1
|
Chen X, Mu W, Shao Y, Peng L, Zhang R, Luo S, He X, Zhang L, He F, Li L, Wang R, Yang L, Xiang B. Genetic and molecular characterization of H9N2 avian influenza viruses in Yunnan Province, Southwestern China. Poult Sci 2024; 103:104040. [PMID: 39043028 PMCID: PMC11318558 DOI: 10.1016/j.psj.2024.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The H9N2 subtype of the avian influenza virus (AIV) is widely prevalent in birds, threatening the poultry industry and providing genetic material for emerging human pathogens. The prevalence and genetic characteristics of H9N2 in Yunnan Province, China, are largely unknown. Samples were collected from live poultry markets (LPMs) and breeding farms in Yunnan Province. H9N2-positive samples were identified by polymerase chain reaction (PCR), with a high positivity rate of 42.86% in tissue samples. The positivity rate of swab samples in the LPMs in Kunming was 3.97% (17/564), but no AIV was detected in samples from poultry farms in Lijiang, Wenshan, and Yuxi. Evolutionary analysis and genotyping were performed for the 17 strains of isolated H9N2 virus. Phylogenetic analysis revealed that all H9N2 viral genes had 91.6%-100% nucleotide homology, belonged to the G57 genotype, and had high homology with H9N2 viruses isolated from Guangdong and Guangxi, suggesting that the H9N2 viruses in Yunnan Province may have been imported by chicks. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that continued to evolve. The surface genes of the H9N2 isolates displayed substantial genetic diversity, highlighting the genetic diversity and complexity of the H9N2-subtype AIVs in Yunnan. Molecular analysis demonstrated that all 17 strains of H9N2 isolates had mutations at H183N, Q226L, L31P, and I268V in hemagglutinin; S31N in matrix protein 2; and no replacements at positions 274 and 292 of the neuraminidase protein. Sixteen strains had the A558V mutation and one strain had the E627V mutation in polymerase basic protein 2. Analysis of these amino acid sites suggests that H9N2 influenza viruses in Yunnan continue to mutate and adapt to mammals and are sensitive to neuraminidase inhibitors but resistant to adamantanes. It is necessary to strengthen surveillance of AIV H9N2 subtypes in poultry and LPMs in Yunnan to further understand their genetic diversity.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwu Mu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Yunteng Shao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Li Peng
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyu Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ronghai Wang
- Animal Husbandry and Veterinary Bureau, Yanjin 657599, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Zhang M, Qian K, Li GH, Duan MH, Li ZE, Dai Y, Chen JC, Yang F. Depletion of tilmicosin residue in Gushi chickens following oral administration via drinking water. J Vet Pharmacol Ther 2024; 47:114-120. [PMID: 37950414 DOI: 10.1111/jvp.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to examine the depletion of tilmicosin residues in Gushi chickens following the administration at a concentration of 75 mg/L in their drinking water for three consecutive days. Plasma, liver, kidney, lung, muscle, and skin + fat samples were collected from 6 chickens at 6 h, 1, 3, 5, and 7 days after the treatment. Tilmicosin concentrations in the samples were determined using a high-performance liquid chromatography (HPLC) method. The findings revealed that the highest tilmicosin residues were detected in the liver, followed by the kidney, lung, skin + fat, muscle, and plasma. Notably, at 7 days post-treatment, no drug residue was detected in all samples except for the liver and kidney. The non-compartmental model was employed to calculate relevant pharmacokinetic parameters. The elimination half-lives (t1/2λz ) of tilmicosin were as follows, ranked from long to short: skin + fat (45.42 h), liver (44.17 h), kidney (40.06 h), plasma (37.64 h), lung (31.39 h), and muscle (30.05 h). Considering the current residue depletion and the maximum residue limits (MRLs) set by Chinese regulatory authorities, the withdrawal times for tilmicosin were estimated as 18.91, 10.81, and 8.58 days in the kidney, liver, and skin + fat, respectively. A rounded-up value of 19 days was selected as the conclusive withdrawal time. Furthermore, based on the observed tilmicosin concentrations in plasma and lung, combined with previously reported minimum inhibitory concentration (MIC) values against Mycoplasma gallisepticum, the current dosing regimen was deemed adequate for treating Mycoplasma gallisepticum infections in Gushi chickens.
Collapse
Affiliation(s)
- Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Kun Qian
- Tianjin Agricultural Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin, China
| | - Guang-Hui Li
- Shantou Customs District Technology Center, Shantou, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yan Dai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jun-Cheng Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Guajardo IM, Baldinelli F. Avian influenza overview September - December 2022. EFSA J 2023; 21:e07786. [PMID: 36698491 PMCID: PMC9851911 DOI: 10.2903/j.efsa.2023.7786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Between October 2021 and September 2022 Europe has suffered the most devastating highly pathogenic avian influenza (HPAI) epidemic with a total of 2,520 outbreaks in poultry, 227 outbreaks in captive birds, and 3,867 HPAI virus detections in wild birds. The unprecedent geographical extent (37 European countries affected) resulted in 50 million birds culled in affected establishments. In the current reporting period, between 10 September and 2 December 2022, 1,163 HPAI virus detections were reported in 27 European countries in poultry (398), captive (151) and wild birds (613). A decrease in HPAI virus detections in colony-breeding seabirds species and an increase in the number of detections in waterfowl has been observed. The continuous circulation of the virus in the wild reservoir has led to the frequent introduction of the virus into poultry populations. It is suspected that waterfowl might be more involved than seabirds in the incursion of HPAI virus into poultry establishments. In the coming months, the increasing infection pressure on poultry establishments might increase the risk of incursions in poultry, with potential further spread, primarily in areas with high poultry densities. The viruses detected since September 2022 (clade 2.3.4.4b) belong to eleven genotypes, three of which have circulated in Europe during the summer months, while eight represent new genotypes. HPAI viruses were also detected in wild and farmed mammal species in Europe and North America, showing genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N1) detections in humans in Spain, one A(H5N1), one A(H5N6) and one A(H9N2) human infection in China as well as one A(H5) infection without NA-type result in Vietnam were reported, respectively. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
Collapse
|
4
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Guajardo IM, Chuzhakina K, Baldinelli F. Avian influenza overview June - September 2022. EFSA J 2022; 20:e07597. [PMID: 36247870 PMCID: PMC9552036 DOI: 10.2903/j.efsa.2022.7597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest HPAI epidemic so far observed in Europe, with a total of 2,467 outbreaks in poultry, 47.7 million birds culled in the affected establishments, 187 outbreaks in captive birds, and 3,573 HPAI virus detections in wild birds with an unprecedent geographical extent reaching from Svalbard islands to South Portugal and Ukraine, affecting 37 European countries. Between 11 June and 9 September 2022, 788 HPAI virus detections were reported in 16 European countries in poultry (56), captive (22) and wild birds (710). Several colony-breeding seabird species exhibited widespread and massive mortality from HPAI A(H5N1) virus along the northwest coast of Europe. This resulted in an unprecedentedly high level of HPAI virus detections in wild birds between June and August 2022 and represents an ongoing risk of infection for domestic birds. HPAI outbreaks were still observed in poultry from June to September with five-fold more infected premises than observed during the same period in 2021 and mostly distributed along the Atlantic coast. Response options to this new epidemiological situation include the definition and rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection in the different poultry production systems. The viruses currently circulating in Europe belong to clade 2.3.4.4b with seven genotypes, three of which identified for the first time during this time period, being detected during summer. HPAI A(H5) viruses were also detected in wild mammal species in Europe and North America and showed genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N6), two A(H9N2) and one A(H10N3) human infections were reported in China. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
Collapse
|
5
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Guajardo IM, Baldinelli F. Avian influenza overview March - June 2022. EFSA J 2022; 20:e07415. [PMID: 35949938 PMCID: PMC9356771 DOI: 10.2903/j.efsa.2022.7415] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest epidemic so far observed in Europe, with a total of 2,398 outbreaks in poultry, 46 million birds culled in the affected establishments, 168 detections in captive birds, and 2,733 HPAI events in wild birds in 36 European countries. Between 16 March and 10 June 2022, 1,182 HPAI virus detections were reported in 28 EU/EEA countries and United Kingdom in poultry (750), and in wild (410) and captive birds (22). During this reporting period, 86% of the poultry outbreaks were secondary due to between-farm spread of HPAI virus. France accounted for 68% of the overall poultry outbreaks, Hungary for 24% and all other affected countries for less than 2% each. Most detections in wild birds were reported by Germany (158), followed by the Netherlands (98) and the United Kingdom (48). The observed persistence of HPAI (H5) virus in wild birds since the 2020-2021 epidemic wave indicates that it may have become endemic in wild bird populations in Europe, implying that the health risk from HPAI A(H5) for poultry, humans, and wildlife in Europe remains present year-round, with the highest risk in the autumn and winter months. Response options to this new epidemiological situation include the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection measures in the different poultry production systems. Medium to long-term strategies for reducing poultry density in high-risk areas should also be considered. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. HPAI A(H5) viruses were also detected in wild mammal species in Canada, USA and Japan, and showed genetic markers of adaptation to replication in mammals. Since the last report, four A(H5N6), two A(H9N2) and two A(H3N8) human infections were reported in China and one A(H5N1) in USA. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
Collapse
|
6
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview December 2021 - March 2022. EFSA J 2022; 20:e07289. [PMID: 35386927 PMCID: PMC8978176 DOI: 10.2903/j.efsa.2022.7289] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between 9 December 2021 and 15 March 2022, 2,653 highly pathogenic avian influenza (HPAI) virus detections were reported in 33 EU/EEA countries and the UK in poultry (1,030), in wild (1,489) and in captive birds (133). The outbreaks in poultry were mainly reported by France (609), where two spatiotemporal clusters have been identified since October 2021, followed by Italy (131), Hungary (73) and Poland (53); those reporting countries accounted together for 12.8 of the 17.5 million birds that were culled in the HPAI affected poultry establishments in this reporting period. The majority of the detections in wild birds were reported by Germany (767), the Netherlands (293), the UK (118) and Denmark (74). HPAI A(H5) was detected in a wide range of host species in wild birds, indicating an increasing and changing risk for virus incursion into poultry farms. The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. This requires the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures, surveillance plans and early detection measures in the different poultry production systems. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. Some of these viruses were also detected in wild mammal species in the Netherlands, Slovenia, Finland and Ireland showing genetic markers of adaptation to replication in mammals. Since the last report, the UK reported one human infection with A(H5N1), China 17 human infections with A(H5N6), and China and Cambodia 15 infections with A(H9N2) virus. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium.
Collapse
|
7
|
European Food Safety Authority, European Centre for Disease Prevention, Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview May - September 2021. EFSA J 2022; 20:e07122. [PMID: 35079292 PMCID: PMC8777557 DOI: 10.2903/j.efsa.2022.7122] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2020-2021 avian influenza epidemic with a total of 3,777 reported highly pathogenic avian influenza (HPAI) detections and approximately 22,900,000 affected poultry birds in 31 European Countries appears to be one of the largest HPAI epidemics that has ever occurred in Europe. Between 15 May and 15 September 2021, 162 HPAI virus detections were reported in 17 EU/EEA countries and the UK in poultry (51), in wild (91) and captive birds (20). The detections in poultry were mainly reported by Kosovo (20), Poland (17) and Albania (6). HPAI virus was detected during the summer months in resident wild bird populations mainly in northern Europe. The data presented in this report indicates that HPAI virus is still circulating in domestic and wild bird populations in some European countries and that the epidemic is not over yet. Based on these observations, it appears that the persistence of HPAI A(H5) in Europe continues to pose a risk of further virus incursions in domestic bird populations. Furthermore, during summer, HPAI viruses were detected in poultry and several wild bird species in areas in Russia that are linked to key migration areas of wild waterbirds; this is of concern due to the possible introduction and spread of novel virus strains via wild birds migrating to the EU countries during the autumn from the eastern breeding to the overwintering sites. Nineteen different virus genotypes have been identified so far in Europe and Central Asia since July 2020, confirming a high propensity for this virus to undergo reassortment events. Since the last report, 15 human infections due to A(H5N6) HPAI and five human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus have been reported from China. Some of these cases were caused by a virus with an HA gene closely related to the A(H5) viruses circulating in Europe. The viruses characterised to date retain a preference for avian-type receptors; however, the reports of transmission events of A(H5) viruses to mammals and humans in Russia, as well as the recent A(H5N6) human cases in China may indicate a continuous risk of these viruses adapting to mammals. The risk of infection for the general population in the EU/EEA is assessed as very low, and for occupationally exposed people low, with large uncertainty due to the high diversity of circulating viruses in the bird populations.
Collapse
|
8
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Guajardo IM, Lima E, Baldinelli F. Avian influenza overview February - May 2021. EFSA J 2021; 19:e06951. [PMID: 34925560 PMCID: PMC8647004 DOI: 10.2903/j.efsa.2021.6951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 2020-2021 epidemic with a total of 3,555 reported HPAI detections and around 22,400,000 affected poultry birds in 28 European Countries appears to be one of the largest and most devastating HPAI epidemics ever occurred in Europe. Between 24 February and 14 May 2021, 1,672 highly pathogenic avian influenza (HPAI) virus detections were reported in 24 EU/EEA countries and the UK in poultry (n=580), and in wild (n=1,051) and captive birds (n=41). The majority of the detections in poultry were reported by Poland that accounted for 297 outbreaks occurring in a densely populated poultry area over a short period of time, followed by Germany with 168 outbreaks. Germany accounted for 603 detections in wild birds, followed by Denmark and Poland with 167 and 56 detections, respectively. A second peak of HPAI-associated wild bird mortality was observed from February to April 2021 in north-west Europe. The observed longer persistence of HPAI in wild birds compared to previous years may result in a continuation of the risk for juveniles of wild birds and mammals, as well as for virus entry into poultry farms. Therefore, enhanced awareness among farmers to continue applying stringent biosecurity measures and to monitor and report increases in daily mortality and drops in production parameters, are recommended. Sixteen different genotypes were identified to date in Europe and Russia, suggesting a high propensity of these viruses to reassort. The viruses characterized to date retain a preference for avian-type receptors; however, transmission events to mammals and the identification of sporadic mutations of mammal adaptation, indicate ongoing evolution processes and possible increased ability of viruses within this clade to further adapt and transmit to mammals including humans. Since the last report, two human infections due to A(H5N6) HPAI were reported from China and Laos and 10 human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus identified in China and Cambodia. The risk of infection for the general population in the EU/EEA is assessed as very low and for occupationally exposed people low. People exposed during avian influenza outbreaks should adhere to protection measures, strictly wear personal protective equipment and get tested immediately when developing respiratory symptoms or conjunctivitis within 10 days after exposure.
Collapse
|
9
|
European Food Safety Authority, European Centre for Disease Prevention, Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview September - December 2021. EFSA J 2021; 19:e07108. [PMID: 34987626 PMCID: PMC8698678 DOI: 10.2903/j.efsa.2021.7108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Between 16 September and 8 December 2021, 867 highly pathogenic avian influenza (HPAI) virus detections were reported in 27 EU/EEA countries and the UK in poultry (316), in wild (523) and in captive birds (28). The detections in poultry were mainly reported by Italy (167) followed by Hungary and Poland (35 each). Tha majority of the detections in wild birds were reported by Germany (280), Netherlands (65) and United Kingdom (53). The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. The frequent occurrence of HPAI A(H5) incursions in commercial farms (including poultry production types considered at low avian influenza risk) raises concern about the capacity of the applied biosecurity measures to prevent virus introduction. Short-term preparedness and medium- and long-term prevention strategies, including revising and reinforcing biosecurity measures, reduction of the density of commercial poultry farms and possible appropriate vaccination strategies, should be implemented. The results of the genetic analysis indicate that the viruses characterised during this reporting period belong to clade 2.3.4.4b. Some of the characterized HPAI A(H5N1) viruses detected in Sweden, Germany, Poland and United Kingdom are related to the viruses which have been circulating in Europe since October 2020; in North, Central, South and East Europe novel reassortant A(H5N1) virus has been introduced starting from October 2021. HPAI A(H5N1) was also detected in wild mammal species in Sweden, Estonia and Finland; some of these strains characterised so far present an adaptive marker that is associated with increased virulence and replication in mammals. Since the last report, 13 human infections due to HPAI A(H5N6) and two human cases due to LPAI A(H9N2) virus have been reported from China. Some of these A(H5N6) cases were caused by a reassortant virus of clade 2.3.4.4b, which possessed an HA gene closely related to the A(H5) viruses circulating in Europe. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium, with large uncertainty due to the high diversity of circulating viruses in the bird populations.
Collapse
|
10
|
Yang F, Xiao Y, Liu F, Yao H, Wu N, Wu H. Molecular characterization and antigenic analysis of reassortant H9N2 subtype avian influenza viruses in Eastern China in 2016. Virus Res 2021; 306:198577. [PMID: 34560182 DOI: 10.1016/j.virusres.2021.198577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
H9N2 avian influenza viruses (AIVs) can cause respiratory symptoms and decrease the egg production. Additionally, H9N2 AIVs can provide internal genes for reassortment with other subtypes. During the monitoring of live poultry markets in 2016, a total of 32 (32/179, 17.88%) H9N2 AIVs were isolated from poultry in Eastern China, and seven representative strains were selected based on the isolation time, isolation location and sequence homology for further characterization. Phylogenetic analysis of hemagglutinin and neuraminidase showed that these H9N2 AIVs clustered into the Y280 sublineage. And the phylogenetic trees of six internal genes showed that the source of these gene fragments was more abundant, suggesting that extensive reassortment has occurred in these H9N2 viruses. Molecular analysis showed that multiple specific amino acid mutations occurred that increased H9N2 AIVs' infectivity, transmissibility, and affinity to mammals, including Q226L and Q227M in hemagglutinin, E627K in polymerase basic protein 2 (PB2), L13P in polymerase basic protein 1 (PB1), and A70V and S409N in polymerase acidic protein (PA). Pathogenicity tests in mice showed these H9N2 AIVs could replicate in lungs and exhibited slight to moderate virulence. The continuous circulation of these H9N2 viruses suggests the necessity for persistent surveillance of the H9N2 AIVs in poultry.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.
| |
Collapse
|
11
|
European Food Safety Authority, European Centre for Disease Prevention and Control and European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Muñoz Guajardo I, Lima E, Baldinelli F. Avian influenza overview December 2020 - February 2021. EFSA J 2021; 19:e06497. [PMID: 33717356 PMCID: PMC7927793 DOI: 10.2903/j.efsa.2021.6497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Between 8 December 2020 and 23 February 2021, 1,022 highly pathogenic avian influenza (HPAI) virus detectionswere reported in 25 EU/EEA countries and the UK in poultry (n=592), wild (n=421) and captive birds (n=9).The majority of the detections were reported by Francethat accounted for 442 outbreaks in poultry,mostly located inthe Landes regionandaffecting the foie gras production industry,and six wild bird detections; Germany,who reported 207 detections in wild birds and 50 poultry outbreaks; Denmark,with 63 detections in wild birds and one poultry outbreak; and Poland,with 37 poultry outbreaks and 24 wild bird detections. Due to the continued presence of HPAI A(H5) viruses in wild birds and the environment,there is still a risk of avian influenza incursions with the potential further spread between establishments, primarily in areas with high poultry densities. As the currently circulating HPAI A(H5N8) virus cancause high mortality also in affected duck farms, mortality eventscan be seen as a good indicator of virus presence. However,also subclinical virusspread in this type of poultry production system have been reported.To improve early detection of infection in poultry within the surveillance zone, the clinical inspection of duck establishments should be complemented by encouraging farmers to collect dead birds to be pooled and tested weekly (bucket sampling).Six different genotypes were identified to date in Europe and Russia, suggesting a high propensity of these viruses to undergo multiple reassortment events. To date, no evidence of fixation of known mutations previously described as associated to zoonotic potential has been observed in HPAI viruses currently circulanting in Europe based on the available sequences.Seven cases due to A(H5N8) HPAI virus have been reported from Russia, all were poultry workerswith mild or no symptoms. Five human cases due to A(H5N6) HPAI and 10 cases due to A(H9N2) LPAI viruseshave been reported from China. The risk for the general population as well as travel-related imported human cases is assessed as very lowand the risk forpeople occupationally exposedpeople as low.Any human infections with avian influenza viruses are notifiablewithin 24 hoursthrough the Early Warning and Response System (EWRS) and the International Health Regulations (IHR) notification system.
Collapse
|
12
|
Li X, Gu M, Wang X, Gao R, Bu X, Hao X, Ma J, Hu J, Hu S, Liu X, Chen S, Peng D, Jiao X, Liu X. G1-like M and PB2 genes are preferentially incorporated into H7N9 progeny virions during genetic reassortment. BMC Vet Res 2021; 17:80. [PMID: 33588843 PMCID: PMC7885445 DOI: 10.1186/s12917-021-02786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background Genotype S H9N2 viruses have become predominant in poultry in China since 2010. These viruses frequently donate their whole internal gene segments to other emerging influenza A subtypes such as the novel H7N9, H5N6, and H10N8 viruses. We recently reported that the PB2 and M genes of the genotype S H9N2 virus, which are derived from the G1-like virus, enhance the fitness of H5Nx and H7N9 avian influenza viruses in chickens and mice. However, whether the G1-like PB2 and M genes are preferentially incorporated into progeny virions during virus reassortment remains unclear; whether the G1-like PB2 and M genes from different subtypes are differentially incorporated into new virion progeny remains unknown. Results We conducted a reassortment experiment with the use of a H7N9 virus as the backbone and found that G1-like M/PB2 genes were preferentially incorporated in progeny virions over F/98-like M/PB2 genes. Importantly, the preference varied among G1-like M/PB2 genes of different subtypes. When competing with F/98-like M/PB2 genes during reassortment, both the M and PB2 genes from the H7N9 virus GD15 showed an advantage, whereas only the PB2 gene from the H9N2 virus CZ73 and the M gene from the H9N2 virus AH320 displayed the advantage. Conclusion Our findings highlight the preferential and variable advantages of H9N2-derived G1-like M and PB2 genes in incorporating them into H7N9 progeny virions over SH14-derived F/98-like M/PB2 genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02786-0.
Collapse
Affiliation(s)
- Xiuli Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinxin Bu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Ma
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
13
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Baldinelli F. Avian influenza overview August - December 2020. EFSA J 2020; 18:e06379. [PMID: 33343738 PMCID: PMC7744019 DOI: 10.2903/j.efsa.2020.6379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Between 15 August and 7 December 2020, 561highly pathogenic avian influenza (HPAI) virus detections were reported in 15EU/EEA countries and UK in wild birds, poultry andcaptive birds, with Germany (n=370), Denmark (n=65), the Netherlands (n=57) being the most affected countries.The majority of the detections have been reported in wild birds(n=510), primarily in barnacle goose, greylag goose, andEurasian wigeon. Raptors have also been detected infected, particularly common buzzard. The majority of the birds had been found dead or moribund,however, there are also reports ofHPAI virus infection in apparently healthy ducks or geese.A total of 43 HPAI outbreaks were notified in poultry;with signs of avian influenza infection being observed in at least 33 outbreaks;the most likely source of infection was indirect contact with wild birds. Three HPAI virus subtypes, A(H5N8) (n=518), A(H5N5) (n=17) and A(H5N1) (n=6),and four different genotypes were identified, suggesting the occurrence of multiple virus introductions into Europe.The reassortant A(H5N1) virus identified in EU/EEA countries has acquired gene segments from low pathogenic viruses and is not related to A(H5N1) viruses of e.g. clade 2.3.2.1c causing human infections outside of Europe. As the autumn migration of wild waterbirds to their wintering areasin Europe continues, and given the expected local movements of these birds, there is still a high risk of introduction andfurther spread ofHPAI A(H5) viruses within Europe.The risk of virus spread from wild birds to poultry is high and Member States should enforce in 'high risk areas' of their territories the measures provided for in Commission Implementing Decision (EU) 2018/1136.Detection of outbreaks in breeder farms in Denmark, the Netherlands and United Kingdom, highlight also the risk of introduction via contaminated materials (bedding/straw) and equipment.Maintaining high and sustainable surveillance and biosecurityparticularly in high-risk areas is of utmost importance. Two human cases due to zoonoticA(H5N1) and A(H9N2) avian influenza virus infection were reportedduring the reporting period. The risk for the general population as well as travel-related imported human cases are assessed as very low.
Collapse
|
14
|
European Food Safety Authority, European Centre for Disease Prevention and Control and European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Kuiken T, Niqueux É, Staubach C, Terregino C, Muñoz Guajardo I, Baldinelli F. Avian influenza overview May - August 2020. EFSA J 2020; 18:e06270. [PMID: 33281980 PMCID: PMC7525800 DOI: 10.2903/j.efsa.2020.6270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Between 16 May and 15 August 2020, seven highly pathogenic avian influenza (HPAI) A(H5N8) virus outbreaks were reported in Europe in poultry, with one outbreak reported in Bulgaria(n=1) andsix in Hungary (n=6) and one low pathogenic avian influenza (LPAI) A(H5N3) virus outbreak was reported in poultry in Italy. All six outbreaks detected in Hungary were secondary outbreaks and seem to be the tail end of the HPAI A(H5N8) epidemic that wasobserved in poultry over the winter and spring in central Europe from December 2019 (n=334).Genetic analysis of the HPAI A(H5N8) viruses isolated during this reporting period from Bulgaria and Hungary did not identify any major changes compared tothe viruses collected in the respective countries during the first months of 2020. This suggests a persistence of the virus in the two countries rather than new introductions via infectedwild birds. HPAI A(H5N8) virus has been detected in poultry and wild birds in western Russia within the reporting period, and as of the middle of September also in Kazakhstan. The presence of HPAI virus in western Russiaand in north Kazakhstan,spatially associated with autumnmigration routes of wild waterbirds, is of concern due to the possible spread of the virus via wild birds migrating to the EU.It is highly recommended thatMember States take appropriate measures to promptly detect suspected cases of HPAI, including increasing biosecurity measures. According to past experiences (2005-2006 and 2016-2017 epidemic waves), the northern and eastern European areas might be at higher risk of virus introduction in the coming autumn-winter seasonand should be the key regions where prompt response measures to early detect the virusshould be set up. One human case due to A(H9N2) avian influenza virus infection was reported during the reporting period.
Collapse
|
15
|
Adlhoch C, Fusaro A, Kuiken T, Smietanka K, Staubach C, Guajardo M, Baldinelli F. Avian influenza overview August - November2019. EFSA J 2020; 17:e05988. [PMID: 32626216 PMCID: PMC7008850 DOI: 10.2903/j.efsa.2019.5988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Between 16 August and 15 November 2019, one low pathogenic avian influenza (LPAI) A(H5) outbreak in poultry in France was reported in Europe. Genetic characterisation reveals that the virusclusterswith Eurasian LPAI viruses. No highly pathogenic avian influenza (HPAI) outbreaks in birds were notified in Europe in the relevant period for this report. HPAI A(H5N6) viruswas identified in chickens in Nigeria, this isthe first report of HPAI A(H5N6) from the African continent.FewerHPAI outbreaks in Asia and Africa were reported during the time period for this report compared with the previous reporting period. Apart from the long‐term epidemic of HPAI A(H5N2)in Taiwan, only six HPAI outbreakswere reported in domestic birds from Nepal, South Africa and Taiwan. Furthermore, no HPAI detections fromwild birds were reported worldwide in the relevant time period forthis report.Even if the risk of incursion of HPAI from wild birds into poultryestablishments in Europe is currently assessed as low, it is important to maintain passive surveillance activities. The focus should be on wild bird species that are in the revised list of target species in order to detect any incursion of HPAI virus early and initiate a warning.Despite the decrease in the number of avian influenza outbreaks over recent months, it is important to maintain a high alert level andhigh standard of biosecurity onpoultry establishments.In Europe, no human infections due toHPAI viruses detected in wild bird or poultry outbreaks, have been reported. The risk of zoonotic transmission to the general public in Europe is considered to be very low.
Collapse
|
16
|
European Food Safety Authority, European Centre for Disease Prevention and Control and European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Kuiken T, Niqueux E, Staubach C, Terregino C, Guajardo IM, Baldinelli F. Avian influenza overview February - May 2020. EFSA J 2020; 18:e06194. [PMID: 32874346 PMCID: PMC7448026 DOI: 10.2903/j.efsa.2020.6194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Between 16 February and 15 May 2020, 290highly pathogenic avian influenza (HPAI) A(H5) virus outbreakswere reported in Europe in poultry (n=287), captive birds (n=2) and wild birds (n=1)in Bulgaria, Czechia,Germany,Hungary andPolandand two low pathogenic avian influenza (LPAI) A(H7N1) virus outbreaks were reported in poultry in Italy. 258 of 287 poultry outbreaks detected in Europe were secondary outbreaks, suggesting that in the large majoryty of cases the spread of the virus was not due to wild birds.Allthe HPAI outbreaks were A(H5N8) apart from three,which were reported as A(H5N2) from Bulgaria. Genetic analysis of the HPAI A(H5N8) viruses isolated from the eastern and central European countries indicates that this is a reassortant between HPAI A(H5N8) viruses from Africa and LPAI viruses from Eurasia. Two distict subtypes were identified in Bulgaria, a novel reassortant A(H5N2) and A(H5N8) that is persisting in the country since 2016. There could be several reasons why only very few HPAI cases were detected in wild birds in this 2019-2020 epidemic season and a better knowledge of wild bird movements and virus-host interaction (e.g. susceptibility of the hosts to this virus) could help to understand the reasons for poor detection of HPAI infected wild birds. In comparison with the last reporting period, a decreasing number of HPAI A(H5)-affected countries and outbreaks were reported from outside Europe. However, there is considerable uncertainty regarding the current epidemiological situation in many countries out of Europe. Four human cases due to A(H9N2) virus infection were reported during the reporting period from China.
Collapse
|
17
|
European Food Safety Authority, European Centre for Disease Prevention and Control and European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Kuiken T, Niqueux E, Staubach C, Terregino C, Guajardo IM, Baldinelli F. Avian influenza overview November 2019- February2020. EFSA J 2020; 18:e06096. [PMID: 32874270 PMCID: PMC7448010 DOI: 10.2903/j.efsa.2020.6096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Between 16 November 2019 and 15 February 2020, 36 highly pathogenic avian influenza (HPAI) A(H5N8) virus outbreakswere reported in Europe in poultry (n=34), captive birds (n=1) and wild birds (n=2), in Poland, Hungary, Slovakia, Romania, Germany, Czechiaand Ukraine,one HPAI outbreakcaused by a simultaneous infection with A(H5N2) and A(H5N8) was reported in poultry in Bulgaria, andtwo low pathogenic avian influenza (LPAI) A(H5) virus outbreaks were reported in poultryin the United Kingdom and in Denmark. Genomic characterisation of the HPAI A(H5N8) viruses suggests that they are reassortants of HPAI A(H5N8) viruses from Africa and LPAI viruses from Eurasia. It is likely that this reassortment occurred in wild migratory birds in Asia during the summer and then spread to eastern Europe with the autumnmigration. This is the first time that wild bird migration from Africa to Eurasia has been implicated in the long-distance spread of HPAI viruses to the EU. Given the late incursion of HPAI A(H5N8) virus into the EU in this winter season (first outbreak reported on 30 December 2019), its overall restriction to eastern Europe, and the approaching spring migration, the risk of the virus spreadingfurther in the west via wild birds is decreasing for the coming months. Genetic analysis of the HPAI A(H5N2) and A(H5N8) viruses detected in the Bulgarian outbreak reveals that these virusesare both related to the 2018-19 Bulgarian HPAI A(H5N8) viruses and not to the HPAI A(H5N8) viruses currently circulating in Europe.An increasing number of HPAI A(H5N1), A(H5N2), A(H5N5) and A(H5N6) virus outbreaks in poultry in Asia were reported during the time period for this report compared with the previous reporting period. Single outbreaks of HPAI A(H5N8) virus were notified by Saudi Arabia and South Africa. Furthermore, in contrast to the last report, HPAI virus-positive wild birds were reported from Israel and one of the key migration areas in northern China.Two human cases due to A(H9N2) virus infection were reported during the reporting period.
Collapse
|
18
|
Adlhoch C, Fusaro A, Kuiken T, Monne I, Smietanka K, Staubach C, Muñoz Guajardo I, Baldinelli F. Avian influenza overview February- August 2019. EFSA J 2019; 17:e05843. [PMID: 32626437 PMCID: PMC7009306 DOI: 10.2903/j.efsa.2019.5843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Between 16 February and 15 August 2019, five HPAI A(H5N8) outbreaks at poultry establishments in Bulgaria, two low pathogenic avian influenza (LPAI) A(H5N1) outbreaks in poultry in Denmark and one in captive birds in Germany, one LPAI A(H7N3) outbreak in poultry in Italy and one LPAI A(H7N7) outbreak in poultry in Denmark were reported in Europe. Genetic characterisation reveals that viruses from Denmark cluster with viruses previously identified in wild birds and poultry in Europe; while the Italian isolate clusters with LPAI viruses circulating in wild birds in Central Asia. No avian influenza outbreaks in wild birds were notified in Europe in the relevant period for this report. A decreased number of outbreaks in poultry and wild birds in Asia, Africa and the Middle East was reported during the time period for this report, particularly during the last three months. Furthermore, only six affected wild birds were reported in the relevant time period of this report. Currently there is no evidence of a new HPAI virus incursion from Asia into Europe. However, passive surveillance systems may not be sensitive for early detection if the prevalence or case fatality in wild birds is very low. Therefore, it is important to encourage and maintain passive surveillance in Europe encouraging a search for carcasses of wild bird species that are in the revised list of target species in order to detect any incursion of HPAI virus early and initiate warning. No human infections due to HPAI viruses - detected in wild birds and poultry outbreaks in Europe - have been reported during the last years and the risk of zoonotic transmission to the general public in Europe is considered very low.
Collapse
|
19
|
Adlhoch C, Kuiken T, Monne I, Mulatti P, Smietanka K, Staubach C, Guajardo IM, Baldinelli F. Avian influenza overview November 2018 - February 2019. EFSA J 2019; 17:e05664. [PMID: 32626274 PMCID: PMC7009136 DOI: 10.2903/j.efsa.2019.5664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
No human infections due to highly pathogenic avian influenza (HPAI) A(H5N8) or A(H5N6) viruses ‐ detected in wild birds and poultry outbreaks in Europe ‐ have been reported so far and the risk of zoonotic transmission to the general public in Europe is considered very low. Between 16 November 2018 and 15 February 2019, two HPAI A(H5N8) outbreaks in poultry establishments in Bulgaria, two HPAI A(H5N6) outbreaks in wild birds in Denmark and one low pathogenic avian influenza (LPAI) A(H5N3) in captive birds in the Netherlands were reported in the European Union (EU). Genetic characterisation of the HPAI A(H5N6) viruses reveals that they cluster with the A(H5N6) viruses that have been circulating in Europe since December 2017. The wild bird species involved were birds of prey and were likely infected due to hunting or scavenging infected wild waterfowl. However, HPAI virus was not detected in other wild birds during this period. Outside the EU, two HPAI outbreaks were reported in poultry during the reporting period from western Russia. Sequence information on an HPAI A(H5N6) virus found in a common gull in western Russia in October 2018 suggests that the virus clusters within clade 2.3.4.4c and is closely related to viruses that transmitted zoonotically in China. An increasing number of outbreaks in poultry and wild birds in Asia, Africa and the Middle East was observed during the time period for this report. Currently there is no evidence of a new HPAI virus incursion from Asia into Europe. However, passive surveillance systems may not be sensitive enough if the prevalence or case fatality in wild birds is very low. Nevertheless, it is important to encourage and maintain a certain level of passive surveillance in Europe testing single sick or dead wild birds and birds of prey as they may be sensitive sentinel species for the presence of HPAI virus in the environment. A well‐targeted active surveillance might complement passive surveillance to collect information on HPAI infectious status of apparently healthy wild bird populations.
Collapse
|
20
|
Adlhoch C, Brouwer A, Kuiken T, Miteva A, Mulatti P, Smietanka K, Staubach C, Gogin A, Muñoz Guajardo I, Baldinelli F. Avian influenza overview August - November 2018. EFSA J 2018; 16:e05573. [PMID: 32625795 PMCID: PMC7009621 DOI: 10.2903/j.efsa.2018.5573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Between 16 August and 15 November 2018, 14 highly pathogenic avian influenza (HPAI) A(H5N8) outbreaks in poultry establishments in Bulgaria and seven HPAI A(H5N6) outbreaks, one in captive birds in Germany and six in wild birds in Denmark and the Netherlands were reported in the European Union (EU). No human infection due to HPAI A(H5N8) and A(H5N6) viruses have been reported in Europe so far. Seroconversion of people exposed during outbreaks in Russia has been reported in one study. Although the risk of zoonotic transmission to the general public in Europe is considered to be very low, appropriate personal protection measures of people exposed will reduce any potential risk. Genetic clustering of the viruses isolated from poultry in Bulgaria suggests three separate introductions in 2016 and a continuing circulation and transmission of these viruses within domestic ducks. Recent data from Bulgaria provides further indication that the sensitivity of passive surveillance of HPAI A(H5N8) in domestic ducks may be significantly compromised. Increased vigilance is needed especially during the periods of cold spells in winter when aggregations of wild birds and their movements towards areas with more favourable weather conditions may be encouraged. Two HPAI outbreaks in poultry were reported during this period from western Russia. Low numbers of HPAI outbreaks were observed in Africa and Asia, no HPAI cases were detected in wild birds in the time period relevant for this report. Although a few HPAI outbreaks were reported in Africa and Asia during the reporting period, the probability of HPAI virus introductions from non‐EU countries via wild birds particularly via the north‐eastern route from Russia is increasing, as the fall migration of wild birds from breeding and moulting sites to the wintering sites continues. Furthermore, the lower temperatures and ultraviolet radiation in winter can facilitate the environmental survival of any potential AI viruses introduced to Europe.
Collapse
|