1
|
Qin S, Zhu Y, Tian G, Jensen MB, Zhang K, Ding X, Bai S, Wang J, Xuan Y, Zeng Q. Dietary resistant starch protects against post-antibiotic intestinal damage by restoring microbial homeostasis and preserving intestinal barrier function in meat duck. Poult Sci 2025; 104:105213. [PMID: 40294558 PMCID: PMC12059379 DOI: 10.1016/j.psj.2025.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025] Open
Abstract
Resistant starch (RS) is recognized as a nutritional strategy that supports gut and overall host health by modulating gut microbiota. To directly assess the effects of RS on gut microbiota and its role in improving intestinal barrier function in meat ducks, this study first established an antibiotic-induced microbial dysbiosis model, which was characterized by reduced gut microbial diversity, intestinal dysfunction, and an inflammatory outburst following antibiotic exposure. Whereafter, in addition to the control group, ducks treated with antibiotics for 7 consecutive days were further allocated to two groups and fed the basal diet and RS diet that derived from 12 % raw potato starch until 21 d. The results demonstrated that dietary RS supplementation reversed the antibiotic-induced reduction in microbial diversity and restored the Firmicutes-to-Bacteroidetes ratio. Additionally, RS inclusion enriched beneficial bacterial genera, including Coprobacter, Odoribacter, and Faecalibacterium (LDA score > 3). Post-antibiotic intervention led to a reduction in villus density and muscular thickness, accompanied by a significant downregulation (P < 0.05) of zonula occludens-1 and mucin-2 expression, along with increased serum pro-inflammatory cytokine levels (P < 0.05). Notably, dietary RS supplementation significantly enhanced (P < 0.05) the expression of glucagon-like peptide receptor and the anti-apoptotic factor Bcl-2, while suppressing caspase transcription. This resulted in increased villus height and muscular thickness in the ileum (P < 0.05). Furthermore, RS intervention remarkably reduced (P < 0.05) pro-inflammatory cytokine levels, particularly interleukin-1β and tumor necrosis factor-α, in both the ileum and serum. These effects were likely linked to alterations in cecal microbiota, including increased abundances of Barnesiella, Ruminiclostridium 9, Megamonas, Faecalitalea, Adlercreutzia, Coprobacter and Collinsella. In conclusion, dietary RS supplementation mitigated antibiotic-induced cecal microbial dysbiosis and restored intestinal structure by promoting enterocyte proliferation and reducing apoptosis. Consequently, RS supplementation helped alleviate systemic inflammation in meat ducks following antibiotic treatment.
Collapse
Affiliation(s)
- Simeng Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China; College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Yifeng Zhu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | | | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yue Xuan
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Pearce SC, Kerr BJ. Feed restriction as a model for small intestinal permeability in nursery pigs. J Anim Sci 2025; 103:skaf131. [PMID: 40259486 PMCID: PMC12080539 DOI: 10.1093/jas/skaf131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025] Open
Abstract
Reduced feed intake is a hallmark of many animal diseases and environmental conditions and has been shown to cause intestinal barrier dysfunction. As there are several markers and assays to evaluate intestinal barrier function, feed restriction may present a potential model to validate and compare multiple in vivo, ex vivo, and tissue markers of intestinal integrity. Forty-eight barrows (9.7 kg initial body weight) were fed for 7 d at feed intakes of 100%, 75%, 50%, or 25% of expected ad libitum feed intake. After which urine, and blood were taken for in vivo lactulose:mannitol analysis. Additional ileum samples were taken for examination of intestinal function including ex vivo tissue transepithelial electrical resistance (TEER), tissue fluorescein isothiocyanate-dextran (FD4) transport, as well as small intestinal villus height and crypt depth, and gene expression. Data were analyzed as an ANOVA as well as a contrast where 25% and 50% were combined, as were 75% and 100%. As expected, observed feed intake followed a linear pattern, as did body weight changes. Pigs fed ad libitum (100%) gained 3.8 kg whereas pigs fed at 75% restriction gained 2.5 kg, pigs fed at 50% restriction gained 1.2 kg and pigs fed at 25% lost 0.37 kg (P < 0.05). Results showed tissue changes in morphology in duodenum, jejunum and ileum at 25% and 50% feed restriction (P < 0.05). Specifically, pigs fed at 75% and 100% feed levels had on average a 26% greater villus height compared to pigs fed at 50% and 25% (P < 0.01). There were no significant differences in TEER, however there was also a tendency for a contrast difference for FD4 as well as for a significant increase in urinary lactulose:mannitol at 25% compared to 75% and 100% (P < 0.10). Similarly, pro-inflammatory gene marker, IL17A was increased at 25% feeding level compared to 75% and 100% (P < 0.05). Taken together, these data show that feed restriction may be a good model to compare validation methods for intestinal permeability and function, but that length of feed restriction may have reduced larger impacts on intestinal function observed in other studies.
Collapse
Affiliation(s)
- Sarah C Pearce
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| |
Collapse
|
3
|
Zhou XY, Chen XC, Fraley GS, Zhang KY, Tian G, Bai SP, Ding XM, Wang JP, Lv L, Xuan Y, Zeng QF. Effects of different dietary vitamin D combinations during the grower phase and the feed restriction phase on growth performance and sternal morphology, mineralization, and related genes expression of bone metabolism in Pekin ducks. Poult Sci 2024; 103:103291. [PMID: 38043407 PMCID: PMC10711511 DOI: 10.1016/j.psj.2023.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Our study aimed to investigate the effects of different dietary vitamin D (VD) combinations during the grower (1-32 d of age) and feed restriction (33-52 d of age) phases on growth performance. We also evaluated sternal morphology, mineralization, and related genes expression of bone metabolism as well as absorption of calcium and phosphorous in duodenal mucosa and kidney in Pekin ducks. During the grower phase, we used 2 VD regimes (Group A: 3,160 IU/kg VD3; Group B: 400 IU/kg VD3 + 69 μg/kg 25-OH-D3). Each dietary treatment had 50 replicate pens of 10 ducks per pen. During the feed restriction phase, 30 replicate pens selected from Group A and Group B, repetitively, were redivided into 5 different dietary VD regimes to form a 2 × 5 experimental design. Each group consisted of 6 replicates, each with 10 ducks. During the feed restriction phase, we evaluated 5 different dietary VD combinations were as follows: T1: 2,000 IU/kg VD3 ; T2: 5,000 IU/kg VD3; T3: 3,620 IU/kg VD3 + 34.5 μg/kg 25-OH-D3; T4: 2,240 IU/kg VD3 + 69 μg/kg 25-OH-D3; T5: 1,800 IU/kg VD3 + 80 μg/kg 25-OH-D3). Results showed that Group B combinations with T5 had a better growth performance and breast meat deposition (P < 0.1). Regardless of 5 dietary VD regimes during the feed restriction phase, Group B significantly increased (P < 0.05) 52 d sternal depth and tended to increase (P < 0.1) 52 d sternal defatted weight, ash content, and phosphate (P) content of ducks. A significant interactive effect (P < 0.05) was observed on the mRNA abundance of DMP1 and Sost1 as well as RANKL/OPG in sternum and of VDR in duodenal mucosa of ducks at 52 d of age between dietary VD combinations during 2 phases. These results indicated that dietary VD regimes during the grower phase could affect the effectiveness of dietary VD regimes during the feed restriction phases; Dietary VD combinations of both phases could affect the genes expression of bone formation and the absorption as well as reabsorption of calcium and phosphorus in duodenum and kidney.
Collapse
Affiliation(s)
- X Y Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - X C Chen
- Institute of Animal Science, Chengdu Agricultural College, Chengdu, Sichuan 611130, China
| | - G S Fraley
- Animal Science Department, Purdue University, West Lafayette, IN 47907, USA
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - G Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - L Lv
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
4
|
Xi Y, Wang L, Qi J, Wei B, Han X, Lu Y, Hu S, He H, Han C, Zhu Y, Hu J, Liu H, Wang J, Li L. Comprehensive transcriptomic and metabolomic analysis of the effect of feed restriction on duck sternal development. Poult Sci 2023; 102:102961. [PMID: 37604023 PMCID: PMC10465956 DOI: 10.1016/j.psj.2023.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Skeletal characteristics are important to the growth and development of poultry. In feeding management, constant free feeding (FF) of poultry may lead to imbalance between bone development and weight gain. Feed restriction (FR), to a certain extent, is one way to solve this problem. However, the effect of feed restriction on poultry bone development needs further elucidation at the molecular level. Therefore, in the present study, we investigated the effects of different levels of feed restriction (60% FR, 70% FR, 80% FR, and FF) on the sternum development of ducks at 7 and 8 wk old. In the seventh wk, with increasing feed restriction, the values of traits including body weight, breast muscle weight, sternal weight, keel length, and calcified keel length decreased. However, in the eighth wk, the sternum weight and keel length of ducks treated with 60% FR were unexpectedly higher than those of FF individuals, indicative of catch-up growth. Then, we conducted RNA-seq and metabolomic analysis on sterna from 7- and 8-wk-old FF and 60% FR ducks. The results identified multiple differentially expressed genes (DEGs) associated with sternum development that were influenced by feed restriction. Among them, we found that the mRNA expression levels of the chondroitin sulfate synthase 3 (CHSY3) and annexin A2 (ANXA2) which are involved in glycosaminoglycan biosynthesis and bone mineralization, had smaller changes over time under FR treatment than under FF treatment, implying that the FR treatment to a certain extent prevented the premature calcification and prolonged the development time of duck sternum. In addition, the metabolomic and integrative analyses revealed that several antiaging-related metabolites and genes were associated with sternal catch-up growth. Pyrimidine metabolism was identified as the most significant pathway in which most differential metabolites (DMs) between FF and 60% FR were enriched. The results from integrative analysis revealed that the content and expression of 4-aminobutyric acid (GABA) and its related genes showed relatively higher activity in the 60% FR group than in the FF group. The present study identifies multiple biomarkers associated with duck sternum development that are influenced by feed restriction and suggests the potential mechanism of feed restriction-associated duck sternal catch-up growth.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Luyao Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Xu Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yuanchun Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
5
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt CG, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Stahl K, Viltrop A, Winckler C, Berg C, Edwards S, Knierim U, Riber A, Salamon A, Tiemann I, Fabris C, Manakidou A, Mosbach‐Schulz O, Van der Stede Y, Vitali M, Velarde A. Welfare of ducks, geese and quail on farm. EFSA J 2023; 21:e07992. [PMID: 37200855 PMCID: PMC10186070 DOI: 10.2903/j.efsa.2023.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This Scientific Opinion concerns the welfare of Domestic ducks (Anas platyrhynchos domesticus), Muscovy ducks (Cairina moschata domesticus) and their hybrids (Mule ducks), Domestic geese (Anser anser f. domesticus) and Japanese quail (Coturnix japonica) in relation to the rearing of breeders, birds for meat, Muscovy and Mule ducks and Domestic geese for foie gras and layer Japanese quail for egg production. The most common husbandry systems (HSs) in the European Union are described for each animal species and category. The following welfare consequences are described and assessed for each species: restriction of movement, injuries (bone lesions including fractures and dislocations, soft tissue lesions and integument damage and locomotory disorders including lameness), group stress, inability to perform comfort behaviour, inability to perform exploratory or foraging behaviour and inability to express maternal behaviour (related to prelaying and nesting behaviours). Animal-based measures relevant for the assessment of these welfare consequences were identified and described. The relevant hazards leading to the welfare consequences in the different HSs were identified. Specific factors such as space allowance (including minimum enclosure area and height) per bird, group size, floor quality, characteristics of nesting facilities and enrichment provided (including access to water to fulfil biological needs) were assessed in relation to the welfare consequences and, recommendations on how to prevent the welfare consequences were provided in a quantitative or qualitative way.
Collapse
|
6
|
Szafraniec GM, Szeleszczuk P, Dolka B. Review on skeletal disorders caused by Staphylococcus spp. in poultry. Vet Q 2022; 42:21-40. [PMID: 35076352 PMCID: PMC8843168 DOI: 10.1080/01652176.2022.2033880] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Lameness or leg weakness is the main cause of poor poultry welfare and serious economic losses in meat-type poultry production worldwide. Disorders related to the legs are often associated with multifactorial aetiology which makes diagnosis and proper treatment difficult. Among the infectious agents, bacteria of genus Staphylococcus are one of the most common causes of bone infections in poultry and are some of the oldest bacterial infections described in poultry. Staphylococci readily infect bones and joints and are associated with bacterial chondronecrosis with osteomyelitis (BCO), spondylitis, arthritis, tendinitis, tenosynovitis, osteomyelitis, turkey osteomyelitis complex (TOC), bumblefoot, dyschondroplasia with osteomyelitis and amyloid arthropathy. Overall, 61 staphylococcal species have been described so far, and 56% of them (34/61) have been isolated from clinical cases in poultry. Although Staphylococcus aureus is the principal cause of poultry staphylococcosis, other Staphylococcus species, such as S. agnetis, S. cohnii, S. epidermidis, S. hyicus, S. simulans, have also been isolated from skeletal lesions. Antimicrobial treatment of staphylococcosis is usually ineffective due to the location and type of lesion, as well as the possible occurrence of multidrug-resistant strains. Increasing demand for antibiotic-free farming has contributed to the use of alternatives to antibiotics. Other prevention methods, such as better management strategies, early feed restriction or use of slow growing broilers should be implemented to avoid rapid growth rate, which is associated with locomotor problems. This review aims to summarise and address current knowledge on skeletal disorders associated with Staphylococcus spp. infection in poultry.
Collapse
Affiliation(s)
- Gustaw M. Szafraniec
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
7
|
Ebeid TA, Tůmová E, Ketta M, Chodová D. Recent advances in the role of feed restriction in poultry productivity: part II- carcass characteristics, meat quality, muscle fibre properties, and breast meat myopathies. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Mohamed Ketta
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Ebeid TA, Tůmová E, Al-Homidan IH, Ketta M, Chodová D. Recent advances in the role of feed restriction in poultry productivity: part I- performance, gut development, microbiota and immune response. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2097149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Ibrahim H. Al-Homidan
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mohamed Ketta
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| |
Collapse
|
9
|
Li JP, Wu QF, Ma SC, Wang JM, Wei B, Xi Y, Han CC, Li L, He H, Liu HH. Effect of feed restriction on the intestinal microbial community structure of growing ducks. Arch Microbiol 2021; 204:85. [PMID: 34958398 DOI: 10.1007/s00203-021-02636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
In poultry, feed restriction is common feeding management to limit poultry nutrients intake so that poultry only intake the essential energy, meeting the basic need of growth and development. Our study investigated whether feeding restriction affects the diversity of the intestinal microbiota of growing breeding ducks. In this research, the 60-120-day-old ducks were raised in restricted and free-feeding groups. After slaughtering, the carcass traits and the cecal contents were collected for 16S rRNA sequencing analysis. After feeding restriction, the growth rate of ducks was limited, the weight and rate of abdominal fat decreased, and the rate of chest and leg muscles increased. In addition, feeding restriction can also change the diversity of intestinal microorganisms in breeding ducks, such as the increase of Firmicutes abundance and the decrease of Bacteroidetes abundance. After analyzing of correlation, significant correlations between gut microbiota and carcass phenotypes were found. The results indicated that gut microbiota might be involved in the life activities associated with phenotypic changes. This study proved the effect of feeding methods on the intestinal microbiota of ducks, providing a theoretical basis of the microbial angle for raising ducks in a feeding-restricted period.
Collapse
Affiliation(s)
- Jun-Peng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Qi-Fan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Sheng-Chao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Jian-Mei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Chun-Chun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - He-He Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China.
| |
Collapse
|