1
|
Chaney E, Miller EA, Firman J, Binnebose A, Kuttappan V, Johnson TJ. Effects of a postbiotic, with and without a saponin-based product, on turkey performance. Poult Sci 2023; 102:102607. [PMID: 36933527 PMCID: PMC10036732 DOI: 10.1016/j.psj.2023.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Modern poultry production relies on an ability to prevent and mitigate challenges to bird health, while maintaining a productive bird. A number of different classes of biologics-based feed additives exist, and many have been tested individually for their impacts on poultry health and performance. Fewer studies have examined the combinations of different classes of products. In this study, we examined the use of a well-established postbiotic feed additive (Original XPC, Diamond V) on turkey performance, with and without the addition of a proprietary saponin-based feed additive. This was accomplished in an 18-wk pen trial utilizing 22 pen replicates per treatment across 3 treatments (control, postbiotic, and postbiotic plus saponin). Significant differences in body weight were identified at wk 12 and 15 of age, with the postbiotic plus saponin treatment group resulting in heavier birds at both timepoints. Significant differences in feed conversion ratio were observed from 0 to 18 wk of age, with the postbiotic alone having improved FCR compared with the control group. No significant differences were observed for livability or feed intake. This study demonstrates that a combination of a postbiotic plus saponin may exert additive effects on the growth of the turkey.
Collapse
Affiliation(s)
- Evan Chaney
- Diamond V, Cargill Health Technologies, Cedar Rapids, IA 52404, USA
| | - Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Jeffrey Firman
- Missouri Contract Poultry Research, Boonville, MO 65233, USA
| | - Andrea Binnebose
- Diamond V, Cargill Health Technologies, Cedar Rapids, IA 52404, USA
| | - Vivek Kuttappan
- Diamond V, Cargill Health Technologies, Cedar Rapids, IA 52404, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
2
|
Gunawardana T, Ahmed KA, Popowich S, Kurukulasuriya S, Lockerbie B, Karunarathana R, Ayalew LE, Liu M, Tikoo SK, Gomis S. Comparison of Therapeutic Antibiotics, Probiotics, and Synthetic CpG-ODNs for Protective Efficacy Against Escherichia coli Lethal Infection and Impact on the Immune System in Neonatal Broiler Chickens. Avian Dis 2022; 66:165-175. [PMID: 35723931 DOI: 10.1637/aviandiseases-d-22-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/25/2022] [Indexed: 11/05/2022]
Abstract
The poultry industry needs alternatives to antibiotics, as there are growing public concerns about the emergence of antimicrobial resistance owing to antimicrobial use in animal production. We have reported that the administration of neonatal chicks with synthetic DNA oligodeoxynucleotides containing unmethylated cytosine guanine dinucleotide (CpG) motifs (CpG-ODN) can protect against bacterial pathogens in chickens. The objective of this study was to compare the immunoprotective effects of CpG-ODN and probiotics against Escherichia coli infection vs. commonly used therapeutic antibiotics. Day-old broiler chicks were divided into five groups (n = 35/group; 30 for the challenge experiment and 5 for the flow cytometry analysis). The chicks in Group 1 received a single dose of CpG-ODN by the intramuscular route on day 4 (D4) posthatch (PH), and Group 2 received drinking water (DW) with a probiotic product (D1-D15 PH, DW). The Group 3 chicks received tetracycline antibiotics during D9-D13 in DW; the Group 4 chicks got sodium sulfamethazine on D9, D10, and D15 PH in DW; and the Group 5 chicks were administered intramuscular (IM) saline D4 PH, DW. We challenged all the groups (n = 30/group) with E. coli (1 × 105 or 1 × 106 colony-forming units/bird) on D8 PH through the subcutaneous route. Our data demonstrated that the CpG-ODNs, but not the probiotics, could protect neonatal broiler chickens against lethal E. coli septicemia, as would the tetracycline or sodium sulfamethazine. The flow cytometry analysis (n = 5/group) revealed enrichment of immune cells in the CpG-ODN group and a marked decrease in macrophages and T-cell numbers in antibiotics-treated groups, indicating immunosuppressive effects. Our data showed that, like therapeutic antibiotics, CpG-ODNs reduced clinical signs, decreased bacterial loads, and induced protection in chicks against E. coli septicemia. Unlike therapeutic antibiotics-induced immunosuppressive effects, CpG-ODN caused immune enrichment by increasing chicken immune cells recruitment. Furthermore, this study highlights that, although therapeutic antibiotics can treat bacterial infections, the ensuing immunosuppressive effects may negatively impact the overall chicken health.
Collapse
Affiliation(s)
- Thushari Gunawardana
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada,
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Shanika Kurukulasuriya
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Betty Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ruwani Karunarathana
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Lisanework E Ayalew
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Mengying Liu
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada,
| |
Collapse
|
3
|
β-Glucans from Yeast—Immunomodulators from Novel Waste Resources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging. This paper outlines yeast β-glucans’ immune-modulatory and anti-cancer effects, production and extraction, and their availability in waste streams.
Collapse
|
4
|
Efficacy of Scrophularia striata hydroalcoholic extract and mannan-oligosaccharide on productive performance, intestinal bacterial community, and immunity in broiler chickens after infection with Campylobacter jejuni. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Girgis G, McBride H, Boyle B, Araba M, Bodle B, Lohrmann T. Effects of a synbiotic combination of Bacillus subtilis and yeast cell wall-derived glucomannan on cecal colonization of Salmonella Enteritidis in layer chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Mirakzehi MT, Agah MJ, Baranzehi T, Saleh H. The Effects of Saccharomyces Cerevisiae and Citric Acid on Productive Performance, Egg Quality Parameters, Small Intestinal Morphology, and Immune-Related Gene Expression in Laying Japanese Quails. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2022-1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - MJ Agah
- Agricultural Research, Education and Extension Organization, Iran
| | | | - H Saleh
- Higher Education Complex of Saravan, Iran
| |
Collapse
|
7
|
Lambo MT, Chang X, Liu D. The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals (Basel) 2021; 11:2805. [PMID: 34679827 PMCID: PMC8532664 DOI: 10.3390/ani11102805] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
It has been established that introducing feed additives to livestock, either nutritional or non-nutritional, is beneficial in manipulating the microbial ecosystem to maintain a balance in the gut microbes and thereby improving nutrient utilization, productivity, and health status of animals. Probiotic use has gained popularity in the livestock industry, especially since antimicrobial growth promoter's use has been restricted due to the challenge of antibiotic resistance in both animals and consumers of animal products. Their usage has been linked to intestinal microbial balance and improved performance in administered animals. Even though monostrain probiotics could be beneficial, multistrain probiotics containing two or more species or strains have gained considerable attention. Combining different strains has presumably achieved several health benefits over single strains due to individual isolates' addition and positive synergistic adhesion effects on animal health and performance. However, there has been inconsistency in the effects of the probiotic complexes in literature. This review discusses multistrain probiotics, summarizes selected literature on their effects on ruminants, poultry, and swine productivity and the various modes by which they function.
Collapse
Affiliation(s)
- Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Xiaofeng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Dasen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
- College of Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Suganuma K, Hamasaki T, Hamaoka T. Effect of dietary direct-fed microbial and yeast cell walls on cecal digesta microbiota of layer chicks inoculated with nalidixic acid resistant Salmonella Enteritidis. Poult Sci 2021; 100:101385. [PMID: 34388441 PMCID: PMC8363884 DOI: 10.1016/j.psj.2021.101385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) has consistently been the most common serotype associated with the foodborne Salmonellosis worldwide. In this study, the effect of a dietary direct-fed microbial (DFM) and yeast cell walls (YCW) under a challenge of nalidixic acid resistant SE strain using layer chicks has been investigated. A total of 160 newly hatched Dekalb White female chicks were randomly assigned into 2 experimental groups (80 birds/treatment), control group (CON) and treatment group (DY). Chicks were fed ad libitum a non–medicated-corn-soy based diet and DY was supplemented with the combination of DFM and YCW. At 8 days of age, 2.1 × 109 CFU/bird of the SE was given to all chicks by oral administration. On 3 days postinoculation (dpi), 20 chicks/group were euthanized and all cecal contents were collected for analysis. On 6, 10, and 14 dpi, the cecal contents were sampled from 16 chicks per group. The number of SE in the cecal contents was counted using culture-based methods. A 16S rRNA-based microbiota analysis was performed for additional microbial profiling. The CON and DY showed difference (P ≤ 0.05) in β diversity throughout the trial. Prevalence of SE in cecal contents was lower (P ≤ 0.05) in DY across all time-points. Lower abundance of Salmonella spp. was also shown in DY by liner discriminant analysis effect size (LEfSe). DY increased (P ≤ 0.05) diversity of bacterial species in the cecal contents in DY at 10 and 14 dpi. For the SE challenged birds, SE reduction in DY was observed at 3 dpi and until the end of the trial at 14 dpi confirming a numerically larger difference between groups as well as an increase in bacterial species diversity in DY. It could be hypothesized that the SE reduction shown immediately after the challenge and the greater SE reduction shown after 10 dpi may be the synergistic effect of the combined feed additives.
Collapse
|
9
|
Novel multi-strain probiotics reduces Pasteurella multocida induced fowl cholera mortality in broilers. Sci Rep 2021; 11:8885. [PMID: 33903662 PMCID: PMC8076301 DOI: 10.1038/s41598-021-88299-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pasteurella multocida causes fowl cholera, a highly contagious poultry disease of global concern, causing significant ecological and economic challenges to the poultry industry each year. This study evaluated the effects of novel multi-strain probiotics consisting of Lactobacillus plantarum, L. fermentum, Pediococcus acidilactici, Enterococcus faecium and Saccharomyces cerevisiae on growth performance, intestinal microbiota, haemato-biochemical parameters and anti-inflammatory properties on broilers experimentally challenged with P. multocida. A total of 120 birds were fed with a basal diet supplemented with probiotics (108 CFU/kg) and then orally challenged with 108 CFU/mL of P. multocida. Probiotics supplementation significantly (P < 0.05) improved growth performance and feed efficiency as well as reducing (P < 0.05) the population of intestinal P. multocida, enterobacteria, and mortality. Haemato-biochemical parameters including total cholesterol, white blood cells (WBC), proteins, glucose, packed cell volume (PCV) and lymphocytes improved (P < 0.05) among probiotic fed birds when compared with the controls. Transcriptional profiles of anti-inflammatory genes including hypoxia inducible factor 1 alpha (HIF1A), tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) and prostaglandin E receptor 2 (PTGER2) in the intestinal mucosa were upregulated (P < 0.05) in probiotics fed birds. The dietary inclusion of the novel multi-strain probiotics improves growth performance, feed efficiency and intestinal health while attenuating inflammatory reaction, clinical signs and mortality associated with P. multocida infection in broilers.
Collapse
|
10
|
Nooreh Z, Taherpour K, Akbari Gharaei M, Shirzadi H, Ghasemi HA. Effects of a dietary direct-fed microbial and Ferulago angulata extract on growth performance, intestinal microflora, and immune function of broiler chickens infected with Campylobacter jejuni. Poult Sci 2021; 100:100942. [PMID: 33518316 PMCID: PMC7936196 DOI: 10.1016/j.psj.2020.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Colonization of the gastrointestinal tract by potentially pathogenic bacteria and their shedding in animal feces is a fundamental factor for both animal health and human food safety. This study was conducted to evaluate the efficacy of salinomycin (Sal), direct-fed microbial (DFM), and Ferulago angulata hydroalcoholic extract (FAE) against Campylobacter jejuni in broiler chickens in a 6-week pilot-scale study. A total of six hundred and seventy two 1-day-old broiler chickens were equally divided into 6 groups (each consisting of 8 replicates of 14 birds): negative control (NC; untreated and uninfected); positive control (PC; untreated, infected with C. jejuni); PC + Sal; PC + DFM; PC + 200 mg/kg of FAE (FAE200); or PC + 400 mg/kg of FAE (FAE400). All these groups (except NC) were challenged with C. jejuni on day 15. The results showed that all experimental treatments improved (P < 0.05) average daily gain compared with the PC group, and the best value was observed in the NC and FAE400 groups throughout the entire experimental period (day 1-42). The overall feed conversion ratio and mortality rate, as well as the population of C. jejuni (day 24 and 42) and Coliforms (day 42) in the ileum and cecum, were higher (P < 0.05) in broiler chickens fed with the PC diet than for chickens in the other groups, except those in the FAE200 group. Immune responses revealed that among challenged birds, those that were fed diets DFM and FAE400 had significantly higher IgG (day 24 and 42), IgA (day 24), IL-6 (day 24), and gamma interferon (day 24 and 42) concentrations than the PC group. In conclusion, dietary FAE, especially at a high level of inclusion in broiler diet (400 mg/kg), could beneficially influence the immune status, as well as improve growth performance and intestinal microflora under Campylobacter challenge, which was comparable to those of Sal and DFM supplements.
Collapse
Affiliation(s)
- Zahra Nooreh
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | | | - Hassan Shirzadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| |
Collapse
|
11
|
Zamanizadeh A, Mirakzehi MT, Agah MJ, Saleh H, Baranzehi T. A comparison of two probiotics Aspergillus oryzae and, Saccharomyces cerevisiae on productive performance, egg quality, small intestinal morphology, and gene expression in laying Japanese quail. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1878944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abbas Zamanizadeh
- Department of Animal Science, Higher Education Complex of Saravan, Sistan and Baluchestan, Saravan, Iran
| | - Mohammad Taher Mirakzehi
- Department of Animal Science, Higher Education Complex of Saravan, Sistan and Baluchestan, Saravan, Iran
| | - Mohammad Javad Agah
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Hassan Saleh
- Department of Animal Science, Higher Education Complex of Saravan, Sistan and Baluchestan, Saravan, Iran
| | - Tayebeh Baranzehi
- Departement of biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
12
|
Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. Int J Biol Macromol 2021; 173:445-456. [PMID: 33497691 DOI: 10.1016/j.ijbiomac.2021.01.125] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
In order to solve the antibiotic resistance, the research on antibiotic substitutes has received an extensive attention. Many studies have shown that β-glucan and mannan from yeast cell wall have the potential to replace antibiotics for the prevention and treatment of animal diseases, thereby reducing the development and spread of antibiotic-resistant bacterial pathogens. β-Glucan and mannan had a variety of biological functions, including improving the intestinal environment, stimulating innate and acquired immunity, adsorbing mycotoxins, enhancing antioxidant capacity, and so on. The biological activities of β-glucan and mannan can be improved by chemically modifying its primary structure or reducing molecular weight. In this paper, the structure, preparation, modification, and biological activities of β-glucan and mannan were reviewed, which provided future perspectives of β-glucan and mannan.
Collapse
|
13
|
Saettone V, Biasato I, Radice E, Schiavone A, Bergero D, Meineri G. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals (Basel) 2020; 10:ani10122199. [PMID: 33255356 PMCID: PMC7759783 DOI: 10.3390/ani10122199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Antibiotic resistance represents a worldwide recognized issue affecting both human and veterinary medicine, with a particular focus being directed towards monogastric animals destined for human consumption. This scenario is the result of frequent utilization of the antibiotics either for therapeutic purposes (humans and animals) or as growth promoters (farmed animals). Therefore, the search for nutritional alternatives has progressively been the object of significant efforts by the scientific community. So far, probiotics, prebiotics and postbiotics are considered the most promising products, as they are capable of preventing or treating gastrointestinal diseases as well as restoring a eubiosis condition after antibiotic-induced dysbiosis development. This review provides an updated state-of-the-art of these nutritional alternatives in both humans and monogastric animals. Abstract In recent years, the indiscriminate use of antibiotics has been perpetrated across human medicine, animals destined for zootechnical productions and companion animals. Apart from increasing the resistance rate of numerous microorganisms and generating multi-drug resistance (MDR), the nonrational administration of antibiotics causes sudden changes in the structure of the intestinal microbiota such as dysbiotic phenomena that can have a great clinical significance for both humans and animals. The aim of this review is to describe the state-of-the-art of alternative therapies to the use of antibiotics and their effectiveness in humans and monogastric animals (poultry, pigs, fish, rabbits, dogs and cats). In particular, those molecules (probiotics, prebiotics and postbiotics) which have a direct function on the gastrointestinal health are herein critically analysed in the prevention or treatment of gastrointestinal diseases or dysbiosis induced by the consumption of antibiotics.
Collapse
Affiliation(s)
- Vittorio Saettone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy
- Correspondence:
| | - Elisabetta Radice
- Department of Surgical Sciences, Medical School, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy;
| | - Achille Schiavone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Domenico Bergero
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| |
Collapse
|
14
|
Rahimi S, Kathariou S, Fletcher O, Grimes JL. The effectiveness of a dietary direct-fed microbial and mannan oligosaccharide on ultrastructural changes of intestinal mucosa of turkey poults infected with Salmonella and Campylobacter. Poult Sci 2020; 99:1135-1149. [PMID: 32036965 PMCID: PMC7587720 DOI: 10.1016/j.psj.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023] Open
Abstract
Salmonella and Campylobacter are considered major public health burdens worldwide, and poultry are known to be one of the main reservoirs for these zoonotic pathogens. This study was conducted to evaluate the effect of a commercial probiotic or direct-fed microbial (DFM) Calsporin (CSP), and prebiotic or mannan oligosaccharide (MOS) (IMW50) on ultrastructural changes and the villous integrity of intestinal mucosa in turkey poults challenged with Salmonella and Campylobacter. A 21-day battery cage study was conducted using 4 dietary treatments including a basal diet (corn and soybean-based) nonsupplemented and uninfected as a negative control (NC); basal diet supplemented with 0.05% DFM (CSP); basal diet supplemented with 0.05% MOS (IMW50); and basal diet supplemented with 0.05% mixture of DFM and MOS at equal proportions. Female large white turkey poults aged 336 days were obtained from a local commercial hatchery and randomly distributed in electrically heated battery cages with 12 treatments of 4 replicates per treatment containing 7 poults per pen. The first 16 pens were not infected with bacteria, poults in pens 17-32 were orally challenged at day 7 with 105 cfu Salmonella Heidelberg, and the poults in pens 33-48 were orally challenged at day 7 with 105 cfu Campylobacter jejuni. Feed and water were provided ad libitum throughout the study. At day 21, ileal tissue samples from 1 bird per cage were collected for intestinal integrity and ultrastructural examination by scanning and electron microscopy. DFM and MOS supplementation was effective in both challenged and nonchallenged (not infected with Salmonella and Campylobacter) birds. Goblet cells and mucus were increased, with the presence of large numbers of segmented filamentous bacteria in DFM- and MOS-supplemented groups compared with birds in control treatments. The number and size of villi were reduced in poults exposed to Salmonella and Campylobacter. Results show that CSP and IMW50 provide protection of ileal mucosal integrity in poults exposed to Salmonella or Campylobacter.
Collapse
Affiliation(s)
- Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336 Tehran, Iran
| | - Sophia Kathariou
- Department of Food Bioprocessing and Nutrition Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695-7608
| | - Oscar Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695-7608
| | - Jesse L Grimes
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608.
| |
Collapse
|