Lett 2024; 269:106901. [PMID: 39032910 DOI: 10.1016/j.imlet.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Melatonin is the major product both synthesized and secreted by the pineal gland during the night period and it is the principal chronobiotic hormone that regulates the circadian rhythms and seasonal changes in vertebrate biology. Moreover, melatonin shows both a broad distribution along the phylogenetically distant organisms and a high functional versatility. At the present time, a significant amount of experimental evidence has been reported in scientific literature and has clearly shown a functional relationship between the endocrine, nervous, and immune systems. The biochemistry basis of the functional communication between these systems is the utilization of a common chemicals signals. In this framework, at present melatonin is considered to be a relevant member of the so-called neuro-endocrine-immunological network. Thus, both in vivo and in vitro investigations conducted in both experimental animals and humans, have clearly documented that melatonin has an important immunomodulatory role. However, most of the published results refer to information on T lymphocytes, i.e., cell-mediated immunity. On the contrary, fewer studies have been carried out on B lymphocytes, the cells responsible for the so-called humoral immunity. In this review, we have focused on the biological role of melatonin in the humoral immunity. More precisely, we report the actions of melatonin on B lymphocytes biology and on the production of different types of antibodies.
Collapse
Affiliation(s)
- Juan R Calvo
- Department Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Spain.
| | - María D Maldonado
- Department Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Spain
| |
Collapse
|
6
|
Ding X, Tang R, Zhao J, Xu Y, Fu A, Zhan X. Lactobacillus reuteri alleviates LPS-induced intestinal mucosal damage by stimulating the expansion of intestinal stem cells via activation of the Wnt/β-catenin signaling pathway in broilers. Poult Sci 2024; 103:104072. [PMID: 39068698 PMCID: PMC11332868 DOI: 10.1016/j.psj.2024.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The continuous expansion of intestinal stem cells (ISCs) is crucial for maintaining the renewal of the intestinal epithelium, particularly in inflammatory conditions. It remains largely unknown how the internal microbiota repair damage to the internal mucosal barrier. Hence, investigating potential anti-inflammatory probiotics from the intestinal symbolic microbes of broilers and analyzing their mechanism of action to support the intestinal mucosal barrier function can offer novel regulatory tools to alleviate broiler enteritis. In this research, we utilized in vivo broilers plus ex vivo organoids model to thoroughly examine the effectiveness of Lactobacillus reuteri (LR) in protecting the integrity of the intestinal mucosa during lipopolysaccharide-induced (LPS-induced) enteritis in broilers. The findings indicated that LR feeding maintained intestinal morphological and structural integrity, enhanced proliferation of intestinal epithelial cells, and inhibited cell apoptosis and inflammatory response against the deleterious effects triggered by LPS. Simultaneously, LR enhanced ISCs activity and stimulated intestinal epithelial regeneration to protect the intestinal barrier during LPS-induced injury conditions. The coculture system of LR and ileum organoids revealed that LR increased the growth of organoids and attenuated LPS-stimulated damage to organoids. Furthermore, the LPS-induced decrease in ISC activity was rescued by reactivation of Wnt/β-catenin signaling by LR ex vivo and in vivo. This research revealed that LR promoted the expansion of ISCs and intestinal epithelial cell renewal by regulating the Wnt/β-catenin signaling pathway, thereby maintaining the integrity of the intestinal mucosal barrier. This finding provided theoretical support for lactobacillus as a probiotic additive in livestock feed to improve intestinal inflammation and treat intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Runzi Tang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Jiayue Zhao
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Yibin Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Aikun Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China.
| |
Collapse
|
7
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
8
|
Chen D, Sun W, Liu H, Wang K, Gao M, Guo L, Xu S. SeMet alleviates LPS-induced eggshell gland necroptosis mediated inflammation by regulating the Keap1/Nrf2/HO-1 pathway. Arch Biochem Biophys 2024; 751:109847. [PMID: 38052383 DOI: 10.1016/j.abb.2023.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Exposure to lipopolysaccharide (LPS) can lead to inflammation in a variety of tissues and organs. Selenium (Se) plays a crucial role in mitigating inflammatory damage. Compared with inorganic selenium, organic selenium, such as selenomethionine (SeMet), has the advantages of a higher absorption rate and lower toxicity in animals. This study examined the protective effects of SeMet on eggshell gland tissue damage caused by LPS. Hy-Line Brown laying hens were chosen as the experimental animals and were randomly assigned to four groups: control group (C), lipopolysaccharide group (LPS), SeMet group (Se), and SeMet + lipopolysaccharide group (Se + LPS). H&E staining and transmission electron microscope were performed to observe the pathological changes of eggshell glands, oxidative stress related indicators were measured using relevant kits, qRT‒PCR and western blotting were used to evaluate the mRNA and protein levels of the Nrf2 pathway, necroptosis, and inflammation related indicators. The results showed that LPS treatment increased the content of malondialdehyde (MDA), decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and decreased the content of glutathione (GSH). LPS increased the levels of Keap1, RIPK1, RIPK3, MLKL, TNF-α, COX-2, and NF-κB, while decreasing the levels of HO-1, NQO1, Nrf2, and Caspase-8. However, SeMet treatment effectively reversed the changes of the above indicators, indicating that SeMet alleviates eggshell gland cell necroptosis-mediated inflammation induced by LPS via regulating the Keap1/Nrf2/HO-1 pathway. This study elucidated the mechanism by which SeMet alleviates LPS-induced eggshell gland tissue damage in Hy-Line Brown laying hens and provided a new direction for expanding the application of SeMet in the feeding and production of laying hens.
Collapse
Affiliation(s)
- Dan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Linlin Guo
- SCIEX Analytical Instrument Trading Co., Ltd, Shanghai, 200335, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
9
|
Zhang X, Gu T, Liu Y, Liu C, Lin Y, Li H, Zhang T, Wang Q, Mu D. Pyrroloquinoline Quinone (PQQ) Improves Long-term Survival of Fat Grafts by Alleviating Oxidative Stress and Promoting Angiogenesis During the Early Phase After Transplantation. Aesthet Surg J 2023; 44:NP104-NP118. [PMID: 37616573 DOI: 10.1093/asj/sjad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Reducing absorption after autologous fat grafting is a current challenge. Pyrroloquinoline quinone (PQQ) is the strongest known catalyst of redox reactions, which can scavenge reactive oxygen species (ROS) and alleviate oxidative stress. OBJECTIVES The aim of this study was to establish an in vivo model of PQQ-assisted lipotransfer and clarify the role of PQQ in reducing oxidative stress, alleviating apoptosis, and promoting angiogenesis during the acute hypoxic phase after grafting. In addition the study was performed to assess whether this intervention would have a positive effect on the improvement of long-term volume retention. METHODS Different concentrations of PQQ (low: 10 μM, medium: 100 μM, and high: 1000 μM) were mixed with human adipose tissue and transplanted subcutaneously into nude mice. Meanwhile, a control group of phosphate-buffered saline in an equal volume to PQQ was set up. On the third day after grafting, whole mount fluorescence staining was applied to detect ROS, mitochondrial membrane potential (MMP), apoptosis, adipocyte activity, and angiogenesis. Graft volume retention rate and electron microscopic morphology were evaluated at the third month. Immunohistochemistry and polymerase chain reaction (PCR) were further employed to elucidate the mechanism of action of PQQ. RESULTS PQQ-assisted fat grafting improved the long-term volume retention, promoted the quality and viability of the adipose tissue, and reduced the level of fibrosis. The underlying mechanism of PQQ assisted in scavenging the accumulated ROS, restoring MMP, enhancing adipocyte viability, alleviating tissue apoptosis, and promoting timely angiogenesis during the hypoxia stress phase. The most effective concentration of PQQ was 100 μM. Immunohistochemistry and PCR experiments confirmed that PQQ reduced the expression of Bax and cytochrome c in the mitochondrial apoptotic pathway and increased the level of the antiapoptotic molecule Bcl-2. CONCLUSIONS PQQ could improve the long-term survival of adipocytes by alleviating hypoxic stress and promoting timely angiogenesis in the early phase following lipotransfer. LEVEL OF EVIDENCE: 4
Collapse
|
10
|
Sun H, Zheng X, Yang B, Yan M, Wang H, Yang S, Shi D, Guo S, Liu C. Effect of Wu Zhi San supplementation in LPS-induced intestinal inflammation and barrier damage in broilers. Front Vet Sci 2023; 10:1234769. [PMID: 38111733 PMCID: PMC10725941 DOI: 10.3389/fvets.2023.1234769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Intestinal inflammation and barrier damage can inhibit the absorption and transportation of nutrients in the small intestine, and lead to various chronic diseases. Wu Zhi San (WZS) is a traditional Chinese formula composed of Schisandrae, Anemarrhenae, Lonicerae, and Glycyrrhizae that was made to cure intestinal inflammation and barrier damage in broilers. To evaluate the protective effect of WZS on intestinal inflammation and barrier damage of broilers under lipopolysaccharide (LPS) stress, a total of 200 one-day-old broilers were randomly divided into five groups, namely, the CON group, LPS group, and three WZS groups (WZS-H, WZS-M, and WZS-L). The groups were designed for stress phase I (days 15, 17, 19, and 21) and stress phase II (days 29, 31, 33, and 35). The protective effect of WZS on the intestinal tract was evaluated by measuring the levels of serum myeloperoxidase (MPO), diamine oxidase (DAO), super oxide dismutase (SOD), and serum D-lactate (D-LA) and the expression of inflammatory factors in jejunum. The results showed that the diet supplemented with WZS could significantly reduce serum MPO, DAO, and D-LA levels and jejunal CD in broilers (p < 0.05), increase serum SOD levels and jejunal VH (p < 0.05), significantly downregulate the expression of NF-κB, TLR4, MyD88, and inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), and upregulate Claudin-1, Occludin-1, and ZO-1 in broiler jejunum mucosa (p < 0.05). On the other hand, WZS could significantly reduce the protein expression of NF-κB (p65) in broiler jejunum (p < 0.05). These results indicate that supplementing WZS in the diet can reduce intestinal inflammation and alleviate intestinal barrier damage, and by inhibiting the NF-κB/TLR4/MyD88 signaling pathway, supplementation with WZS intervenes in LPS-induced stress injury in broilers.
Collapse
Affiliation(s)
- Han Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xirui Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bowen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingen Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiting Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, China
| |
Collapse
|
11
|
Zhang LZ, Gong JG, Li JH, Hao YS, Xu HJ, Liu YC, Feng ZH. Dietary resveratrol supplementation on growth performance, immune function and intestinal barrier function in broilers challenged with lipopolysaccharide. Poult Sci 2023; 102:102968. [PMID: 37586190 PMCID: PMC10450988 DOI: 10.1016/j.psj.2023.102968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
This study discusses the effects of resveratrol (RES) on the productive performance, immune function and intestinal barrier function of broiler chickens challenged with lipopolysaccharide (LPS). Two hundred and forty 1-day-old male Arbor Acres broilers were randomly divided into 4 groups of 6 replicates each, with 10 broilers per replicate. This experiment used a 2 × 2 factorial design with dietary factors (basal diets or basal diets supplemented with 400 mg/kg RES were administered from d 1 to 21) and stress factors (intraperitoneal injection of 0.5 mg/kg BW of saline or LPS at 16, 18 and 20 d of age). The results showed that LPS challenge had a significant adverse effect on average daily gain (ADG) in broilers at 16 to 21 d of age (P < 0.05), whereas the addition of RES to the diet inhibited the LPS-induced decrease in ADG (P < 0.05). RES also alleviated LPS-induced immune function damage in broilers, which was manifested by the decrease of spleen index (P < 0.05) and the recovery of serum immunoglobulin M and ileal secretory immunoglobulin A content (P < 0.05). The LPS challenge also disrupts intestinal barrier function and inflammation, and RES mitigates these adverse effects in different ways. RES attenuated LPS-induced reduction of villus height in the jejunum and ileum of broilers (P < 0.05). LPS also caused an abnormal increase in plasma D-lactic acid levels in broilers (P < 0.05), which was effectively mitigated by RES (P < 0.05). LPS challenge resulted in a significant decrease in mRNA expression of occludin in the intestinal mucosa (P < 0.05), which was mitigated by the addition of RES (P < 0.05). RES significantly decreased the mRNA expression of toll-like receptor 4, nuclear factor kappa-B and tumor necrosis factor alpha in the ileum tissue stimulated by LPS (P < 0.05). Taken together, this study shows that RES exerts its beneficial effect on broilers challenged with LPS by alleviating immune function damage, relieving intestinal inflammation and barrier damage, and thus improving growth performance.
Collapse
Affiliation(s)
- Lei-Zheng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian-Gang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jia-Hui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Shuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hong-Jian Xu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Ci Liu
- Baoding Vocational and Technical College, Baoding, Hebei 071001, China
| | - Zhi-Hua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
12
|
Wang S, Li C, Zhang C, Liu G, Zheng A, Qiu K, Chang W, Chen Z. Effects of Sihuang Zhili Granules on the Diarrhea Symptoms, Immunity, and Antioxidant Capacity of Poultry Challenged with Lipopolysaccharide (LPS). Antioxidants (Basel) 2023; 12:1372. [PMID: 37507912 PMCID: PMC10376454 DOI: 10.3390/antiox12071372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
A growing interest has been focused on Chinese herbs as alternatives to antimicrobial growth promoters, which are characterized by non-toxic side effects and drug resistance. The purpose of this study was to evaluate the effects of the Sihuang Zhili granule (abbreviated as Sihuang) on diarrhea, immunity, and antioxidation in poultry. Thirty male Leghorn chickens, aged 21 days, were randomly assigned to one of three groups with ten animals each. The control group (CON) received intraperitoneal saline injections, while the LPS-challenged group (LPS) and Sihuang intervention group (SH) received intraperitoneal injections of LPS (0.5 mg/kg of BW) and Sihuang (5 g/kg) at d 31, d 33, d 35, respectively. The control and LPS groups were fed a basal diet, while the SH group was fed a diet supplemented with Sihuang from d 21 to d 35. Analysis of the diarrhea index showed that the addition of Sihuang inhibited the increase in the diarrhea grade and the fecal water content caused by LPS, effectively alleviating poultry diarrhea symptoms. The results of the immune and antioxidant indexes showed that Sihuang significantly reduced the contents of the pro-inflammatory factors TNF- α and IL-1 β, as well as the oxidative stress markers ROS and MDA. Conversely, it increased the contents of the anti-inflammatory factors IL-4 and IL-10, along with the activities of antioxidant enzymes GSH-Px and CAT, thereby enhancing the immune and antioxidant abilities of chickens. Furthermore, Sihuang protected the chicken's ileum, liver, and immune organs from LPS invasion and maintained their normal development. In conclusion, this study confirmed the antidiarrheal effect of Sihuang in poultry farming and demonstrated its ability to improve poultry immunity and antioxidant capacity by modulating antioxidant enzyme activity and inflammatory cytokine levels.
Collapse
Affiliation(s)
- Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chaosheng Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Xing Y, Zheng Y, Yang S, Zhang L, Guo S, Shi L, Xu Y, Jin X, Yan S, Shi B. Artemisia ordosica polysaccharide ameliorated LPS-induced growth inhibition and intestinal injury in broilers through enhancing immune-regulation and antioxidant capacity. J Nutr Biochem 2023; 115:109284. [PMID: 36828238 DOI: 10.1016/j.jnutbio.2023.109284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
The study investigated the effects of dietary Artemisia ordosica polysaccharide (AOP) on growth, intestinal morphology, immune responses and antioxidant capacity of broilers challenged with lipopolysaccharide (LPS). A total of 192 1-d-old broilers were randomly allotted to four treatments with 6 replicates (n = 8): (1) CON group, non-challenged broilers fed basal diet; (2) LPS group, LPS-challenged broilers fed basal diet; (3) AOP group, non-challenged broilers fed basal diet supplemented with 750 mg/kg AOP; (4) LPS+AOP group, LPS-challenged broilers fed basal diet supplemented with 750 mg/kg AOP. The trial included starter phase (d 1 to 14), stress period Ⅰ (d 15 to 21), convalescence Ⅰ (d 22 to 28), stress period Ⅱ (d 29 to 35) and convalescence Ⅱ (d 36 to 42). During stress period Ⅰ and Ⅱ, broilers were injected intra-abdominally either with LPS solution or with equal sterile saline. The results showed that AOP alleviated LPS-induced growth inhibition by prompting protein digestibility, and decreasing serum stress hormones and pro-inflammatory cytokines content of broilers. Moreover, AOP decreased LPS-induced over-production of IL-1β and IL-6 through suppressing TLR4/NF-κB pathway, and alleviated LPS-induced decreasing of T-AOC, CAT and GPx activities by activating Nrf2/Keap1 pathway, which ultimately improved jejunum morphology. In conclusion, AOP alleviated LPS-induced growth inhibition and intestinal damage by enhancing anti-inflammatory and antioxidant capacities of broilers.
Collapse
Affiliation(s)
- Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Yankai Zheng
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Shuo Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Linhui Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Shiwei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Lulu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China.
| |
Collapse
|
14
|
Xi Y, Li Y, Ying S, Yan J, Shi Z. Bacterial lipopolysaccharide with different administration routes affects intestinal mucosal morphological, immunological, and microbial barrier functions in goslings. Poult Sci 2023; 102:102599. [PMID: 36940655 PMCID: PMC10033283 DOI: 10.1016/j.psj.2023.102599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The current study was conducted to evaluate the effects of different administration routes of bacterial lipopolysaccharide (LPS) on intestinal mucosal morphological, immunological, and microbial barrier functions in goslings. First, we compared intestinal villi morphology of goslings under intraperitoneal or oral LPS treatment through hematoxylin and eosin staining. Then, we determined the signatures of the microbiome in the ileum mucosa of goslings subjected to oral LPS treatment at 0, 2, 4, and 8 mg/kg BW by 16S sequencing, and analyzed the changes in intestinal barrier functions and permeability, levels of LPS in the ileum mucosa, plasma, and liver tissue, and the induced inflammatory response of Toll-like receptor 4 (TLR4). As a result, intraperitoneal LPS injection resulted in a thicker intestinal wall in the ileum within a short time, whereas villus height was less affected; in contrast, oral LPS treatment exerted a stronger influence on villus height but not on intestinal wall thickness. We also found that oral LPS treatment affected the structure of the intestinal microbiome, reflected by changes in the clustering of intestinal microbiota. The average abundance of Muribaculaceae showed an increasing trend with increasing LPS levels, and that of the genus Bacteroides decreased, compared with the control group. In addition, oral LPS treatment with 8 mg/kg BW affected the intestinal epithelial morphology, damage the mucosal immune barrier, downregulated the expression of tight junction proteins, increased circulating D-lactate levels, and stimulated the secretion of various inflammatory mediators and activation of the TLR4/MyD88/NFκB pathway. This study presented the injuries of intestinal mucosal barrier function induced by LPS challenges in goslings and provided a scientific model for searching the novel strategies to attenuate the immunological stress and gut injury caused by LPS.
Collapse
Affiliation(s)
- Yumeng Xi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yue Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shijia Ying
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junshu Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
15
|
Vaghari-Tabari M, Moein S, Alipourian A, Qujeq D, Malakoti F, Alemi F, Yousefi B, Khazaie S. Melatonin and inflammatory bowel disease: From basic mechanisms to clinical application. Biochimie 2022; 209:20-36. [PMID: 36535545 DOI: 10.1016/j.biochi.2022.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is a chronic inflammatory disease and has periods of recurrence and remission. Improper immune responses to gut flora bacteria, along with genetic susceptibility, appear to be involved in causing this complex disease. It seems dysbiosis and oxidative stress may also be involved in IBD pathogenesis. A significant number of clinical studies have shown an interesting association between sleep disturbances and IBD. Studies in animal models have also shown that sleep deprivation has a significant effect on the pathogenesis of IBD and can aggravate inflammation. These interesting findings have drawn attention to melatonin, a sleep-related hormone. Melatonin is mainly produced by the pineal gland, but many tissues in the body, including the intestines, can produce it. Melatonin can have an interesting effect on the pathogenesis of IBD. Melatonin can enhance the intestinal mucosal barrier, alter the composition of intestinal bacteria in favor of bacteria with anti-inflammatory properties, regulate the immune response, alleviate inflammation and attenuate oxidative stress. It seems that, melatonin supplementation is effective in relieving inflammation and healing intestinal ulcers in IBD animal models. Some clinical studies have also shown that melatonin supplementation as an adjuvant therapy may be helpful in reducing disease activity in IBD patients. In this review article, in addition to reviewing the effects of sleep disturbances and melatonin on key mechanisms involved in the pathogenesis of IBD, we will review the findings of clinical studies regarding the effects of melatonin supplementation on IBD treatment.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sepideh Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Bo R, Zhan Y, Wei S, Xu S, Huang Y, Liu M, Li J. Tea tree oil nanoliposomes: optimization, characterization, and antibacterial activity against Escherichia coli in vitro and in vivo. Poult Sci 2022; 102:102238. [PMID: 36368171 PMCID: PMC9650060 DOI: 10.1016/j.psj.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to formulate tee tree oil nanoliposomes (TTONL) and evaluate its characterization and antibacterial activity. TTONL was prepared by thin film hydration and sonication technique, and the preparation conditions were optimized by Box-behnken response surface method. The characterization (morphology, size, zeta potential, and stability) and antibacterial activity of TTONL against Escherichia coli (E. coli) in vitro and in vivo were evaluated. The optimal preparation conditions for TTONL: lecithin to cholesterol mass ratio of 3.7:1, TTO concentration of 0.5%, and pH of the hydration medium of 7.4, which resulted in a TTONL encapsulation rate of 80.31 ± 0.56%. TTONL was nearly spherical in shape and uniform in size, and the average particle size was 227.8 ± 25.3 nm with negative charge. The specific disappearance of the TTO peak in the infrared spectrum suggested the successful preparation of TTONL, which showed high stability at 4°C within 35 d. The result of MIC test found that the nanoliposomes improved antibacterial activity of TTO against various E. coli strains. TTONL exposure in vitro caused different degrees of structural damage to the E. coli. TTONL by oral administration alleviated the clinical symptoms and intestinal lesion of chickens induced with E. coli challenge. Furthermore, TTONL treatment remarkably lowered the mRNA expression of NLRP3 and NF-κB (p65) in the duodenum and cecum of E. coli-infected chickens. In conclusion, the prepared TTONL had good stability and slow-release property with dose-dependent inhibition and killing effects on different strains of E. coli, and exerted a preventive role against chicken colibacillosis through inhibition.
Collapse
Affiliation(s)
- RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - YiWen Zhan
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - SiMin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - ShuYa Xu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - YinMo Huang
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China,Corresponding author:
| |
Collapse
|
17
|
Qin S, Bai W, Applegate TJ, Zhang K, Tian G, Ding X, Bai S, Wang J, Lv L, Peng H, Xuan Y, Zeng Q. Dietary resistant starch ameliorating lipopolysaccharide-induced inflammation in meat ducks associated with the alteration in gut microbiome and glucagon-like peptide 1 signaling. J Anim Sci Biotechnol 2022; 13:91. [PMID: 35836245 PMCID: PMC9284752 DOI: 10.1186/s40104-022-00735-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/15/2022] [Indexed: 01/03/2023] Open
Abstract
Background Consumption of resistant starch (RS) has been associated with various intestinal and systemic health benefits, but knowledge of its effects on intestinal health and inflammatory response in stressed birds is limited. Here, we examined how dietary RS supplementation from 12% raw potato starch (RPS) modulated inflammatory severity induced by lipopolysaccharide (LPS) in meat ducks. Results LPS administration at 14, 16, and 18 d (chronic challenge) decreased body weight (BW) and glucagon-like peptide 1 receptor (GLP-1R) level with higher intestinal permeability and inflammation, evident by higher pro-inflammatory cytokine levels. Dietary 12% RPS supplementation enhanced Claudin-1 and GLP-1R expression, along with lower levels of inflammatory factors in both ileum and serum. Microbiome analysis showed that RS treatment shifted microbial structure reflected by enriched the proportion of Firmicutes, Bifidobacterium, Ruminococcus, etc. Dietary RS addition also significantly increased the concentrations of propionate and butyrate during chronic LPS challenge. Furthermore, response to acute challenge, the ducks received 2 mg/kg BW LPS at 14 d had higher concentrations of serum endotoxins and inflammatory cytokines, as well as upregulated transcription of toll like receptor 4 (TLR4) in ileum when compared to control birds. Analogous to GLP-1 agonist liraglutide, dietary RS addition decreased endotoxins and inflammation cytokines, whereas it upregulated the GLP-1 synthesis related genes expression. Meanwhile, dietary RS supplementation suppressed the acute LPS challenge-induced TLR4 transcription. Conclusions These data suggest that dietary 12% RPS supplementation could attenuate the LPS-induced inflammation as well as intestinal injury of meat ducks, which might involve in the alteration in gut microbiota, SCFAs production and the signaling pathways of TLR4 and GLP-1/GLP-1R. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00735-x.
Collapse
Affiliation(s)
- Simeng Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiqiang Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA, 30602, USA
| | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Lv
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quifeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Melatonin Alleviates Neonatal Necrotizing Enterocolitis by Repressing the Activation of the NLRP3 Inflammasome. Gastroenterol Res Pract 2022; 2022:6920577. [PMID: 35340691 PMCID: PMC8947927 DOI: 10.1155/2022/6920577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Objective Necrotizing enterocolitis (NEC) is one of the commonest gastrointestinal critical diseases in newborns. Several researches have proven the efficacy of melatonin (MEL) on NEC, but the latent mechanisms were ambiguous. We designed the current research to evaluate the function and mechanism of MEL on NEC in a neonatal mouse model. Methods The newborn mice were subjected to formula milk containing LPS and hypoxia to establish a NEC model and also intraperitoneally injected with MEL. During the experiment, all mice were closely monitored and weighed. The effect of MEL on the histopathological injury of the terminal ileum tissues, inflammation, and oxidative stress of serum in NEC mice was examined by hematoxylin-eosin (H&E) staining and ELISA. The effect of MEL on the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was assessed via quantitative real-time PCR and Western blot. Results MEL intensified the survival rate and body weight in NEC mice. The H&E staining illustrated that MEL improved the histopathological injury in NEC mice. Moreover, MEL repressed the IL-1β, TNF-α, and MDA levels of serum and enhanced the SOD and GSH-Px levels of serum in NEC mice. We also discovered that MEL attenuated the mRNA and protein levels of NLRP3, Toll-like Receptor 4 (TLR4), NF-κB, and caspase-1 of the terminal ileum tissues in NEC mice. Conclusion Our research illuminated that MEL attenuated the severity of NEC via weakening the activation of the NLRP3 inflammasome.
Collapse
|
19
|
Wang J, Chen X, Li J, Ishfaq M. Gut Microbiota Dysbiosis Aggravates Mycoplasma gallisepticum Colonization in the Chicken Lung. Front Vet Sci 2021; 8:788811. [PMID: 34917672 PMCID: PMC8669392 DOI: 10.3389/fvets.2021.788811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is the pathogen that causes chronic respiratory diseases in chickens. Gut microbiota plays an important role in maintaining body health and resisting respiratory infection, but the correlation between gut microbiota and MG infection is poorly defined. Therefore, in this study, the correlation between gut microbiota and MG infection was explored by disturbing gut microbiota in chickens with antibiotic cocktail. The results showed that the gut microbiota dysbiosis impairs pulmonary immune response against MG infection. It has been noted that MG colonization in the lung was significantly increased following gut microbiota dysbiosis, and this could be reversed by intranasally administrated toll-like receptor 2 (TLR2) ligand, recombinant chicken IL-17 protein or recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) protein. In addition, the levels of short-chain fatty acids (SCFAs) and vitamin A were significantly reduced in gut microbiota dysbiosis group, however, butyric acid or vitamin A as feed additives promoted MG clearance in the lung of gut microbiota dysbiosis group via increasing TLR2/IL17/GM-CSF and host defense peptides genes expression. The present study revealed an important role of gut microbiota in the defense against MG colonization in the lung of chicken.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xueping Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang, China
| |
Collapse
|
20
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
21
|
Jiang J, Qi L, Wei Q, Shi F. Maternal stevioside supplementation ameliorates intestinal mucosal damage and modulates gut microbiota in chicken offspring challenged with lipopolysaccharide. Food Funct 2021; 12:6014-6028. [PMID: 34036963 DOI: 10.1039/d0fo02871a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our previous study showed that dietary stevioside supplementation could alleviate intestinal mucosal damage induced by lipopolysaccharide (LPS) through its anti-inflammatory and antioxidant effects in broiler chickens. However, it remains unknown whether feeding stevioside to breeder hens could exert similar biological functions in their offspring. The present study aimed to investigate whether maternal dietary stevioside supplementation could prevent LPS-induced intestinal mucosal damage and alteration of gut microbiota in chicken offspring. A total of 120 Jinmao yellow-feathered breeder hens were fed a basal diet (CON) or a 250 mg kg-1 stevioside-supplemented diet (STE) for 5 weeks before collecting their eggs. After hatching, 160 male offspring (80 chickens from each group) were randomly selected and divided into four treatment groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a stevioside-supplemented diet (STE); (3) the CON group challenged with LPS (LPS); and (4) the STE group challenged with LPS (LSTE). The results showed that maternal stevioside supplementation increased the hatching weight and improved the intestinal morphology. LPS challenge significantly decreased the terminal body weight and the concentrations of serum triglyceride (TG) and glucose (GLU) of the chicken offspring. Maternal stevioside supplementation protected against LPS-induced morphological damage, goblet cell impairment, intestinal apoptosis, and gene expression alteration. In addition, sequence analysis of 16S rRNA gene showed that maternal stevioside supplementation could prevent the impairment of bacterial diversity in LPS-challenged chicken offspring. Moreover, the increased abundance of Lactobacillus caused by maternal stevioside supplementation had a significant negative correlation with the expression of intestinal inflammatory cytokines. In conclusion, maternal stevioside supplementation could ameliorate intestinal mucosal damage and modulate gut microbiota in chicken offspring challenged with LPS.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Hu R, Lin H, Wang M, Zhao Y, Liu H, Min Y, Yang X, Gao Y, Yang M. Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers. J Anim Sci Biotechnol 2021; 12:25. [PMID: 33593426 PMCID: PMC7888134 DOI: 10.1186/s40104-020-00532-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lactobacillus reuteri strains are widely used as probiotics to prevent and treat inflammatory bowel disease by modulating the host's immune system. However, the underlying mechanisms by which they communicate with the host have not been clearly understood. Bacterial extracellular vesicles (EVs) have been considered as important mediators of host-pathogen interactions, but their potential role in commensals-host crosstalk has not been widely studied. Here, we investigated the regulatory actions of EVs produced by L. reuteri BBC3, a gut-associated commensal bacterium of Black-Bone chicken, in the development of lipopolysaccharide (LPS)-induced intestinal inflammation in a chicken model using both in vivo and in vitro experiments. RESULTS L. reuteri BBC3 produced nano-scale membrane vesicles with the size range of 60-250 nm. Biochemical and proteomic analyses showed that L. reuteri BBC3-derived EVs (LrEVs) carried DNA, RNA and several bioactive proteins previously described as mediators of other probiotics' beneficial effects such as glucosyltransferase, serine protease and elongation factor Tu. In vivo broiler experiments showed that administration of LrEVs exerted similar effects as L. reuteri BBC3 in attenuating LPS-induced inflammation by improving growth performance, reducing mortality and decreasing intestinal injury. LrEVs suppressed the LPS-induced expression of pro-inflammatory genes (TNF-α, IL-1β, IL-6, IL-17 and IL-8), and improved the expression of anti-inflammatory genes (IL-10 and TGF-β) in the jejunum. LrEVs could be internalized by chicken macrophages. In vitro pretreatment with LrEVs reduced the gene expression of TNF-α, IL-1β and IL-6 by suppressing the NF-κB activity, and enhanced the gene expression of IL-10 and TGF-β in LPS-activated chicken macrophages. Additionally, LrEVs could inhibit Th1- and Th17-mediated inflammatory responses and enhance the immunoregulatory cells-mediated immunosuppression in splenic lymphocytes of LPS-challenged chickens through the activation of macrophages. Finally, we revealed that the reduced content of both vesicular proteins and nucleic acids attenuated the suppression of LrEVs on LPS-induced inflammatory responses in ex vivo experiments, suggesting that they are essential for the LrEVs-mediated immunoregulation. CONCLUSIONS We revealed that LrEVs participated in maintaining intestinal immune homeostasis against LPS-induced inflammatory responses in a chicken model. Our findings provide mechanistic insight into how commensal and probiotic Lactobacillus species modulate the host's immune system in pathogens-induced inflammation.
Collapse
Affiliation(s)
- Rujiu Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Hua Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mimi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuezhen Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haojing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yupeng Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingming Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
23
|
Xie M, Zhang L, Li L, Fan M, Hou L. MiR-339 attenuates LPS-induced intestinal epithelial cells inflammatory responses and apoptosis by targeting TLR4. Genes Genomics 2020; 42:1097-1105. [PMID: 32757169 DOI: 10.1007/s13258-020-00977-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intestinal epithelial cells are important for defending against pathogen infection. LPS is an endotoxin that is highly antigenic and cytotoxic produced by bacteria. LPS disrupts the intestine epithelium integrity and induced the intestinal epithelial cell inflammation and apoptosis. Our previous study has predicted the function of exosome miRNAs through bioinformatics analysis, and we found that miR-339 had a potential function in cell inflammation response. To our knowledge, no published paper has demonstrated the miR-339 function in protecting the intestine epithelium against bacterial infection. OBJECTIVE The objective of this study is to evaluate the miR-339 function in regulating intestinal epithelial cells to defend against bacterial infection through biological experiments and bioinformatics analyses. METHODS Through the miR-339 transfection experiment and TLR4 interfering experiment, we evaluated the function of miR-339 and TLR4 in the process of inflammatory responses and apoptosis. Through Bioinformatics analyses and dual-luciferase reporter experiment, we identified the target gene of miR-339. RESULTS miR-339 attenuates LPS-induced intestinal epithelial cells inflammatory responses through the TLR4/NF-κB signaling pathway and inhibited LPS-induced apoptosis through the P53 signaling pathway. TLR4 is the target gene of miR-339. TLR4 reduced LPS-induced proinflammatory responses and apoptosis. CONCLUSIONS In conclusion, miR-339 protected the intestine epithelial cells from LPS-induced cell inflammation and apoptosis through targeting TLR4. This study expanded our understanding of how miRNAs and genes work collaboratively in regulating intestinal epithelial cells to defend against bacterial infection.
Collapse
Affiliation(s)
- Meiying Xie
- Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, 297 Guangshan First Road, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Lina Zhang
- Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, 297 Guangshan First Road, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Luoye Li
- Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, 297 Guangshan First Road, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Minhuan Fan
- Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, 297 Guangshan First Road, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Lianjie Hou
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
24
|
Tao Z, Zhu C, Xu W, Shi Z, Zhang S, Song W, Liu H, Li H. Riemerella anatipestifer infection affects intestinal barrier structure and immune reactions in the duck caecum. Avian Pathol 2020; 49:572-580. [PMID: 32634322 DOI: 10.1080/03079457.2020.1792414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Riemerella anatipestifer (RA) infection causes high mortality and poor feed conversion, leading to great economic losses to the duck industry. This study investigated the effects of RA on the intestinal morphology and immune response of ducks. Histological examination showed that RA infection caused intestinal injury, including significantly reduced mucosal thickness on days 2, 3 and 5, significantly reduced villus height on days 1, 2, 3 and 5 (P < 0.05) and significantly reduced villus height to crypt depth ratios on days 2, 3, 5 and 9 of RA infection (P < 0.05). The expression of intestinal mucosal layer construction-associated genes and tight junction genes was significantly altered on at least one time point (day 1, 2, 3, 5, 9 or 14) after RA infection. Quantitative real-time polymerase chain reaction revealed that RA infection affected intestinal mucosal immune function. The genes encoding TLR4 (toll like receptor-4), TRAF6 (TNF receptor-associated factor 6), MYD88 (myeloid differentiation factor 88), IFN-γ (interferon-γ), IL (interleukin)-4 and IL-8 were significantly upregulated on day 2 of RA infection. Taken together, these results indicate that RA infection negatively affects intestinal barrier function in ducks due to impaired mucosal and villus-crypt structure and alters the mRNA expression of mucous layer construction-, intestinal tight junction-, and intestinal mucosal immunity-related genes.
Collapse
Affiliation(s)
- Zhiyun Tao
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, Yangzhou, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Chunhong Zhu
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, Yangzhou, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Wenjuan Xu
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, Yangzhou, People's Republic of China
| | - Zuhao Shi
- Pony Testing Group Jiangsu Co., Ltd, Suzhou, People's Republic of China
| | - Shuangjie Zhang
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, Yangzhou, People's Republic of China
| | - Weitao Song
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, Yangzhou, People's Republic of China
| | - Hongxiang Liu
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, Yangzhou, People's Republic of China
| | - Huifang Li
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, Yangzhou, People's Republic of China
| |
Collapse
|
25
|
Areco VA, Kohan R, Talamoni G, Tolosa de Talamoni NG, Peralta López ME. Intestinal Ca 2+ absorption revisited: A molecular and clinical approach. World J Gastroenterol 2020; 26:3344-3364. [PMID: 32655262 PMCID: PMC7327788 DOI: 10.3748/wjg.v26.i24.3344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ has an important role in the maintenance of the skeleton and is involved in the main physiological processes. Its homeostasis is controlled by the intestine, kidney, bone and parathyroid glands. The intestinal Ca2+ absorption occurs mainly via the paracellular and the transcellular pathways. The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors. Fibroblast growth factor 23 (FGF-23) is a strong antagonist of vitamin D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process. Several pathologies such as celiac disease, inflammatory bowel diseases, Turner syndrome and others occur with inhibition of intestinal Ca2+ absorption, some hypercalciurias show Ca2+ hyperabsorption, most of these alterations are related to the vitamin D endocrine system. Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+ absorption.
Collapse
Affiliation(s)
- Vanessa A Areco
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Romina Kohan
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Germán Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori G Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María E Peralta López
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
26
|
Chang Y, Yuan L, Liu J, Muhammad I, Cao C, Shi C, Zhang Y, Li R, Li C, Liu F. Dihydromyricetin attenuates Escherichia coli lipopolysaccharide-induced ileum injury in chickens by inhibiting NLRP3 inflammasome and TLR4/NF-κB signalling pathway. Vet Res 2020; 51:72. [PMID: 32448367 PMCID: PMC7247275 DOI: 10.1186/s13567-020-00796-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) as a major component of Escherichia coli cell wall can cause inflammation and cell death. Dihydromyricetin (ampelopsin, DHM) is a natural flavonoid compound with anti-inflammatory, anti-oxidant and anti-bacterial effects. The preventive effects of DHM against ileum injury remain unclear. Here, we explored the protective role of DHM against LPS-induced ileum injury in chickens. In this study, DHM significantly attenuated LPS-induced alteration in diamine oxidase, malondialdehyde, reduced glutathione, glutathione peroxidase and superoxide dismutase levels in chicken plasma and ileum. Histology evaluation showed that the structure of blood vessels in ileum was seriously fragmented and presence of necrotic tissue in the lumen in the LPS group. Scanning electron microscopic observation revealed that the surface of the villi was rough and uneven, the structure was chaotic, and the normal finger shape was lost in the LPS group. In contrast, 0.05% and 0.1% DHM treatment partially alleviated the abnormal morphology. Additionally, DHM maintained the barrier function by restoring the protein expression of occludin, claudin-1 and zonula occludens protein-1. DHM inhibited apoptosis through the reduction of the expression of bax and caspase-3 and restored the expression of bcl-2. Importantly, DHM could reduce ileum NLR family pyrin domain-containing 3 (NLRP3), caspase-1, interleukin (IL)-1β and IL-18 expression to protect tissues from pyroptosis and inhibited toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signalling pathway. In summary, DHM attenuated the ileum mucosal damage, oxidative stress and apoptosis, maintained barrier function, inhibited NLRP3 inflammasome and TLR4/NF-κB signalling pathway activation triggered by Escherichia coli LPS.
Collapse
Affiliation(s)
- Yicong Chang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liang Yuan
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiarui Liu
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ishfaq Muhammad
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuanbao Cao
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chenxi Shi
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Changwen Li
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangping Liu
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| |
Collapse
|
27
|
Dietary Stevioside Supplementation Alleviates Lipopolysaccharide-Induced Intestinal Mucosal Damage through Anti-Inflammatory and Antioxidant Effects in Broiler Chickens. Antioxidants (Basel) 2019; 8:antiox8120575. [PMID: 31766443 PMCID: PMC6943682 DOI: 10.3390/antiox8120575] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
The study was conducted to investigate the effects of dietary stevioside (STE) supplementation on the lipopolysaccharide (LPS)-induced intestinal mucosal damage of broiler chickens. A total of 192 one-day-old male Ross 308 broiler chicks were randomly divided into four treatments: (1) basal diet (CON); (2) basal diet supplemented with 250 mg/kg stevioside (STE); (3) basal diet + LPS-challenge (LPS); (4) basal diet supplemented with 250 mg/kg stevioside + LPS-challenge (LPS + STE). LPS-challenged groups received an intraperitoneal injection of LPS at 17, 19 and 21 d, whereas the CON and STE groups received a saline injection. The results showed that dietary STE supplementation normalized LPS-induced changes in protein expression of p-NF-κB and p-IκBα, mRNA expression of inflammatory genes (TLR4, NF-κB, and IFN-γ), tight junction-related genes (CLDN2, OCLN, and ZO-1), and antioxidant genes (Nrf2 and HO-1). LPS-induced decreases in serum diamine oxidase (DAO) level, villus height-to-crypt depth ratio, apoptotic index, and protein expression of proliferating cell nuclear antigen (PCNA) were reversed with dietary STE supplementation. Additionally, STE supplementation ameliorated the redox damage by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC) and antioxidant enzyme activity. In conclusion, dietary stevioside supplementation could alleviate LPS-induced intestinal mucosal damage through anti-inflammatory and antioxidant effects in broiler chickens.
Collapse
|
28
|
Xie MY, Hou LJ, Sun JJ, Zeng B, Xi QY, Luo JY, Chen T, Zhang YL. Porcine Milk Exosome MiRNAs Attenuate LPS-Induced Apoptosis through Inhibiting TLR4/NF-κB and p53 Pathways in Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9477-9491. [PMID: 31429552 DOI: 10.1021/acs.jafc.9b02925] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharide (LPS) is a bacterial endotoxin that induces intestine inflammation. Milk exosomes improve the intestine and immune system development of newborns. This study aims to establish the protective mechanisms of porcine milk exosomes on the attenuation of LPS-induced intestinal inflammation and apoptosis. In vivo, exosomes prevented LPS-induced intestine damage and inhibited (p < 0.05) LPS-induced inflammation. In vitro, exosomes inhibited (p < 0.05) LPS-induced intestinal epithelial cells apoptosis (23% ± 0.4% to 12% ± 0.2%). Porcine milk exosomes also decreased (p < 0.05) the LPS-induced TLR4/NF-κB signaling pathway activation. Furthermore, exosome miR-4334 and miR-219 reduced (p < 0.05) LPS-induced inflammation through the NF-κB pathway and miR-338 inhibited (p < 0.05) the LPS-induced apoptosis via the p53 pathway. Cotransfection with these three miRNAs more effectively prevented (p < 0.05) LPS-induced cell apoptosis than these miRNAs individual transfection. The apoptosis percentage in the group cotransfected with the three miRNAs (14% ± 0.4%) was lower (p < 0.05) than that in the NC miRNA group (28% ± 0.5%), and also lower than that in each individual miRNA group. In conclusion, porcine milk exosomes protect the intestine epithelial cells against LPS-induced injury by inhibiting cell inflammation and protecting against apoptosis through the action of exosome miRNAs. The presented results suggest that the physiological amounts of miRNAs-enriched exosomes addition to infant formula could be used as a novel preventative measure for necrotizing enterocolitis.
Collapse
Affiliation(s)
- Mei-Ying Xie
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Lian-Jie Hou
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- National Engineering Research Center for Breeding Swine Industry , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Jia-Jie Sun
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- National Engineering Research Center for Breeding Swine Industry , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Bin Zeng
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Qian-Yun Xi
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Jun-Yi Luo
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Yong-Liang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- National Engineering Research Center for Breeding Swine Industry , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| |
Collapse
|
29
|
Ataizi ZS, Ertilav K, Nazıroğlu M. Mitochondrial oxidative stress-induced brain and hippocampus apoptosis decrease through modulation of caspase activity, Ca 2+ influx and inflammatory cytokine molecular pathways in the docetaxel-treated mice by melatonin and selenium treatments. Metab Brain Dis 2019; 34:1077-1089. [PMID: 31197678 DOI: 10.1007/s11011-019-00428-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/01/2019] [Indexed: 01/03/2023]
Abstract
Docetaxel (DOCE) is widely used to treat several types of glioblastoma. Adverse effects DOCE seriously limit its clinical use in several tissues. Its side effects on brain cortex and hippocampus have not been clarified yet. Limited data indicated a protective effect of melatonin (MLT) and selenium (SELEN) on DOCE-induced apoptosis, Ca2+ influx and mitochondrial reactive oxygen species (ROS) in several tissues except brain and hippocampus. The purpose of this study is to discover the protective effect of MLT and SELEN on DOCE-induced brain and hippocampus oxidative toxicity in mice. MLT and SELEN pretreatments significantly ameliorated acute DOCE-induced mitochondrial ROS production in the hippocampus and brain tissues by reducing levels of lipid peroxidation, intracellular ROS production and mitochondrial membrane depolarization, while increasing levels of total antioxidant status, glutathione, glutathione peroxidase, MLT, α-tocopherol, γ-tocopherol, vitamin A, vitamin C and β-carotene in the tissues. Furthermore, MLT and SELEN pretreatments increased cell viability and TRPM2 channel activation in the hippocampus and brain followed by decreased activations of TNF-α, IL-1β, IL-6, and caspase -3 and - 9, suggesting a suppression of calcium ion influx, apoptosis and inflammation responses. However, modulator role of SELEN on the values in the tissues is more significant than in the MLT treatment. MLT and SELEN prevent DOCE-induced hippocampus and brain injury by inhibiting mitochondrial ROS and cellular apoptosis through regulating caspase -3 and - 9 activation signaling pathways. MLT and SELEN may serve as potential therapeutic targets against DOCE-induced toxicity in the hippocampus and brain.
Collapse
Affiliation(s)
- Zeki Serdar Ataizi
- Departmant of Neurosurgery, Yunus Emre General State Hospital, Eskişehir, Turkey
| | - Kemal Ertilav
- Departmant of Neurosurgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
- Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey.
- Süleyman Demirel Üniversitesi, Tıp Fakültesi, Biyofizik Anabilim Dalı, TR-32260, Isparta, Turkey.
| |
Collapse
|
30
|
Taurine regulates mucosal barrier function to alleviate lipopolysaccharide-induced duodenal inflammation in chicken. Amino Acids 2018; 50:1637-1646. [DOI: 10.1007/s00726-018-2631-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
|
31
|
Liu L, Zhang S, Bao J, He X, Tong D, Chen C, Ying Q, Zhang Q, Zhang C, Li J. Melatonin Improves Laying Performance by Enhancing Intestinal Amino Acids Transport in Hens. Front Endocrinol (Lausanne) 2018; 9:426. [PMID: 30105005 PMCID: PMC6077205 DOI: 10.3389/fendo.2018.00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023] Open
Abstract
The high concentration of melatonin (MEL) in the intestinal mucosa suggests that it has a special physiological function in intestine. In hens, previous studies have shown that MEL treatment promoted egg-laying performance. Considering the importance of amino acids (AA) for egg formation, we hypothesized that MEL may enhance the intestinal absorption of AA from the feed, thus promoting egg laying performance. In this study, we supplemented the hens with MEL for two consecutive weeks. The results showed that, compared with control group, feeding with 0.625 mg MEL/kg diets gave rise to higher egg laying rate (by 4.3%, P = 0.016), increased eggshell thickness (by 16.9%, P < 0.01) and albumen height (by 4.5%, P = 0.042). Meanwhile, feeding with 0.625 and 2.5 mg MEL/kg diets could significantly increase serum levels of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline. Furthermore, a 0.625 mg MEL/kg diets could significantly increase the expression of PepT1 (by 3949.9%), B0AT (by 6045.9%), b0, +AT (by 603.5%), and EAAT3 (by 412.7%) in the jejunum. Additionally, in the cultured intestinal crypt "organoids," treatment with 0.5 μM MEL could significantly enhance the expression of PepT1, b0, +AT and EAAT3 mRNAs by 35.4%, 110.0%, and 160.1%, respectively. Detection of MEL concentration in serum and intestinal fluid suggested that lower dosage of MEL feeding was mainly acted on intestine locally, and further increased intestinal antioxidases (GPx-3, SOD-1 or PRDX-3) mRNA expression. Taken together, we demonstrated that MEL feeding in laying hens could locally promote the expression and function of AA transporter in small intestine by up-regulating antioxidases expression, and finally elevate laying performance.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiayang Bao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowen He
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Danni Tong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Yanping Bureau of Animal Husbandry, Veterinary & Aquatic Products, Nanping, China
| | | | - Qing Zhang
- Yanping Bureau of Animal Husbandry, Veterinary & Aquatic Products, Nanping, China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li
| | - Jian Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Caiqiao Zhang
| |
Collapse
|