1
|
Muñoz-Lapeira M, Wold JP, Jofré A, Font-I-Furnols M, Sayavera S, Zomeño C. Visible near-infrared hyperspectral imaging as a tool to characterise chicken breasts with myopathies and their durability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125954. [PMID: 40037264 DOI: 10.1016/j.saa.2025.125954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
The surgency of myopathies has posed challenges for the industry as well as researchers, making relevant the use of objective and non-destructive technologies to inspect and discriminate these disorders. In this context, hyperspectral imaging (HSI) provides special properties that allow for an accurate selection of the affected region(s). Two experiments were conducted to evaluate the feasibility of visible and near-infrared (VIS-NIR) HSI to (1) discriminate between myopathies and (2) assess their evolution during refrigerated storage. Hyperspectral images of 98 and 77 chicken breasts, for experiment (1) and (2), respectively, were analysed dividing the breast in 3 regions to precisely assign each one a myopathy or the absence of one. Support vector machine models were employed for classification. Differences between myoglobin content and water binding detected in the VIS-NIR range (386-1016 nm) were relevant enough to accurately discriminate between myopathies (76.1 % accuracy), especially spaghetti meat (94.0 % balanced accuracy). Discrimination was also successful for storage days, detecting spoilage through spectral myoglobin isoform fingerprints (99.3 % accuracy) in the short-wave NIR region (800-1015 nm). These findings suggest a potential industrial use of hyperspectral systems to sort chicken breasts based on myopathy presence by region, and to predict the evolution of their quality traits during refrigerated storage, ultimately tailoring the breast destination for each case and avoiding food waste.
Collapse
Affiliation(s)
| | - Jens Petter Wold
- Nofima AS, Norwegian Institute for Food and Fisheries Research, Muninbakken 9-13, Breivika, NO-9291Tromsø, Norway
| | - Anna Jofré
- IRTA-Food Safety and Functionality, Finca Camps i Armet, 17121 Monells, Spain
| | | | | | - Cristina Zomeño
- IRTA-Food Quality and Technology, Finca Camps i Armet, 17121 Monells, Spain
| |
Collapse
|
2
|
Bošković Cabrol M, Xiccato G, Petracci M, Hernández Pérez P, Mayr Marangon C, Trocino A. Nutritional Composition, Technological Quality, and Sensory Attributes of Chicken Breast Meat Affected by White Striping, Wooden Breast, and Spaghetti Meat: A Comprehensive Evaluation. Foods 2024; 13:4007. [PMID: 39766950 PMCID: PMC11728347 DOI: 10.3390/foods13244007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 01/15/2025] Open
Abstract
This study assessed the impact of growth-related myopathies-white striping (WS), wooden breast (WB), and spaghetti meat (SM)-on the technological properties, lipid and protein oxidation, chemical composition, and profiles of fatty acids (FAs), amino acids, minerals, and sensory attributes of pectoralis major muscles in broiler chickens. Breasts with myopathies had similar pH and lightness but exhibited lower redness and yellowness in the case of WB defect compared to normal meat (p < 0.05). The WB samples also showed higher cooking losses than normal meat and increased shear force compared to the SM samples (p < 0.01). Moreover, WB meat showed lower protein content (p < 0.001) than the normal and SM samples but the highest glycine content (p < 0.05). The WB meat also exhibited significant alterations in FA composition, with higher levels (p< 0.05) of C18:2n6, C22:6n3, n3 PUFA, n6 PUFA, and total PUFA compared to the normal and SM samples. The presence of myopathies did not influence the meat mineral composition, oxidative pattern, or sensory properties. In conclusion, growth-related myopathies in broiler chickens impact the technological quality and chemical composition of their breast meat, with WB showing the most significant alterations in protein content and FA composition. These changes indicate potential challenges to processing and nutritional quality, though sensory attributes remain largely unaffected.
Collapse
Affiliation(s)
- Marija Bošković Cabrol
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy; (G.X.); (C.M.M.); (A.T.)
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Gerolamo Xiccato
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy; (G.X.); (C.M.M.); (A.T.)
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Forlì-Cesena, Italy;
| | - Pilar Hernández Pérez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy; (G.X.); (C.M.M.); (A.T.)
| | - Angela Trocino
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy; (G.X.); (C.M.M.); (A.T.)
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Padova, Italy
| |
Collapse
|
3
|
Kaewkot C, Wu MD, Tan FJ. Relationships of quality indices with wooden breast myopathy severity in chicken breast meat under refrigerated storage. Br Poult Sci 2024; 65:287-296. [PMID: 38466394 DOI: 10.1080/00071668.2024.2316865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
1. This study investigated the relationships of quality indices with the severity of wooden breast (WB) myopathy in chicken breast meat under refrigerated storage. The physicochemical properties, water-holding capacity (WHC), microbial quality and fatty acid profiles of normal chicken breast meat samples (NOR samples, n = 63), moderate WB (MWB, n = 63) myopathy and severe WB (SWB, n = 63) myopathy (MWB and SWB samples, respectively) were evaluated immediately after sampling and after 4 and 8 d of refrigerated storage at 4°C.2. Total collagen, fat, saturated and monounsaturated fatty acid contents, redness and pH of the SWB and MWB samples were higher than the NOR samples. The SWB samples that were stored for 8 d had poor WHC, total viable counts (TVC) of higher than 7.0log colony-forming units, total volatile basic nitrogen (TVB-N) content of greater than 15 mg/100 g and a thiobarbituric acid - reactive substance level of higher than 1 mg/kg malondialdehyde.3. No significant difference was observed in the TVB-N content and TVC of the MWB and NOR samples during storage. Polyunsaturated fatty acid content was lower in the SWB and MWB samples than in the NOR samples. The SWB samples were tougher than the MWB and NOR samples after 8 d of refrigeration.4. In conclusion, the quality of chicken breast meat with SWB myopathy degraded considerably over time; thus, such meat should not be subjected to extended refrigeration for storage.
Collapse
Affiliation(s)
| | | | - F-J Tan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Klementaviciute J, Zavistanaviciute P, Klupsaite D, Rocha JM, Gruzauskas R, Viskelis P, El Aouad N, Bartkiene E. Valorization of Dairy and Fruit/Berry Industry By-Products to Sustainable Marinades for Broilers' Wooden Breast Meat Quality Improvement. Foods 2024; 13:1367. [PMID: 38731738 PMCID: PMC11083194 DOI: 10.3390/foods13091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The study aims to improve the quality of wooden breast meat (WBM) via the use of newly developed marinades based on selected strains of lactic acid bacteria (LAB) in combination with the by-products of the dairy and fruit/berry industries. Six distinct marinades were produced based on milk permeate (MP) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu) with the addition of apple (ApBp) and blackcurrant (BcBp) processing by-products. The microbiological and acidity parameters of the fermented marinades were evaluated. The effects of marinades on the microbiological, technical, and physicochemical properties of meat were assessed following 24 and 48 h of WBM treatment. It was established that LAB viable counts in marinades were higher than 7.00 log10 colony-forming units (CFU)/mL and, after 48 h of marination, enterobacteria and molds/yeasts in WBM were absent. Marinated (24 and 48 h) WBM showed lower dry-matter and protein content, as well as water holding capacity, and exhibited higher drip loss (by 8.76%) and cooking loss (by 12.3%) in comparison with controls. After WBM treatment, biogenic amines decreased; besides, the absence of spermidine and phenylethylamine was observed in meat marinated for 48 h with a marinade prepared with Lu. Overall, this study highlights the potential advantages of the developed sustainable marinades in enhancing the safety and quality attributes of WBM.
Collapse
Affiliation(s)
- Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Romas Gruzauskas
- Artificial Intelligence Centre, Kaunas University of Technology, K. Donelaicio Str. 73, LT-44249 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy, Route de rabat km 15 Gzenaya BP 365 Tanger, University Abdelmalek Essaâdi, Tetouan 92000, Morocco;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
5
|
Choi J, Shakeri M, Kim WK, Kong B, Bowker B, Zhuang H. Water properties in intact wooden breast fillets during refrigerated storage. Poult Sci 2024; 103:103464. [PMID: 38271756 PMCID: PMC10832472 DOI: 10.1016/j.psj.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
The wooden breast (WB) condition notably alters moisture content and water holding capacity (WHC) in broiler breast fillets. The purpose of this study was to investigate water properties during refrigerated storage from 4 h to 168 h postmortem using time domain nuclear magnetic resonance (TD-NMR). Water properties measured included mobility (T), proportion (P), and abundance per 100 g of meat (A). Changes in meat quality indicators including compression force, color, pH, cumulative purge loss, and proximate composition were also measured. Compression force and energy of the WB fillets were higher than normal fillets (P < 0.05). Slopes of changes in lightness of the WB and normal fillets were different in skin and bone side (P < 0.05). The slope of the purge loss from the WB fillets was higher than the normal fillets (P < 0.05). Time domain nuclear magnetic resonance analysis showed 4 water populations in intact broiler fillets with transverse relaxation time (T2) constants at approximately 4 to 5 milliseconds (ms) (designated as 2b, corresponding to hydration water or bound water), 40 to 60 ms (designated as 21, corresponding to intra-myofibrillar water or immobilized water), 80 to 210 ms (designated as 22a, corresponding to extra-myofibrillar water or free water with lower mobility) and 210 to 500 ms (designated as 22b, corresponding to extra-myofibrillar water or free water with higher mobility) during early postmortem storage (between 4 h and 72 h postmortem) and only 3 populations (2b, 21, and 22a) after 72 h postmortem. There were interaction effects (P < 0.05) between storage time and WB condition for all water properties except T2b, A2b/100 g, and T22b. The linear change of T21, P21, A21/100 g, T22a, A22a/100 g, P22b, and A22b/100 g in stored WB samples were different from the normal fillets (P < 0.05). During storage, P21 and A21/100 g of the WB fillets exhibited faster linear increases than those of the normal fillets, whereas T21 and T22a of the normal fillets and A22a/100 g, P22b, and A22b/100 g of the WB fillets showed faster linear decreases (P < 0.05). Our data demonstrate that the WB condition affects changes in water properties in broiler fillets during postmortem refrigerated storage.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA; Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Majid Shakeri
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA.
| |
Collapse
|
6
|
Augustyńska-Prejsnar A, Hanus P, Ormian M, Kačániová M, Sokołowicz Z, Topczewska J. The Effect of Temperature and Storage Duration on the Quality and Attributes of the Breast Meat of Hens after Their Laying Periods. Foods 2023; 12:4340. [PMID: 38231850 DOI: 10.3390/foods12234340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
The purpose of this study was to evaluate the effect of temperature (2 °C and 6 °C) and storage duration on the quality and attributes of hens' breast meat after their laying periods. The study included physicochemical characteristics (pH, drip loss, colour, shear force), microbiological quality (total Enterobacteriaceae family and Pseudomonas count), and sensory quality. Bacterial identification was performed using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. The increased meat pH and drip loss was greater at 6 than 2 °C (p < 0.05). An increase in the tenderness of the meat stored at 6 °C was found as early as day 4, as well as at 2 °C on day 8 of storage (p < 0.05). On day 4 of storage, the meat was characterised by a darker colour than on the first day, but the darkening was greater at 6 °C than at 2 °C (p < 0.05). At 6 °C, on day 4 of storage, there was an increase in yellow saturation (b*) of the meat, which was higher at 6 °C than at 2 °C (p < 0.05). At 2 °C, the total bacterial count and number of Pseudomonas spp. in the meat gradually increased along with increasing storage duration, reaching 4.64 log cfu/g and 4.48 log cfu/g, respectively, on the 8th day of storage. At 6 °C, on the sixth day of storage, the total bacterial count in the meat exceeded 7 log cfu/g, considered the limit of microbiological safety. The meat stored at 2 °C had an acceptable sensory quality until the 8th day of storage. The study shows that storage at 2 °C preserves the sensory characteristics and microbiological safety of the hen meat longer at an acceptable level after the laying period. Extended storage life may be of importance to consumers and the meat industry.
Collapse
Affiliation(s)
- Anna Augustyńska-Prejsnar
- Department of Animal Production and Poultry Products Evaluation, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Paweł Hanus
- Department of Food Technology and Human Nutrition, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Małgorzata Ormian
- Department of Animal Production and Poultry Products Evaluation, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Zofia Sokołowicz
- Department of Animal Production and Poultry Products Evaluation, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Jadwiga Topczewska
- Department of Animal Production and Poultry Products Evaluation, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
7
|
Alnahhas N, Pouliot E, Saucier L. The hypoxia-inducible factor 1 pathway plays a critical role in the development of breast muscle myopathies in broiler chickens: a comprehensive review. Front Physiol 2023; 14:1260987. [PMID: 37719466 PMCID: PMC10500075 DOI: 10.3389/fphys.2023.1260987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
In light of the increased worldwide demand for poultry meat, genetic selection efforts have intensified to produce broiler strains that grow at a higher rate, have greater breast meat yield (BMY), and convert feed to meat more efficiently. The increased selection pressure for these traits, BMY in particular, has produced multiple breast meat quality defects collectively known as breast muscle myopathies (BMM). Hypoxia has been proposed as one of the major mechanisms triggering the onset and occurrence of these myopathies. In this review, the relevant literature on the causes and consequences of hypoxia in broiler breast muscles is reviewed and discussed, with a special focus on the hypoxia-inducible factor 1 (HIF-1) pathway. Muscle fiber hypertrophy induced by selective breeding for greater BMY reduces the space available in the perimysium and endomysium for blood vessels and capillaries. The hypoxic state that results from the lack of circulation in muscle tissue activates the HIF-1 pathway. This pathway alters energy metabolism by promoting anaerobic glycolysis, suppressing the tricarboxylic acid cycle and damaging mitochondrial function. These changes lead to oxidative stress that further exacerbate the progression of BMM. In addition, activating the HIF-1 pathway promotes fatty acid synthesis, lipogenesis, and lipid accumulation in myopathic muscle tissue, and interacts with profibrotic growth factors leading to increased deposition of matrix proteins in muscle tissue. By promoting lipidosis and fibrosis, the HIF-1 pathway contributes to the development of the distinctive phenotypes of BMM, including white striations in white striping-affected muscles and the increased hardness of wooden breast-affected muscles.
Collapse
Affiliation(s)
- Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
| | | | - Linda Saucier
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, QC, Canada
- Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
8
|
Carvalho LM, Rocha TC, Delgado J, Díaz-Velasco S, Madruga MS, Estévez M. Deciphering the underlying mechanisms of the oxidative perturbations and impaired meat quality in Wooden breast myopathy by label-free quantitative MS-based proteomics. Food Chem 2023; 423:136314. [PMID: 37167669 DOI: 10.1016/j.foodchem.2023.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The study aimed to investigate biochemical mechanisms occurred in Wooden breast (WB) chicken meat, with attention to the impact on meat quality. Commercial chicken breasts were classified as Normal (N, n = 12), WB-M (moderate degree; focal hardness on cranial region, n = 12) and WB-S (severe degree; extreme and diffused hardness over the entire surface, n = 12). Samples were analyzed for physico-chemical properties, oxidative damage to lipids and proteins, and discriminating sarcoplasmic proteins by using a Q-Exactive mass spectrometer. WB meat presented impaired composition and functionality and higher levels of lipid and protein oxidation markers than N meat. The proteomic profile of WB-S presents a dynamic regulation of the relevant proteins involved in redox homeostasis, carbohydrate, protein and lipid metabolisms. Proteomics results demonstrate that the physiological and metabolic processes of muscles affected by WB myopathy are involved in combating the inflammatory process and in repairing the damaged tissue by oxidative stress.
Collapse
Affiliation(s)
- Leila M Carvalho
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Thayse C Rocha
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Silvia Díaz-Velasco
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Marta S Madruga
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Mario Estévez
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain.
| |
Collapse
|
9
|
Cannabidiol and Nano-Selenium Increase Microvascularization and Reduce Degenerative Changes in Superficial Breast Muscle in C. perfringens-Infected Chickens. Int J Mol Sci 2022; 24:ijms24010237. [PMID: 36613680 PMCID: PMC9820102 DOI: 10.3390/ijms24010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Here, we demonstrated the potential of Cannabis-derived cannabidiol (CBD) and nanosized selenium (nano-Se) for the modulation of microvascularization and muscle fiber lesions in superficial breast muscle in C. perfringens-challenged chickens. The administration of CBD resulted in a decreased number of atrophic fibers (3.13 vs. 1.13/1.5 mm2) compared with the control, whereas nano-Se or both substances resulted in a decreased split fiber number (4.13 vs. 1.55/1.5 mm2) and in a lower number of necrotic myofibers (2.38 vs. 0.69/1.5 mm2) in breast muscle than the positive control. There was a significantly higher number of capillary vessels in chickens in the CBD+Nano-Se group than in the control and positive control groups (1.31 vs. 0.97 and 0.98, respectively). Feeding birds experimental diets lowered the activity of DNA damage repair enzymes, including 3,N4-ethenodeoxycytosine (by 39.6%), 1,N6-ethenodeoxyadenosine (by 37.5%), 8-oxo-guanine (by 36.2%), formamidopyrimidine (fapy)-DNA glycosylase (by 56.2%) and human alkyl adenine DNA glycosylase (by 40.2%) in the ileal mucosa, but it did not compromise the blood mitochondrial oxygen consumption rate (-2.67 OD/min on average). These findings indicate a potential link between gut mucosa condition and histopathological changes in superficial pectoral muscle under induced inflammation and show the ameliorative effect of CBD and nano-Se in this cross-talk due to their protection from mucosal DNA damage.
Collapse
|
10
|
Pascual A, Pauletto M, Trocino A, Birolo M, Dacasto M, Giantin M, Bordignon F, Ballarin C, Bortoletti M, Pillan G, Xiccato G. Effect of the dietary supplementation with extracts of chestnut wood and grape pomace on performance and jejunum response in female and male broiler chickens at different ages. J Anim Sci Biotechnol 2022; 13:102. [PMID: 35978386 PMCID: PMC9387010 DOI: 10.1186/s40104-022-00736-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recently, interest in the use of herbs and phytogenic compounds has grown because of their potential role in the production and health of livestock animals. Among these compounds, several tannins have been tested in poultry, but those from chestnut wood and grape-industry byproducts have attracted remarkable interest. Thus, the present study aimed to gain further insights into the mechanisms involved in the response to the dietary supplementation with extracts of chestnut wood or grape pomace. To this purpose, 864 broiler chickens were fed a control diet (C) or the same diet supplemented 0.2% chestnut wood (CN) extract or 0.2% grape pomace (GP) extract from hatching until commercial slaughtering (at 45 days of age) to assess their effects on performance, meat quality, jejunum immune response and whole-transcriptome profiling in both sexes at different ages (15 and 35 d). RESULTS Final live weight and daily weight gain significantly increased (P < 0.01) in chickens fed GP diets compared to CN and C diets. The villi height was lower in chickens fed the CN diet than in those fed the C diet (P < 0.001); moreover, a lower density of CD45+ cells was observed in chickens fed the CN diet (P < 0.05) compared to those fed the C and GP diets. Genes involved in either pro- or anti-inflammatory response pathways, and antimicrobial and antioxidant responses were affected by GP and CN diets. There was no effect of the dietary treatment on meat quality. Regarding sex, in addition to a lower growth performance, females showed a lower occurrence of wooden breast (16.7% vs. 55.6%; P < 0.001) and a higher occurrence of spaghetti meat (48.6% vs. 4.17%; P < 0.001) in pectoralis major muscles after slaughtering than those in males. Based on the results of whole-transcriptome profiling, a significant activation of some molecular pathways related to immunity was observed in males compared with those of females. CONCLUSIONS The GP supplementation improved chicken performance and promoted immune responses in the intestinal mucosa; moreover, age and sex were associated with the most relevant transcriptional changes.
Collapse
Affiliation(s)
- A Pascual
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - A Trocino
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy.
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Dacasto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - C Ballarin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Pillan
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| |
Collapse
|
11
|
de Moraes Pinto LA, Razente RA, Benito CE, Gubert L, Stefanello LR, Simões EP, da Silva Júnior RC, de Oliveira Monteschio J, Fernandes JIM. Clove essential oil (
Syzygium aromaticum
L.) as a natural preservative to improve the shelf‐life of chicken patties with different degrees of myopathy. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Rodolfo André Razente
- Animal Science Post‐Graduate Program Federal University of Paraná‐ Sector Palotina Palotina Paraná Brazil
| | - Carlos Eduardo Benito
- Department of Zootecnia Federal University of Paraná – Sector Palotina Palotina Paraná Brazil
| | - Laura Gubert
- Department of Zootecnia Federal University of Paraná – Sector Palotina Palotina Paraná Brazil
| | | | - Eduarda Pires Simões
- Department of Zootecnia Federal University of Paraná – Sector Palotina Palotina Paraná Brazil
| | | | | | | |
Collapse
|
12
|
Liu R, Kong F, Xing S, He Z, Bai L, Sun J, Tan X, Zhao D, Zhao G, Wen J. Dominant changes in the breast muscle lipid profiles of broiler chickens with wooden breast syndrome revealed by lipidomics analyses. J Anim Sci Biotechnol 2022; 13:93. [PMID: 35927736 PMCID: PMC9354336 DOI: 10.1186/s40104-022-00743-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chicken is the most consumed meat worldwide and the industry has been facing challenging myopathies. Wooden breast (WB), which is often accompanied by white striping (WS), is a serious myopathy adversely affecting meat quality of breast muscles. The underlying lipid metabolic mechanism of WB affected broilers is not fully understood. RESULTS A total of 150 chickens of a white-feathered, fast-growing pure line were raised and used for the selection of WB, WB + WS and control chickens. The lipids of the breast muscle, liver, and serum from different chickens were extracted and measured using ultra performance liquid chromatography (UPLC) plus Q-Exactive Orbitrap tandem mass spectrometry. In the breast, 560 lipid molecules were identified. Compared to controls, 225/225 of 560 lipid molecules (40.2%) were identified with differential abundance (DA), including 92/100 significantly increased neutral lipids and 107/98 decreased phospholipids in the WB/WB + WS groups, respectively. The content of monounsaturated fatty acids (MUFA) was significantly higher, and the polyunsaturated fatty acids (PUFA) and saturated fatty acids (SFA) were significantly lower in the affected breasts. In the liver, 434 lipid molecules were identified, and 39/61 DA lipid molecules (6.7%/14.1%) were detected in the WB and WB + WS groups, respectively. In the serum, a total of 529 lipid molecules were identified and 4/44 DA lipid molecules (0.8%/8.3%) were detected in WB and WB + WS group, respectively. Compared to controls, the content of MUFAs in the serum and breast of the WB + WS group were both significantly increased, and the content of SFAs in two tissues were both significantly decreased. Only five lipid molecules were consistently increased in both liver and serum in WB + WS group. CONCLUSIONS We have found for the first time that the dominant lipid profile alterations occurred in the affected breast muscle. The relative abundance of 40.2% of lipid molecules were changed and is characteristic of increased neutral lipids and decreased phospholipids in the affected breasts. Minor changes of lipid profiles in the liver and serum of the affected groups were founded. Comprehensive analysis of body lipid metabolism indicated that the abnormal lipid profile of WB breast may be independent of the liver metabolism.
Collapse
Affiliation(s)
- Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Fuli Kong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Siyuan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Zhengxiao He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Lu Bai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Jiahong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Xiaodong Tan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Di Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
13
|
da Rocha TC, Olegario LS, de Carvalho LM, Pereira DA, González‐Mohino A, Ventanas S, Estévez M, Madruga MS. Consumer behaviour towards chicken breasts affected with myopathy (Wooden Breast): face‐to‐face vs. online tests. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Thayse C. da Rocha
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Lary S. Olegario
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Leila M. de Carvalho
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Deyse A. Pereira
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Alberto González‐Mohino
- IPROCAR Research Institute, TECAL Research Group University of Extremadura 10003 Caceres Spain
| | - Sonia Ventanas
- IPROCAR Research Institute, TECAL Research Group University of Extremadura 10003 Caceres Spain
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group University of Extremadura 10003 Caceres Spain
| | - Marta Suely Madruga
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| |
Collapse
|
14
|
Li Z, Zhang J, Wang T, Zhang J, Zhang L, Wang T. Effects of Capsaicin on Growth Performance, Meat Quality, Digestive Enzyme Activities, Intestinal Morphology, and Organ Indexes of Broilers. Front Vet Sci 2022; 9:841231. [PMID: 35265697 PMCID: PMC8899211 DOI: 10.3389/fvets.2022.841231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
This experiment was conducted to investigate the effects of capsaicin (CAP) on growth performance, meat quality, digestive enzyme activities, intestinal morphology, and organ indexes of broilers. A total of 256 one-day-old Arbor Acre male broilers were randomly allocated into four treatments with eight replicates of eight birds, feeding a basal diet (control group), a basal diet supplemented with 2, 4, and 6 mg/kg CAP for 42 d, respectively. The growth performance, digestive enzyme activities of intestinal contents, small intestinal morphology, and organ indexes were measured at 21 and 42 d. The meat quality traits of breast muscles were determined at 42 d. The results showed dietary 4 mg/kg CAP supplementation decreased (P < 0.05) the feed to gain ratio (F/G) in the grower phase (22–42 d) and overall (1–42 d) compared with the control group, and 2 mg/kg CAP group also decreased (P < 0.05) the F/G from 1 to 42 d. Dietary 4 mg/kg CAP supplementation decreased (P < 0.05) the drip loss at 48 h and the pH24h of breast muscles relative to the control group. Some digestive enzymes activities of jejunal and ileal contents were increased in the 2 and 4 mg/kg CAP groups compared with the control group both at 21 and 42 d. In addition, dietary 2 mg/kg CAP supplementation increased (P < 0.05) the relative weight of liver, jejunal villus height, villus width, and villous surface area at 21 d; The length of the jejunum segment and the relative weight of Bursa of Fabricius at 42 d in the 4 mg/kg CAP group were higher (P < 0.05) than the control group. In conclusion, dietary 2 or 4 mg/kg CAP supplementation decreased the F/G, improved meat quality, enhanced digestive enzyme activities, improved the jejunal development, and increased the relative liver and Bursa of Fabricius weight in broilers.
Collapse
|
15
|
Pereira MR, Mello JLM, Oliveira RF, Villegas-Cayllahua EA, Cavalcanti ENF, Fidelis HA, Ferrari FB, Giampietro-Ganeco A, Souza PA, Borba H. Effect of freezing on the quality of breast meat from broilers affected by White Striping myopathy. Poult Sci 2022; 101:101607. [PMID: 34936954 PMCID: PMC8704441 DOI: 10.1016/j.psj.2021.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 11/09/2021] [Indexed: 10/27/2022] Open
Abstract
The aim of this study was to evaluate possible changes in the quality of chicken breast meat containing white stripes during freezing for 12 mo. Samples of Pectoralis major muscle from male Cobb 500 broilers containing white stripes in moderate and severe degrees were used, as well as samples from a control group (normal - absence of myopathies). Part of the samples (n = 60; n = 20 for each severity degree) were analyzed on the day of collection (beginning) and the rest (n = 240) was frozen (-20°C) for up to 12 mo. At the end of each proposed freezing period (3, 6, 9, and 12 mo), color, pH, water holding capacity, cooking loss, tenderness, lipid oxidation, chemical composition, cholesterol and collagen concentrations, myofibrillary fragmentation, and sarcomere length were analyzed. Microbiological analysis of samples was performed at the beginning and after 12 mo of freezing. Myopathy linked to freezing showed results of increased meat tenderness, with reduction of crude protein and mineral matter and increase of moisture, fat, and cholesterol, without affecting the meat's collagen percentages. However, these variations with the onset of myopathy do not compromise the consumption of broiled chicken breast meat, kept frozen for up to 12 mo.
Collapse
Affiliation(s)
- Mateus R Pereira
- Paulista State University - UNESP, Technology Department, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Juliana L M Mello
- Paulista State University - UNESP, Technology Department, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Rodrigo F Oliveira
- Darcy Ribeiro State University of Northern Fluminense - UENF, Agricultural Sciences and Technologies Center - CCTA, Rio de Janeiro 28013-602, Brazil
| | | | - Erika N F Cavalcanti
- Paulista State University - UNESP, Technology Department, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Heloisa A Fidelis
- Paulista State University - UNESP, Technology Department, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Fábio B Ferrari
- Paulista State University - UNESP, Technology Department, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Aline Giampietro-Ganeco
- University of São Paulo - USP, Faculty of Animal Science and Food Engineering, 13635-900, Pirassununga, Sao Paulo, Brazil
| | - Pedro A Souza
- Paulista State University - UNESP, Technology Department, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Hirasilva Borba
- Paulista State University - UNESP, Technology Department, 14884-900, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
16
|
Effect of wooden breast degree on lipid and protein oxidation and citrate synthase activity of chicken pectoralis major muscle. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Zhang Y, Gao Y, Li Z, Zheng Z, Xu X, Wang P, Zheng B, Qi Z. Correlation between instrumental stress and oral processing property of chicken broiler breast under wooden breast myopathy. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yulong Zhang
- National Center of Meat Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Key Laboratory of Animal Products Processing Ministry of Agriculture Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Yunfan Gao
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Zhen Li
- National Center of Meat Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Key Laboratory of Animal Products Processing Ministry of Agriculture Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Zimeng Zheng
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xinglian Xu
- National Center of Meat Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Key Laboratory of Animal Products Processing Ministry of Agriculture Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Peng Wang
- National Center of Meat Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Key Laboratory of Animal Products Processing Ministry of Agriculture Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Bin Zheng
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Zexin Qi
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
18
|
Employment of Phenolic Compounds from Olive Vegetation Water in Broiler Chickens: Effects on Gut Microbiota and on the Shelf Life of Breast Fillets. Molecules 2021; 26:molecules26144307. [PMID: 34299582 PMCID: PMC8306377 DOI: 10.3390/molecules26144307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Olive vegetation water (OVW) is a by-product with a noticeable environmental impact; however, its polyphenols may be reused food and feed manufacture as high-value ingredients with antioxidant/antimicrobial activities. The effect of dietary supplementation with OVW polyphenols on the gut microbiota, carcass and breast quality, shelf life, and lipid oxidation in broiler chickens has been studied. Chicks were fed diets supplemented with crude phenolic concentrate (CPC) obtained from OVW (220 and 440 mg/kg phenols equivalent) until reaching commercial size. Cloacal microbial community (rRNA16S sequencing) was monitored during the growth period. Breasts were submitted to culture-dependent and -independent microbiological analyses during their shelf-life. Composition, fatty acid concentration, and lipid oxidation of raw and cooked thawed breasts were measured. Growth performance and gut microbiota were only slightly affected by the dietary treatments, while animal age influenced the cloacal microbiota. The supplementation was found to reduce the shelf life of breasts due to the growth of spoilers. Chemical composition and lipid oxidation were not affected. The hydroxytyrosol (HT) concentration varied from 178.6 to 292.4 ug/kg in breast muscle at the beginning of the shelf-life period. The identification of HT in meat demonstrates that the absorption and metabolism of these compounds was occurring efficiently in the chickens.
Collapse
|
19
|
Soglia F, Petracci M, Davoli R, Zappaterra M. A critical review of the mechanisms involved in the occurrence of growth-related abnormalities affecting broiler chicken breast muscles. Poult Sci 2021; 100:101180. [PMID: 33975044 PMCID: PMC8131729 DOI: 10.1016/j.psj.2021.101180] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
In the past decade, the poultry industry has faced the occurrence of growth-related muscular abnormalities that mainly affect, with a high incidence rate, the Pectoralis major of the fast-growing genotypes selected for their production performances (high growth rate and breast yield). These myopathies are termed as White Striping, Wooden Breast, and Spaghetti Meat and exhibit distinctive phenotypes. A spatiotemporal distribution has been demonstrated for these disorders as in the early stage they primarily affect the superficial area in the cranial portion of the muscle and, as the birds grow older, involve the entire tissue. Aside from their distinctive phenotypes, these myopathies share common histological features. Thus, it might be speculated that common causative mechanisms might be responsible for the physiological and structural perturbations in the muscle associated with these conditions and might underpin their occurrence. The present review paper aims to represent a critical survey of the outcomes of all the histologic and ultrastructural observations carried out on White Striping, Wooden Breast, and Spaghetti Meat affected muscles. Our analysis has been performed by combining these outcomes with the findings of the genetic studies, trying to identify possible initial causative mechanisms triggering the onset and the time-series of the events ultimately resulting in the development and progression of the growth-related myopathies currently affecting broilers Pectoralis major muscles. Several evidences support the hypothesis that sarcoplasmic reticulum stress, primarily induced an accumulation of misfolded proteins (but also driven by other factors including altered calcium homeostasis and accumulation of fatty acids), may be responsible for the onset of these growth-related myopathies in broilers. At the same time, the development of hypoxic conditions, as a direct consequence of an inadequate vascularization, triggers a time-series sequence of events (i.e., phlebitis, oxidative stress, etc.) resulting in the activation of response mechanisms (i.e., modifications in the energetic metabolism, inflammation, degeneration, and regeneration) which are all strictly related to the progression of these myopathic disorders.
Collapse
Affiliation(s)
- F Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy
| | - M Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy.
| | - R Davoli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy
| | - M Zappaterra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy
| |
Collapse
|
20
|
Carvalho LM, Delgado J, Madruga MS, Estévez M. Pinpointing oxidative stress behind the white striping myopathy: depletion of antioxidant defenses, accretion of oxidized proteins and impaired proteostasis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1364-1371. [PMID: 32833312 DOI: 10.1002/jsfa.10747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study aimed to investigate the molecular mechanisms involved in the onset of the white striping (WS) myopathy with particular attention to the role of oxidative stress and protein oxidation in the loss of meat quality. RESULTS It was found that WS-M (moderate degree; white stripes <1 mm thickness) and WS-S (severe degree; white stripes >1 mm thickness) breast presented higher pH, hardness, redness, lipid, and collagen content, and lower lightness than normal breast. Compared with the latter, WS-S had a more severe loss of protein thiols (70.7% less thiols than in N), reduced activity of antioxidant enzymes such as catalase (23 versus 40 U g-1 ), glutathione peroxidase (0.21 versus 0.54 U g-1 ), and superoxide dismutase (56 versus 73 U g-1 ), and consequently, had greater accretion of thiobarbituric acid reactive substances (0.64 versus 0.22 mg MDAkg-1 muscle), allysine (3.1 versus 1.9 nmol mg-1 protein) and Schiff base structures (645 versus 258 fluorescent units). The analysis of sarcoplasmic proteins revealed that muscles severely affected by the myopathy suffered a chronic impairment of physiological (upregulation of sarcoplasmic reticulum Ca2+ ATPase, sarcalumenin and calsequestrin-2) and metabolic processes (downregulation of pyruvate kinase, creatine kinase, and l-lactate dehydrogenase). CONCLUSION The overexpression of ribonuclease / angiogenin inhibitor 1 and Kelch-like proteins in WS chicken breasts indicates altered protein turnover plausibly mediated by oxidative stress and accumulation of oxidized proteins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leila M Carvalho
- Postgraduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraiba, João Pessoa, Brazil
| | - Josué Delgado
- Heart Clinical Unit, Virgen de la Victoria University Clinic Hospital, Institute of Biomedical Research in Malaga, IBIMA, CIBERCV, University of Málaga, Málaga, Spain
| | - Marta S Madruga
- Postgraduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraiba, João Pessoa, Brazil
| | - Mario Estévez
- Institute of Meat and Meat Products (IPROCAR), TECAL Research Group, University of Extremadura, Cáceres, Spain
| |
Collapse
|
21
|
Lanza I, Conficoni D, Balzan S, Cullere M, Fasolato L, Serva L, Contiero B, Trocino A, Marchesini G, Xiccato G, Novelli E, Segato S. Assessment of chicken breast shelf life based on bench-top and portable near-infrared spectroscopy tools coupled with chemometrics. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
Near-infrared (NIR) spectroscopy is a rapid technique able to assess meat quality even if its capability to determine the shelf life of chicken fresh cuts is still debated, especially for portable devices. The aim of the study was to compare bench-top and portable NIR instruments in discriminating between four chicken breast refrigeration times (RT), coupled with multivariate classifier models.
Materials and Methods
Ninety-six samples were analysed by both NIR tools at 2, 6, 10 and 14 days post mortem. NIR data were subsequently submitted to partial least squares discriminant analysis (PLS-DA) and canonical discriminant analysis (CDA). The latter was preceded by double feature selection based on Boruta and Stepwise procedures.
Results
PLS-DA sorted moderate separation of RT theses, while shelf life assessment was more accurate on application of Stepwise-CDA. Bench-top tool had better performance than portable one, probably because it captured more informative spectral data as shown by the variable importance in projection (VIP) and restricted pool of Stepwise-CDA predictive scores (SPS).
Conclusions
NIR tools coupled with a multivariate model provide deep insight into the physicochemical processes occurring during storage. Spectroscopy showed reliable effectiveness to recognise a 7-day shelf life threshold of breasts, suitable for routine at-line application for screening of meat quality.
Collapse
Affiliation(s)
- Ilaria Lanza
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Italy
| | - Daniele Conficoni
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Italy
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Marco Cullere
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Lorenzo Serva
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Italy
| | - Angela Trocino
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Giorgio Marchesini
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Italy
| | - Gerolamo Xiccato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Severino Segato
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Italy
| |
Collapse
|
22
|
Physical, Chemical and Histological Characterization of Pectoralis major Muscle of Broilers Affected by Wooden Breast Myopathy. Animals (Basel) 2021; 11:ani11030596. [PMID: 33668299 PMCID: PMC7996277 DOI: 10.3390/ani11030596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to characterize the effects of wooden breast myopathy (WBM) on quality of broiler chicken breast meat. Normal samples (absence of myopathy), moderate-degree samples (hardness only in one area of the breast fillet) and severe-degree samples (hardness throughout the breast fillet) were classified. In macroscopic analysis, the pectoral muscle affected by the WBM showed, in general, pale color with stiff, irregular and reddish regions (suffusions and petechiae), with the presence of white striations. In microscopic analysis, the myopathy was characterized by loss of the polygonal aspect of the muscle fibers. Samples with moderate degree of the myopathy showed greater (p = 0.0266) water retention capacity. There was an increase (p = 0.004) in total collagen concentration in samples from the severe-degree group 0.29% in normal samples to 0.43 and 0.48% in samples from moderate- and severe-degree groups, respectively. Samples of chicken breast affected by the severe-degree WBM showed lower (p < 0.0001) myofibrillar fragmentation index (64.51) and lower (p = 0.0002) fat concentration (2.17%) than normal chicken samples (80.45 and 3.79%, respectively). Samples affected by WBM are larger and heavier and present poorer physical quality when compared to normal chicken meat. Histologically it is possible to observe loss of the polygonal aspect of muscle fibers.
Collapse
|
23
|
U-Chupaj J, Malila Y, Gozzi G, Vannini L, Dellarosa N, Laghi L, Petracci M, Benjakul S, Visessanguan W. Influence of non-phosphate and low-sodium salt marination in combination with tumbling process on properties of chicken breast meat affected by white striping abnormality. J Food Sci 2021; 86:319-326. [PMID: 33438239 DOI: 10.1111/1750-3841.15565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
This study investigated the effects of non-phosphate and low-sodium (NPLS) marination on properties of white striping chicken breasts (WSCB). Chicken breasts were collected from slaughterhouse and classified as normal (NCB, n = 24) and severe WS (WSCB, n = 120). Sixty WSCB samples were vacuum-tumbled (30 min, 2 °C) with NPLS solution, containing 2.8% (w/v) potassium bicarbonate, 2.9% (w/v) potassium chloride, and 1.5% (w/v) sorbitol at the ratio of meat-to-marinade of 4 to 1 (w/w). The other 60 WSCB received no marination were assigned as nonmarinated WSCB. Properties of marinated (n = 12) and nonmarinated (n = 12) WSCB samples were determined at 0, 3, 7, 10, and 14 days of the storage at 4 °C. Properties of the NCB were also determined on day 0. Concerning day 0, the marinated WSCB exhibited higher (p < 0.05) pH, moisture content, total cooked yield, protein solubility, hardness, cohesiveness, and chewiness along with lower (p < 0.05) cooked loss, expressible water, and shear force than those of nonmarinated WSCB and NCB. Based on nuclear magnetic resonance spectroscopy, bound, intra-myofibrillar, and extra-myofibrillar water of cooked marinated WSCB were greater (p < 0.05) than those of cooked nonmarinated WSCB. The greater (p < 0.05) weight loss, moisture content, and total cooking yield were observed in marinated samples compared to those of nonmarinated WSCB throughout the storage period. Although microbial stability was reduced (p < 0.05), no difference (p ≥ 0.05) in lipid oxidation was detected between the treatments. The findings suggest the NPLS marination as a promising process for improving water holding capacity of the WSCB. PRACTICAL APPLICATION: This study presents the promising application of non-phosphate, low-sodium (NPLS) marination combined with vacuum-tumbling in improving water holding capacity of chicken breast meat affected with white striping condition. Although microbial stability of the marinated breast was negatively affected, no adverse impacts on lipid oxidation was observed during storage up to 14 days.
Collapse
Affiliation(s)
- Juthawut U-Chupaj
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Giorgia Gozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, FC, 47521, Italy
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, FC, 47521, Italy
| | - Nicolò Dellarosa
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, FC, 47521, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, FC, 47521, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, FC, 47521, Italy
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
24
|
Upstream Regulator Analysis of Wooden Breast Myopathy Proteomics in Commercial Broilers and Comparison to Feed Efficiency Proteomics in Pedigree Male Broilers. Foods 2021; 10:foods10010104. [PMID: 33419207 PMCID: PMC7825620 DOI: 10.3390/foods10010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
In an effort to understand the apparent trade-off between the continual push for growth performance and the recent emergence of muscle pathologies, shotgun proteomics was conducted on breast muscle obtained at ~8 weeks from commercial broilers with wooden breast (WB) myopathy and compared with that in pedigree male (PedM) broilers exhibiting high feed efficiency (FE). Comparison of the two proteomic datasets was facilitated using the overlay function of Ingenuity Pathway Analysis (IPA) (Qiagen, CA, USA). We focused on upstream regulator analysis and disease-function analysis that provides predictions of activation or inhibition of molecules based on (a) expression of downstream target molecules, (b) the IPA scientific citation database. Angiopoeitin 2 (ANGPT2) exhibited the highest predicted activation Z-score of all molecules in the WB dataset, suggesting that the proteomic landscape of WB myopathy would promote vascularization. Overlaying the FE proteomics data on the WB ANGPT2 upstream regulator network presented no commonality of protein expression and no prediction of ANGPT2 activation. Peroxisome proliferator coactivator 1 alpha (PGC1α) was predicted to be inhibited, suggesting that mitochondrial biogenesis was suppressed in WB. PGC1α was predicted to be activated in high FE pedigree male broilers. Whereas RICTOR (rapamycin independent companion of mammalian target of rapamycin) was predicted to be inhibited in both WB and FE datasets, the predictions were based on different downstream molecules. Other transcription factors predicted to be activated in WB muscle included epidermal growth factor (EGFR), X box binding protein (XBP1), transforming growth factor beta 1 (TGFB1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Inhibitions of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT) and estrogen related receptor gamma (ESRRG) were also predicted in the WB muscle. These findings indicate that there are considerable differences in upstream regulators based on downstream protein expression observed in WB myopathy and in high FE PedM broilers that may provide additional insight into the etiology of WB myopathy.
Collapse
|
25
|
Pascual Guzmán A, Trocino A, Susta L, Barbut S. Comparing three textural measurements of chicken breast fillets affected by severe wooden breast and spaghetti meat. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1893134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Antón Pascual Guzmán
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padova, Padova, Italy
| | - Angela Trocino
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padova, Padova, Italy
| | - Leonardo Susta
- Pathobiology Department, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Shai Barbut
- Food Science Department, University of Guelph, Guelph, Canada
| |
Collapse
|
26
|
Mirshekar R, Dastar B, Shams Shargh M. Supplementing flaxseed oil for long periods improved carcass quality and breast fatty acid profile in Japanese quail. Animal 2020; 15:100104. [PMID: 33573942 DOI: 10.1016/j.animal.2020.100104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022] Open
Abstract
The efficient time for supplementing flaxseed oil to meat-type quail to produce n-3 fatty acid fortified meat has not been determined. This study was conducted to find out the effects of different periods of flaxseed oil supplementation in the Japanese quail diet on the subsequent growth performance, carcass characteristics, fatty acids profile of breast, and functional properties of the Japanese quail meat. Totally, 720 one-day-old Japanese quail were studied in a 35-day experiment using a completely randomized design. Substituting sunflower oil with flaxseed oil had no significant effect on weight gain and feed intake in Japanese quails. Supplementing flaxseed oil for the whole 35-day growth period significantly reduced abdominal fat proportion. Flaxseed oil addition to the quail diet just a week before slaughter resulted in a 4.97-fold increase in the n-3 fatty acid content of the breast muscle. Feeding flaxseed oil decreased the activity of delta-9-desaturase in quail's breast compared to sunflower oil. The greatest thrombogenic index observed in the breast meat from control while consumption of flaxseed oil significantly decreased the thrombogenic index. Supplementing flaxseed oil to quail's diet for 21 and 35 days before slaughter significantly increased breast malondialdehyde content. Feeding flaxseed oil for long periods had no significant impact on the breast meat pH while water holding capacity was decreased. The breast lightness was increased when the flaxseed oil was fed for longer periods. Generally, feeding flaxseed oil in the last week of the growth period improved the feed conversion ratio and the fatty acid profile of quail breast meat with the minimum deterioration effects on meat quality characteristics.
Collapse
Affiliation(s)
- R Mirshekar
- Department of Animal and Poultry Nutrition, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Golestan, Iran.
| | - B Dastar
- Department of Animal and Poultry Nutrition, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Golestan, Iran
| | - M Shams Shargh
- Department of Animal and Poultry Nutrition, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Golestan, Iran
| |
Collapse
|
27
|
Baéza E. Characteristics of processed poultry products. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1834340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Bailey RA, Souza E, Avendano S. Characterising the Influence of Genetics on Breast Muscle Myopathies in Broiler Chickens. Front Physiol 2020; 11:1041. [PMID: 32973559 PMCID: PMC7468472 DOI: 10.3389/fphys.2020.01041] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
This report provides the first estimates of the genetic basis of all key breast muscle myopathies (BMM) in broiler chickens [Deep pectoral myopathy, wooden breast, white striping and spaghetti breast] and their relationship with body weight and breast yield. Data from a pure bred high yielding commercial broiler line were analysed to estimate the genetic parameters using a multivariate animal model with the appropriate fixed effects and permanent environmental effect of the dam. Heritabilities of the BMM ranged from 0.04 to 0.25 and the genetic correlation of the BMM with body weight and breast yield ranged from -0.06 to 0.41. Here we highlight that the genetic variance of BMM accounts for a low proportion of the phenotypic variance and the BMM have a low genetic relationship with performance traits. The large contribution of residual variance to the phenotypic variance for the BBM was >71.5% which indicates the importance of the non-genetic effects on BMM. The data presented also show that the moderate to low genetic influence for the development of BMM can be used, through balanced selection, to reduce the myopathy incidence in the long term. The impact of genetic selection against BMM was tested empirically by comparing the incidence of WB and % breast yield of a commercial broiler with a high generation (HG) broiler. The HG broiler used represents 2 years of genetic improvement compared to the commercial broiler; the HG broiler had an 18.4% relative decrease in WB and a 1.02% relative increase in breast yield compared to the commercial broiler. This paper describes the relationship between the genetic and non-genetic factors influencing BMM highlighting the importance of understanding the non-genetic effects on myopathy incidence. It also shows that the genetic component of BMM can be reduced whilst at the same time improving breast yield as part of balanced breeding goals.
Collapse
|
29
|
Soglia F, Petracci M, Puolanne E. Sarcomere lengths in wooden breast broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1761271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Francesca Soglia
- Dipartemento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Dipartemento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Cesena, Italy
| | - Eero Puolanne
- Elintarvike- ja ympäristötieteiden osasto, Helsingin yliopisto, Helsinki, Suomi
| |
Collapse
|
30
|
Effects of Microencapsulated Blend of Organic Acids and Essential Oils as a Feed Additive on Quality of Chicken Breast Meat. Animals (Basel) 2020; 10:ani10040640. [PMID: 32272803 PMCID: PMC7222737 DOI: 10.3390/ani10040640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aims to investigate the effect of dietary supplementation based on a blend of microencapsulated organic acids (sorbic and citric) and essential oils (thymol and vanillin) on chicken meat quality. A total of 420 male Ross 308 chicks were randomly assigned to two dietary treatments: the control group was fed with conventional diet (CON), while the other group received the control diet supplemented with 0.5% of a microencapsulated blend of organic acids and essential oils (AVI). In breast meat samples, intramuscular fat content and saturated/polyunsaturated fatty acids ratio were reduced by AVI supplementation (p < 0.05). Moreover, atherogenic (p < 0.01) and thrombogenic (p < 0.05) indices were lower in AVI than CON treatment. AVI raw meat showed a lower density of psychrotrophic bacteria (p < 0.05) at an initial time, and higher loads of enterococci after 4 days of refrigerated storage (p < 0.05). No contamination of Listeria spp., Campylobacter spp., and Clostridium spp. was found. TBARS values of the cooked meat were lower in the AVI treatment compared to CON (p < 0.01). Among colour parameters, a*, b* and C* values increased between 4 and 7 days of storage in AVI cooked meat (p < 0.05). Overall, organic acids and essential oils could improve the quality and shelf-life of poultry meat.
Collapse
|
31
|
Lake JA, Abasht B. Glucolipotoxicity: A Proposed Etiology for Wooden Breast and Related Myopathies in Commercial Broiler Chickens. Front Physiol 2020; 11:169. [PMID: 32231585 PMCID: PMC7083144 DOI: 10.3389/fphys.2020.00169] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
Wooden breast is one of several myopathies of fast-growing commercial broilers that has emerged as a consequence of intensive selection practices in the poultry breeding industry. Despite the substantial economic burden presented to broiler producers worldwide by wooden breast and related muscle disorders such as white striping, the genetic and etiological underpinnings of these diseases are still poorly understood. Here we propose a new hypothesis on the primary causes of wooden breast that implicates dysregulation of lipid and glucose metabolism. Our hypothesis addresses recent findings that have suggested etiologic similarities between wooden breast and type 2 diabetes despite their phenotypic disparities. Unlike in mammals, dysregulation of lipid and glucose metabolism is not accompanied by an increase in plasma glucose levels but generates a unique skeletal muscle phenotype, i.e., wooden breast, in chickens. We hypothesize that these phenotypic disparities result from a major difference in skeletal muscle glucose transport between birds and mammals, and that the wooden breast phenotype most closely resembles complications of diabetes in smooth and cardiac muscle of mammals. Additional basic research on wooden breast and related muscle disorders in commercial broiler chickens is necessary and can be informative for poultry breeding and production as well as for human health and disease. To inform future studies, this paper reviews the current biological knowledge of wooden breast, outlines the major steps in its proposed pathogenesis, and examines how selection for production traits may have contributed to its prevalence.
Collapse
Affiliation(s)
- Juniper A. Lake
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Behnam Abasht
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
32
|
Maharjan P, Hilton K, Weil J, Suesuttajit N, Beitia A, Owens CM, Coon C. Characterizing Woody Breast Myopathy in a Meat Broiler Line by Heat Production, Microbiota, and Plasma Metabolites. Front Vet Sci 2020; 6:497. [PMID: 32118050 PMCID: PMC7015036 DOI: 10.3389/fvets.2019.00497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022] Open
Abstract
Selection for quantitative traits in meat broilers such as breast yield and growth rate exert physiological pressure leading to ante mortem histological and biochemical alterations in muscle tissues. The poultry industry has recently witnessed a myopathy condition affecting Pectoralis major (breast muscle) of broilers, called woody breast (WB), an etiology still unclear to scientific community. A study was conducted to characterize the WB myopathy in a meat broiler line at its finishing phase (d 41) in terms of heat production (HP), microbiota and plasma metabolites. Two treatment groups were studied-WB affected (myopathy) and normal (non-myopathy) broiler; n = 20 in each group. Indirect calorimetry was utilized for HP measurement. Furthermore, body composition (BC) analysis was also performed using dual-energy x-ray absorptiometry (DEXA). Microbiota in ileal digesta was studied with PCR amplified 16s rRNA gene. LC-MS targeted metabolomics was performed to understand differential expression of plasma metabolites. Results showed that there was difference in fasting HP (P < 0.05) between these two treatment groups, with non-myopathy broiler producing more heat which was indicative of higher body protein content validated by higher protein: fat ratio by BC results. Less protein content in myopathy bird could be due to probable higher mixed muscle degradation occurring in lean tissue as marked by elevated 3-methylhistidine expression in plasma. Microbiota results showed unclassified Lactobacillus as predominant genus with higher abundance occurring in myopathy group; whereas at species level, L. acidipiscis was predominant bacteria for non-myopathy broiler. Differentially significant metabolites (P < 0.05) identified from plasma metabolome between these two treatment groups were homocysteine, cyclic GMP, trimethylamine N-oxide (TMAO), tyramine, carnitine, and acetylcarnitine, which were all associated to cardiovascular system. The findings suggest that more research in meat broilers could be opted toward delivering reduced vascularity issues to alleviate this myopathy condition.
Collapse
Affiliation(s)
- Pramir Maharjan
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | | | | | | | | |
Collapse
|