1
|
Ceylan N, Bortoluzzi C, Gunturkun O, Perez-Calvo E. Comparative effects of dietary muramidase and phytogenics on the growth performance and gastrointestinal functionality of broiler chickens. Poult Sci 2024; 103:104147. [PMID: 39127005 PMCID: PMC11367120 DOI: 10.1016/j.psj.2024.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of the present study was to compare the effectiveness of dietary supplementation of muramidase (MUR) and 2 phytogenic additives on the growth performance, intestinal morphology, bacteria load, and production of short-chain fatty acids (SCFA) of broiler chickens raised under field-like conditions. A total of 6,400 day-old Ross 308 broiler chicks were randomly selected and distributed into 32 floor pens, with 200 chicks (100 males and 100 females)/pen. The treatment groups were an unsupplemented control, and the experimental groups supplemented with MUR at 35,000 LSU(F)/kg of feed, phytogenic 1 (Phyto 1, based on thymol) at 100g/ton feed, or phytogenic 2 (Phyto 2, based on alkaloids) at 60g/ton feed, for a total period of 41 d. A 4-phase feeding program was applied (starter, grower, finisher and withdrawal). The paramenters evaluated were: growth performance, carcass yield, concentration of muranic acid in the jejunum content and excreta, liver enzyme concentration, intestinal morphology, and bacteria enumeration and short and branch chain fatty acids (SCFA and BCFA) in the cecal content. Data were analyzed by ANOVA and Tukey's test was used to separate the means. Soluble muramic acid (MurN) in the jejunum increased with the supplementation of MUR and Phyto 2 when compared to the other groups (P = 0.0001), but only the supplementation of MUR increased the concentration of MurN in the excreta. The supplementation of all feed additives improved the body weight gain and the body weight corrected feed conversion ratio when compared to the control group (P = 0.0001). MUR increased villus heigh (VH) when compared to the control or the other supplemented groups (P = 0.0001), and led to the highest concentration of most SCFA, total BCFA, and total SCFA (P < 0.05). In conclusion, the supplementation of MUR and phytogenics to the diets of broiler chickens improved the growth performance, but MUR, only, was capable of effectively degrading peptidoglycans (PGNs) in both intestinal segments, as well as to increase the abundance of beneficial bacteria and SCFA production.
Collapse
Affiliation(s)
- Necmettin Ceylan
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara, Türkiye.
| | | | - Oguz Gunturkun
- dsm-firmenich, Animal Nutrition and Health, İstanbul, Türkiye
| | | |
Collapse
|
2
|
Bortoluzzi C, Bittencourt LC, Perez-Calvo E, Belote BL, Soares I, Santin E, Sorbara JOB, Caron LF. A microbial muramidase improves growth performance and reduces inflammatory cell infiltration in the intestine of broilers chickens under Eimeria and Clostridium perfringens challenge. Poult Sci 2024; 103:103226. [PMID: 37995420 PMCID: PMC10701120 DOI: 10.1016/j.psj.2023.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
The objective of the present studies was to evaluate muramidase (MUR) supplementation in broilers under Eimeria and/or Clostridium perfringens challenge. For this, 2 experiments were conducted. Experiment 1. A total of 256 one-day old male Cobb 500 chicks were placed in battery cages in a completely randomized design, with 5 treatment groups, 7 replicate cages per treatment and 8 birds per cage. The treatments were: nonchallenged control (NC), challenged control (CC), CC + MUR at 25,000 or 35,000 LSU(F)/kg, and CC + Enramycin at 10 ppm (positive control-PC). Challenge consisted of 15× the recommended dose of coccidiosis vaccine at placement, and Clostridium perfringens (108 CFU/bird) inoculation at 10, 11, and 12 d. Macro and microscopic evaluation, immunohistochemistry, and gene expression were evaluated at 7, 14, 21, and 28 d of age. Experiment 2. A total of 1,120 one-day old male Cobb 500 chicks were placed in floor pens with fresh litter in a completely randomized design, with 4 treatment groups, 8 replicate pens per treatment, and 35 birds per pen. The treatments were: Control, supplementation of MUR at 25,000 or 45,000 LSU(F)/kg, and a positive control (basal diet plus Enramycin). At 10, 11, and 12 d of the experiment all the birds were inoculated by oral gavage with a fresh broth culture of a field isolate Clostridium perfringens (0.5 mL containing 106 CFU/bird). It was observed that in Experiment 1 MUR supplementation reduced the infiltration of macrophages and CD8+ lymphocytes in the liver and ileum of infected birds, downregulated IL-8 and upregulated IL-10 expression. In Experiment 2, MUR linearly improved the growth performance of the birds, increased breast meat yield, and improved absorption capacity. MUR supplementation elicited an anti-inflammatory response in birds undergoing a NE challenge model that may explain the improved growth performance of supplemented birds.
Collapse
|
3
|
Omar AE, El-Rahman GIA, Gouda A, Abdel-Warith AWA, Younis EM, Abdo SA, Eltanahy A, Kamal AS, Davies SJ, Amer SA. Effects of Dietary Microbial Muramidase on the Growth, Liver Histoarchitecture, Antioxidant Status, and Immunoexpression of Pro-Inflammatory Cytokines in Broiler Chickens. Animals (Basel) 2023; 13:3862. [PMID: 38136899 PMCID: PMC10740586 DOI: 10.3390/ani13243862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The impact of microbial muramidase (MMUR) addition to broiler chicken rations was evaluated through growth parameters, liver histoarchitecture, antioxidant status, biochemical analysis, and expression of pro-inflammatory cytokines for 35 days. Four hundred three-day-old chicks (97.68 ± 0.59 g) were distributed to four distinct groups with ten duplicates each (100 chicks/group) consisting of: group 1 (G1): a basal diet without MMUR (control group); G2: a basal diet + 200 mg MMUR kg-1 G3: a basal diet + 400 mg MMUR kg-1; and G4: a basal diet + 600 mg MMUR kg-1. The results showed that the final body weight and total weight gain were increased (p = 0.015) in birds fed with diets supplemented with MMUR at 600 mg kg-1. The feed conversion ratio (FCR) was improved in all treatment groups compared with the control group. Birds fed with a diet supplemented with 600 mg MMUR kg-1 showed the highest body weight gain and improved FCR. The values of thyroxin hormones and growth hormones were increased in all MMUR-supplemented groups. Dietary MMUR increased the activities of antioxidant enzymes (total antioxidant activity, catalase, and superoxide dismutase) and decreased the activity of malondialdehyde (p < 0.05). In addition, it increased the values of interleukin 1 beta and interferon-gamma compared with the control group. Furthermore, dietary MMUR increased the expression of transforming growth factor-beta immunostaining in the liver and spleen tissues. Our results show that supplementing broilers' diets with 600 mg MMUR kg-1 could enhance the chicken growth rate and improve their antioxidant, inflammatory, and anti-inflammatory responses.
Collapse
Affiliation(s)
- Anaam E. Omar
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed Gouda
- Animal Production Department, Agricultural & Biological Research Division, National Research Center, Dokki, Cairo 11865, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samar A. Abdo
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Azhar Eltanahy
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Said Kamal
- Department of Birds and Rabbit Medicine, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Shimaa A. Amer
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
4
|
Bortoluzzi C, Perez-Calvo E, Olsen PB, van der Vaart S, van Eerden E, Schmeisser J, Eising I, Segobola P, Sorbara JOB. Effect of microbial muramidase supplementation in diets formulated with different fiber profiles for broiler chickens raised under various coccidiosis management programs. Poult Sci 2023; 102:102955. [PMID: 37572621 PMCID: PMC10440566 DOI: 10.1016/j.psj.2023.102955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023] Open
Abstract
The objective of the present study was to determine the effects of muramidase (MUR) supplemented to diets formulated with different fiber sources (inert or fermentable) on the growth performance and intestinal parameters of broiler chickens raised under different coccidiosis management programs. A total of 2,208 male Ross 308 broilers were housed in 96 floor pens and distributed into a 2 × 3 × 2 factorial arrangement in a completely randomized block design with 2 sources of fiber (inert or fermentable fiber), 3 coccidiosis management programs (none, vaccine, or Salinomycin), and with or without supplementation of MUR at 35,000 LSU(F)/kg of diet. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were calculated for each feeding phase (d 0-14, d 14-28, d 28-36) and from d 0 to 36. On d 17 and d 31, samples were taken to analyze several parameters. The experimental data were analyzed with 3-way ANOVA considering the main effect of fiber source, coccidiosis program, inclusion of MUR, and their interactions using JMP 16.2. 16S rDNA sequencing of the ileal and cecal content was carried out to analyze the diversity, composition, and predictive function of the microbiota. From d 0 to 36, BWG increased (P = 0.05) by 2.5% in birds supplemented with Salinomycin (P = 0.04), and by 2.2% with MUR supplementation (P = 0.02). Salinomycin and MUR improved FCR (P < 0.0001) when compared to nonsupplemented birds. The supplementation of MUR, regardless of the coccidiosis management program, reduced the intestinal viscosity (P = 0.03). On d 31, the highest blood concentration of carotenoids was observed in chickens fed diets supplemented with Salinomycin. MUR led to significant changes in the diversity, composition, and predictive function of the ileal microbiota, mainly on d 31. The results observed herein further explain the positive effects of MUR on the growth performance of broiler chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Eising
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | | |
Collapse
|
5
|
Amer SA, Farahat M, Gouda A, Abdel-Wareth AAA, Abdel-Warith AWA, Younis EM, Elshopakey GE, Baher WM, Saleh GK, Davies SJ, Attia GA. New Insights into the Effects of Microbial Muramidase Addition in the Diets of Broiler Chickens. Animals (Basel) 2023; 13:1356. [PMID: 37106919 PMCID: PMC10135279 DOI: 10.3390/ani13081356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The study aimed to explore how broiler chickens' blood biochemistry, breast muscles' fatty acid profile, growth, intestinal morphology, and immune status would be influenced by adding microbial muramidase (MUR) to the diet. Four hundred 3-day-old male broiler chickens were allocated to a completely randomized design consisting of four nutritional treatments (n = 100 per treatment, 10 chicks/replicate), each containing MUR at levels of 0 (control group), 200, 400, and 600 mg Kg-1 diet, with enzyme activity 0, 12,000, 24,000, and 36,000 LSU(F)/kg diet, respectively. The 35-day experiment was completed. The findings showed that adding MUR to broiler meals in amounts of 200, 400, or 600 mg/kg had no impact on growth performance (p > 0.05) during the periods of 4-10, 11-23, and 24-35 days of age. MUR supplementation quadratically impacted the feed conversion ratio of broiler chicks at 11 and 23 days of age (p = 0.02). MUR addition to the diet significantly and level-dependently enhanced the percentage of n-3 and n-6 polyunsaturated fatty acids (PUFA) in breast muscles (p ≤ 0.01), with no alterations to the sensory characteristics of the breast muscles. Dietary MUR increased most of the morphometric dimensions of the small intestine, with the best results recorded at the 200 and 400 mg Kg-1 levels. MUR supplementation at 200, 400, and 600 mg kg-1 linearly lowered the total cholesterol, triglycerides, and low-density lipoprotein cholesterol level (p < 0.01). Still, it significantly increased the high-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol contents compared with the unsupplemented group. Compared to controls, there was a substantial rise in the blood concentration of total protein, albumin, globulin, IL10, complement 3, and lysozyme activity as MUR levels increased (p < 0.01). Moreover, MUR addition significantly increased the immunoexpression of lymphocyte subpopulation biomarkers. We could conclude that MUR can be added to broiler chicken diets up to 600 mg kg -1 to improve broiler chickens' fatty acid profile in breast muscles, immunity, and blood biochemistry. MUR addition had no positive influence on the bird's growth.
Collapse
Affiliation(s)
- Shimaa A. Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Farahat
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed Gouda
- Animal Production Department, Agricultural & Biological Research Division, National Research Center, Dokki, Cairo 11865, Egypt
| | - Ahmed A. A. Abdel-Wareth
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gehad Elsaid Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 53511, Egypt
| | - Weam Mohamed Baher
- Food Hygiene Department, Animal Health Research Institute (AHRI) (Mansoura Branch) Agriculture Research Center (ARC), P.O. Box 246, Dokki, Giza 12618, Egypt
| | - Gehan K. Saleh
- Biochemistry Department, Animal Health Research Institute (AHRI) (Mansoura Branch) Agriculture Research Center (ARC), P.O. Box 246, Dokki, Giza 12618, Egypt
| | - Simon J. Davies
- School of Science and Engineering, National University of Ireland Galway Republic of Ireland, H91 TK33 Galway, Ireland
| | - Ghadeer A. Attia
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
6
|
Walk CL, Alleno C, Bouvet R, Thoby JM, Eising I, Segobola P. Dietary muramidase improved growth performance, feed efficiency, breast meat yield, and welfare of turkeys from hatch to market. Poult Sci 2023; 102:102716. [PMID: 37148570 DOI: 10.1016/j.psj.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023] Open
Abstract
Muramidase is an enzyme that hydrolyzes peptidoglycans of bacterial cell walls and improves performance of broilers in a dose-dependent manner. An experiment was conducted to evaluate muramidase supplementation, at a high or step-down dose, in turkeys from hatch to market. Male, B.U.T. 6 turkey poults were placed in 24 floor pens at 32 birds per pen. Poults were fed 1 of 3 diets from d 1 to 126 of age. There were 8 replicate pens per treatment. The treatments were a control (CTL) diet, the CTL plus muramidase at 45,000 LSU(F)/kg from phase 1 to 6 (BAL45), and the CTL plus muramidase at 45,000 LSU(F)/kg from phase 1 to 3 and decreased to 25,000 LSU(F)/kg from phase 4 to 6 (BAL45-25). Data were analyzed using SAS. The model included treatment and block and means were separated by Fisher LSD test. Birds fed BAL45 were heavier (P < 0.05) and had a greater (P < 0.05) average daily gain compared with birds fed the CTL from hatch to d 126 of age. Birds fed BAL45-25 had a final BW and average daily gain intermediate to or equivalent to birds fed BAL45 at the same phases. Feed conversion ratio was improved (P < 0.05) in birds fed BAL45 compared with birds fed the CTL and intermediate in birds fed BAL45-25. Breast meat yield was greater (P < 0.05) in turkeys fed muramidase, regardless of dose, compared with birds fed the CTL. There was no effect of treatment on muramic acid content in the jejunum digesta or litter scores. The frequency of pododermatitis score 1 was greater (P < 0.05) and score 2 was lower (P < 0.05) in birds fed muramidase, regardless of dose, compared with birds fed the CTL diet. In conclusion, muramidase supplementation improved performance, breast meat yield, feed efficiency and some markers of welfare, proportional to the dose in the diets.
Collapse
Affiliation(s)
- C L Walk
- DSM Nutritional Products, Animal Nutrition Research Center, Wurmisweg 576 4303, Kaiseraugst, Switzerland.
| | - C Alleno
- Zootest SAS, Zoopole Technology Park, Gabriel Calloet Kerbrat 22440, Ploufragan, France
| | - R Bouvet
- Zootest SAS, Zoopole Technology Park, Gabriel Calloet Kerbrat 22440, Ploufragan, France
| | - J-M Thoby
- DSM Nutritional Products, 71 Boulevard National 92250, La Garenne-Colombes, France
| | - I Eising
- DSM Nutritional Products, Animal Nutrition Research Center, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - P Segobola
- DSM Nutritional Products, Animal Nutrition Research Center, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| |
Collapse
|
7
|
Pérez-Calvo E, Aureli R, Sorbara J, Cowieson A. Dietary muramidase increases ileal amino acid digestibility of wheat and corn-based broiler diets without affecting endogenous amino acid losses. Poult Sci 2023; 102:102619. [PMID: 37068354 PMCID: PMC10130490 DOI: 10.1016/j.psj.2023.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The objective of these studies was to evaluate the impact of dietary muramidase (MUR) on endogenous amino acids (AA) losses and digestibility of nutrients in wheat and corn-based broiler diets. In experiment 1, the effect of dietary MUR on the flow of endogenous AA (EAA) at the jejunum and terminal ileum of broilers were assessed using either the nitrogen (N) free diet method (NFD) or the highly digestible protein diet method (HDP; 100 g casein/kg diet). Sialic acid and muramic acid concentrations were measured in the jejunal content. In experiment 2, a 2x2x2 factorial arrangement of treatments with 2 base grains (wheat or corn), with low or high metabolizable energy (ME) levels, and without or with MUR supplementation was implemented. All diets contained phytase, xylanase, and cellulase. Apparent ileal digestibility (AID) of dry matter (DM), protein (CP), amino acids (AA), crude fat, and energy, as well as the apparent total tract metabolizability (ATTM) of DM, CP, and gross energy (GE) were determined. The standardized ileal digestibility (SID) of AA was obtained by correcting AID values for basal ileal EAA obtained from chicks fed with NFD or HDP in experiment 1, jejunal EAA flow of all AA was higher (P < 0.001) compared to the ileum, but this effect was method dependent. Jejunal, but not ileal, EAA flow measured with HDP was higher compared to NFD, as well as sialic acid (P < 0.001) and muramic acid (P < 0.004) concentrations. Muramidase inclusion had no effect on basal EAA flow, independently of the segment and the method used. In experiment 2, dietary MUR supplementation increased the AID of CP (P < 0.05), all AA, and tended (P = 0.07) to increase the AID of GE, independently of the cereal type used. However, ATTM of DM and GE, but not CP, increased with MUR inclusion compared with the control treatments, especially in wheat and low ME diets (P < 0.05). In conclusion, MUR supplementation improved AID of CP and AA without affecting EAA losses and increases energy utilization.
Collapse
|
8
|
Zhang Y, Lin Y, Galgano S, Houdijk J, Xie W, Jin Y, Lin J, Song W, Fu Y, Li X, Chui W, Kan W, Jia C, Hu G, Li T. Recent Progress in Phage Therapy to Modulate Multidrug-Resistant Acinetobacter baumannii, including in Human and Poultry. Antibiotics (Basel) 2022; 11:1406. [PMID: 36290064 PMCID: PMC9598230 DOI: 10.3390/antibiotics11101406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems. Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage therapy has gained particular importance for the treatment of bacterial infections. This review summarizes the different phage-therapy approaches currently in use for multiple-drug resistant Acinetobacter baumannii, including single phage therapy, phage cocktails, phage-antibiotic combination therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies based on phage interventions. Although phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered questions, especially in regard to its in vivo applications, before possible routine clinical use.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Yuanqing Lin
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Salvatore Galgano
- Monogastric Science Research Centre, Scotland’s Rural College, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - Jos Houdijk
- Monogastric Science Research Centre, Scotland’s Rural College, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - Weiquan Xie
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yajie Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jiameng Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Wuqiang Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yijuan Fu
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Xiuying Li
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Wenting Chui
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Wei Kan
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Cai Jia
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Guangwei Hu
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| |
Collapse
|
9
|
Goes EC, Dal Pont GC, Maiorka A, Bittencourt LC, Bortoluzzi C, Fascina VB, Lopez-Ulibarri R, Calvo EP, Beirão BC, Caron LF. Effects of a microbial muramidase on the growth performance, intestinal permeability, nutrient digestibility, and welfare of broiler chickens. Poult Sci 2022; 101:102232. [PMID: 36334425 PMCID: PMC9627589 DOI: 10.1016/j.psj.2022.102232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
The objective of these studies was to evaluate the inclusion of a microbial muramidase (MUR) in the diets of broiler chickens on the growth performance, intestinal permeability (IP), total blood carotenoid content, apparent ileal digestibility (AID), and foot pad dermatitis (FPD). In Experiment 1, a total of 1,000 one-day-old chicks were placed in floor-pens with reused litter, and randomly distributed into 4 treatments with 10 replicates each. Treatments were a basal diet (control), or basal diet supplemented with 15,000; 25,000 or 35,000 LSU (F)/kg of MUR. Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were evaluated at d 21 and 43. Intestinal permeability was evaluated on d 35 by FITC-d, and FPD and AID on d 43. In Experiment 2, a total of 800 one-day-old chicks were placed in floor-pens with fresh litter, and randomly distributed into 4 treatments with 8 replicates each. Treatments were a basal diet (control), or basal diet supplemented with 25,000 or 35,000 LSU (F)/kg of MUR, and a fourth group where the basal diet was supplemented with enramycin. The birds were induced to a mild intestinal challenge. Feed intake, BWG, and FCR were evaluated on d 21 and d 42, and total blood concentration of carotenoids was evaluated on d 28. In experiment 1, 35,000 LSU (F)/kg of MUR promoted the best FCR (P < 0.05). Muramidase supplementation linearly increased the AID of dry matter, ash, and fat (P < 0.01), and regardless of the dose, MUR decreased the IP (P < 0.05). In Experiment 2, the supplementation of 35,000 LSU (F)/kg of MUR improved BWG and FCR in the entire cycle (1–42 d) and increased the concentration of carotenoids in the blood on d 28 compared to the control group (P < 0.05). These studies show that MUR improves growth performance of broilers by improving intestinal permeability, digestibility of dry matter, ash and fat, absorption of carotenoids, and reducing FPD.
Collapse
Affiliation(s)
| | | | - Alex Maiorka
- UFPR - Federal University of Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | - Luiz F. Caron
- UFPR - Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
10
|
Brugaletta G, De Cesare A, Laghi L, Manfreda G, Zampiga M, Oliveri C, Pérez-Calvo E, Litta G, Lolli S, Sirri F. A multi-omics approach to elucidate the mechanisms of action of a dietary muramidase administered to broiler chickens. Sci Rep 2022; 12:5559. [PMID: 35365750 PMCID: PMC8976025 DOI: 10.1038/s41598-022-09546-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
A novel dietary muramidase has been shown to have positive effects on broiler chickens. However, very little is known about its mechanisms of action. The present multi-omics investigation sought to address this knowledge gap. A total of 2,340 day-old male broilers were assigned to 3 groups (12 replicates each) fed, from 0 to 42 d, a basal diet (control group—CON) or the basal diet supplemented with muramidase at 25,000 (low-dose group—MUL) or 45,000 LSU(F)/kg feed (high-dose group—MUH). MUH significantly outperformed CON in terms of cumulative feed intake (4,798 vs 4,705 g), body weight (2,906 vs 2,775 g), and feed conversion ratio (1.686 vs 1.729), while MUL exhibited intermediate performance. At caecal level, MUH showed the lowest alpha diversity, a significantly different beta diversity, a reduction in Firmicutes, and a rise in Bacteroidetes, especially compared with MUL. MUH also exhibited a considerable decrease in Clostridiaceae and an overrepresentation of Bacteroidaceae and Lactobacillaceae. At blood level, MUH had lower hypoxanthine—probably due to its drop at caecal level—histidine, and uracil, while greater pyruvate, 2-oxoglutarate, and glucose. This study sheds light on the mode of action of this muramidase and lays the groundwork for future investigations on its effects on the intestinal ecosystem and systemic metabolism of broiler chickens.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy.
| | - Luca Laghi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Chiara Oliveri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Estefanía Pérez-Calvo
- Research Center for Animal Nutrition and Health, DSM Nutritional Products, Village-Neuf, Saint Louis, 68305, France
| | - Gilberto Litta
- DSM Nutritional Products, Animal Nutrition and Health, Segrate, Milano, 20054, Italy
| | - Susanna Lolli
- DSM Nutritional Products, Animal Nutrition and Health, Segrate, Milano, 20054, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| |
Collapse
|
11
|
Frederiksen CØ, Cohn MT, Skov LK, Schmidt EGW, Schnorr KM, Buskov S, Leppänen M, Maasilta I, Perez-Calvo E, Lopez-Ulibarri R, Klausen M. A muramidase from Acremonium alcalophilum hydrolyse peptidoglycan found in the gastrointestinal tract of broiler chickens. J Ind Microbiol Biotechnol 2021; 48:6128676. [PMID: 33693885 PMCID: PMC9113140 DOI: 10.1093/jimb/kuab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
This study evaluates peptidoglycan hydrolysis by a microbial muramidase from the
fungus Acremonium alcalophilum in vitro and in the
gastrointestinal tract of broiler chickens. Peptidoglycan used for in
vitro studies was derived from 5 gram-positive chicken gut isolate
type strains. In vitro peptidoglycan hydrolysis was studied by
three approaches: (a) helium ion microscopy to identify visual phenotypes of
hydrolysis, (b) reducing end assay to quantify solubilization of peptidoglycan
fragments, and (c) mass spectroscopy to estimate relative abundances of soluble
substrates and reaction products. Visual effects of peptidoglycan hydrolysis
could be observed by helium ion microscopy and the increase in abundance of
soluble peptidoglycan due to hydrolysis was quantified by a reducing end assay.
Mass spectroscopy confirmed the release of hydrolysis products and identified
muropeptides from the five different peptidoglycan sources. Peptidoglycan
hydrolysis in chicken crop, jejunum, and caecum samples was measured by
quantifying the total and soluble muramic acid content. A significant increase
in the proportion of the soluble muramic acid was observed in all three segments
upon inclusion of the microbial muramidase in the diet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miika Leppänen
- Department of Biological and Environmental Sciences and Department of Physics, University of Jyvaskyla, Jyvaskyla, FI-40014, Finland
| | - Ilari Maasilta
- Department of Physics, University of Jyvaskyla, Jyvaskyla, FI-40014, Finland
| | - Estefania Perez-Calvo
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, Village-Neuf, F-68305 Saint Louis, France
| | | | | |
Collapse
|
12
|
Fungal GH25 muramidases: New family members with applications in animal nutrition and a crystal structure at 0.78Å resolution. PLoS One 2021; 16:e0248190. [PMID: 33711051 PMCID: PMC7954357 DOI: 10.1371/journal.pone.0248190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both β-1,4-N-acetyl- and β-1,4-N,6-O-diacetylmuramidase activities, cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut.
Collapse
|
13
|
Larsen IS, Jensen BAH, Bonazzi E, Choi BSY, Kristensen NN, Schmidt EGW, Süenderhauf A, Morin L, Olsen PB, Hansen LBS, Schröder T, Sina C, Chassaing B, Marette A. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes 2021; 13:1988836. [PMID: 34693864 PMCID: PMC8547870 DOI: 10.1080/19490976.2021.1988836] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Colitis is characterized by colonic inflammation and impaired gut health. Both features aggravate obesity and insulin resistance. Host defense peptides (HDPs) are key regulators of gut homeostasis and generally malfunctioning in above-mentioned conditions. We aimed here to improve bowel function in diet-induced obesity and chemically induced colitis through daily oral administration of lysozyme, a well-characterized HDP, derived from Acremonium alcalophilum.C57BL6/J mice were fed either low-fat reference diet or HFD ± daily gavage of lysozyme for 12 weeks, followed by metabolic assessment and evaluation of colonic microbiota encroachment. To further evaluate the efficacy of intestinal inflammation, we next supplemented chow-fed BALB/c mice with lysozyme during Dextran Sulfate Sodium (DSS)-induced colitis in either conventional or microbiota-depleted mice. We assessed longitudinal microbiome alterations by 16S amplicon sequencing in both models.Lysozyme dose-dependently alleviated intestinal inflammation in DSS-challenged mice and further protected against HFD-induced microbiota encroachment and fasting hyperinsulinemia. Observed improvements of intestinal health relied on a complex gut flora, with the observation that microbiota depletion abrogated lysozyme's capacity to mitigate DSS-induced colitis.Akkermansia muciniphila associated with impaired gut health in both models, a trajectory that was mitigated by lysozyme administration. In agreement with this notion, PICRUSt2 analysis revealed specific pathways consistently affected by lysozyme administration, independent of vivarium, disease model and mouse strain.Taking together, lysozyme leveraged the gut microbiota to curb DSS-induced inflammation, alleviated HFD-induced gastrointestinal disturbances and lowered fasting insulin levels in obese mice. Collectively, these data present A. alcalophilum-derived lysozyme as a promising candidate to enhance gut health.
Collapse
Affiliation(s)
- Ida Søgaard Larsen
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Benjamin A. H. Jensen
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erica Bonazzi
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Université De Paris, Paris, France
| | - Béatrice S. Y. Choi
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | | | | | - Annika Süenderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Laurence Morin
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | | | | | - Torsten Schröder
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Benoît Chassaing
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Université De Paris, Paris, France
| | - André Marette
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| |
Collapse
|
14
|
Dietary muramidase degrades bacterial peptidoglycan to NOD-activating muramyl dipeptides and reduces duodenal inflammation in broiler chickens. Br J Nutr 2020; 126:641-651. [PMID: 33172510 DOI: 10.1017/s0007114520004493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muramidases constitute a superfamily of enzymes that hydrolyse peptidoglycan (PGN) from bacterial cell walls. Recently, a fungal muramidase derived from Acremonium alcalophilum has been shown to increase broiler performance when added as a feed additive. However, the underlying mechanisms of action are not yet identified. Here, we investigated the hypothesis that this muramidase can cleave PGN to muramyl dipeptide (MDP), activating nucleotide-binding oligomerisation domain-containing protein 2 (NOD2) receptors in eukaryotic cells, potentially inducing anti-inflammatory host responses. Using Micrococcus luteus as a test bacterium, it was shown that muramidase from A. alcalophilum did not display antimicrobial activity, while it could cleave fluorescently labelled PGN. It was shown that the muramidase could degrade PGN down to its minimal bioactive structure MDP by using UPLC-MS/MS. Using HEK-Blue™-hNOD2 reporter cells, it was shown that the muramidase-treated PGN degradation mixture could activate NOD2. Muramidase supplementation to broiler feed increased the duodenal goblet cell and intraepithelial lymphocyte abundance while reducing duodenal wall CD3+ T lymphocyte levels. Muramidase supplementation to broiler feed only had moderate effects on the duodenal, ileal and caecal microbiome. It was shown that the newly discovered muramidase hydrolysed PGN, resulting in MDP that activates NOD2, potentially steering the host response for improved intestinal health.
Collapse
|
15
|
Pirgozliev V, Simic A, Rose SP, Pérez Calvo E. Dietary microbial muramidase improves feed efficiency, energy and nutrient availability and welfare of broilers fed commercial type diets containing exogenous enzymes. Br Poult Sci 2020; 62:131-137. [PMID: 32875828 DOI: 10.1080/00071668.2020.1817330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. The aim of this study was to evaluate the effect of graded levels of the microbially derived feed lysozyme, muramidase (MUR) on feed intake (FI), weight gain (WG), feed conversion ratio (FCR), European Performance Index (EPI), dietary N-corrected apparent metabolisable energy (AMEn), footpad dermatitis score (FPD) and other welfare variables, when fed to broilers from 0 to 42d age. 2. A four-phase dietary programme and four experimental pelleted diets were used; a control diet (following breeder recommendations without MUR supplementation), and three diets based on the control diet supplemented with 25,000, 35,000 and 45,000 LSU (F)/kg of MUR, respectively. In addition, all experimental diets contained exogenous xylanase, phytase and a coccidiostat. Each diet was fed to birds in 24 pens (20 male Ross 308 chicks in each pen) following randomisation. Dietary AMEn was determined at 21 d of age, and FPD was evaluated at the end of the study. Data were analysed by ANOVA, using orthogonal polynomials for assessing linear and quadratic responses to MUR activity. 3. The inclusion of MUR did not change FI (P > 0.05), but increased WG in a linear manner (P < 0.05) and reduced FCR in a quadratic manner, with optimum WG and FCR observed in birds fed approximately 35 000 LSU (F)/kg. In accordance with the improvement in FCR, 35 000 LSU (F)/kg MUR supplementation produced the highest EPI (P < 0.05). FPD score was linearly decreased with increased addition of MUR (P < 0.05). Dietary AMEn responded in a quadratic fashion to the MUR inclusion, as the highest values were obtained with the highest inclusion rate (P < 0.05). 4. In conclusion, the results showed that inclusion of MUR improved feed efficiency and the foot health of birds.
Collapse
Affiliation(s)
- V Pirgozliev
- NIPH, Harper Adams University , Newport, Shropshire, UK
| | - A Simic
- NIPH, Harper Adams University , Newport, Shropshire, UK
| | - S P Rose
- NIPH, Harper Adams University , Newport, Shropshire, UK
| | - E Pérez Calvo
- DSM Nutritional Products, Animal Nutrition & Health R& D , Village-Neuf, France
| |
Collapse
|
16
|
Boltz T, Ward N, Ayres V, Lamp A, Moritz J. The effect of varying steam conditioning temperature and time on pellet manufacture variables, true amino acid digestibility, and feed enzyme recovery. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
The C-Type Lysozyme from the upper Gastrointestinal Tract of Opisthocomus hoatzin, the Stinkbird. Int J Mol Sci 2019; 20:ijms20225531. [PMID: 31698762 PMCID: PMC6887759 DOI: 10.3390/ijms20225531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023] Open
Abstract
Muramidases/lysozymes are important bio-molecules, which cleave the glycan backbone in the peptidoglycan polymer found in bacterial cell walls. The glycoside hydrolase (GH) family 22 C-type lysozyme, from the folivorous bird Opisthocomus hoazin (stinkbird), was expressed in Aspergillus oryzae, and a set of variants was produced. All variants were enzymatically active, including those designed to probe key differences between the Hoatzin enzyme and Hen Egg White lysozyme. Four variants showed improved thermostability at pH 4.7, compared to the wild type. The X-ray structure of the enzyme was determined in the apo form and in complex with chitin oligomers. Bioinformatic analysis of avian GH22 amino acid sequences showed that they separate out into three distinct subgroups (chicken-like birds, sea birds and other birds). The Hoatzin is found in the "other birds" group and we propose that this represents a new cluster of avian upper-gut enzymes.
Collapse
|