1
|
Uehara A, Maekawa M, Sakamoto Y, Nakagawa K. Agglutination of Escherichia coli, Clostridium perfringens, and Salmonella enterica through competitive exclusion using potassium chloride with gum arabic. Int Microbiol 2024:10.1007/s10123-024-00625-4. [PMID: 39738815 DOI: 10.1007/s10123-024-00625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Bacterial infections causing necrotic enteritis and diarrhea pose a considerable economic loss to the animal industry. Using mannose oligosaccharides as competitive exclusion agents is an alternative method to antibiotic growth promoters; however, these materials are rapidly metabolized by gut microbiota, posing a challenge in sustaining their efficacy. The aim of this study was to identify an agglutination material that is effective against pathogens. Polysaccharides and salts were assessed using agglutination assays, microscopy, and zeta potential analysis. Gum arabic (GA) demonstrated strong agglutination against Escherichia coli and Salmonella enterica. Potassium chloride altered the cell form of Clostridium perfringens from rod-like to coccoid. When combined with GA, KCl effectively agglutinated all three bacterial species tested. Zeta potential analysis showed that agglutination resulted from bacteria, GA, and KCl interactions. Among various salts mixed with GA, KCl was found to strongly agglutinate C. perfringens upon its change into the coccoid form. Moreover, this combination has been shown to agglutinate mixtures of pathogens, such as C. perfringens and S. enterica. Thus, a combination of GA and KCl offers a potential solution to combat the pathogens associated with necrotic enteritis and diarrhea in animals.
Collapse
Affiliation(s)
- Akinori Uehara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan.
| | - Mayumi Maekawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| | - Yasuteru Sakamoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| | - Kazuki Nakagawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| |
Collapse
|
2
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
3
|
Mikolajczyk-Martinez A, Ugorski M. Unraveling the role of type 1 fimbriae in Salmonella pathogenesis: insights from a comparative analysis of Salmonella Enteritidis and Salmonella Gallinarum. Poult Sci 2023; 102:102833. [PMID: 37356296 PMCID: PMC10404763 DOI: 10.1016/j.psj.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Significant differences in pathogenicity between Salmonella Enteritidis and Salmonella Gallinarum exist despite the fact that S. Gallinarum is a direct descendant of S. Enteritidis. It was hypothesized that such various properties may be in part the result of differences in structure and functions of type 1 fimbriae (T1Fs). In S. Enteritidis, T1Fs bind to oligomannosidic structures carried by host cell glycoproteins and are called mannose-sensitive T1Fs (MST1F). In S. Gallinarum, T1Fs lost ability to bind such carbohydrate chains, and were named mannose-resistant MRT1Fs (MRT1F). Therefore, the present study was undertaken to evaluate the role of MST1Fs and MRT1Fs in the adhesion, invasion, intracellular survival and cytotoxicity of S. Enteritidis and S. Gallinarum toward chicken intestinal CHIC8-E11cells and macrophage-like HD11 cells. Using mutant strains: S. Enteritidis fimH::kan and S. Gallinarum fimH::kan devoid of T1Fs and in vitro assays the following observations were made. MST1Fs have a significant impact on the chicken cell invasion by S. Enteritidis as MST1F-mediated adhesion facilitates direct and stable contact of bacteria with host cells, in contrast to MRT1Fs expressed by S. Gallinarum. MST1Fs as well as MRT1Fs did not affected intracellular viability of S. Enteritidis and S. Gallinarum. However, absolute numbers of intracellular viable wild-type S. Enteritidis were significantly higher than S. Enteritidis fimH::kan mutant and wild-type S. Gallinarum and S. Gallinarum fimH::kan mutant. These differences, reflecting the numbers of adherent and invading bacteria, underline the importance of MST1Fs in the pathogenicity of S. Enteritidis infections. The cytotoxicity of wild-type S. Enteritidis and its mutant devoid of MST1Fs to HD11 cells was essentially the same, despite the fact that the number of viable intracellular bacteria was significantly lower in the mutated strain. Using HD11 cells with similar number of intracellular wild-type S. Enteritidis and S. Enteritidis fimH::kan mutant, it was found that the lack of MST1Fs did not affect directly the cytotoxicity, suggesting that the increase in cytotoxicity of S. Enteritidis devoid of MST1Fs may be associated with crosstalk between T1Fs and other virulence factors.
Collapse
Affiliation(s)
- Agata Mikolajczyk-Martinez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
4
|
Kimminau E, Karnezos T, Girgis G. Applied Research Note: Combination of probiotic and prebiotic impacts Salmonella Enteritidis infection in layer pullets. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Girgis G, McBride H, Boyle B, Araba M, Bodle B, Lohrmann T. Effects of a synbiotic combination of Bacillus subtilis and yeast cell wall-derived glucomannan on cecal colonization of Salmonella Enteritidis in layer chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Kimminau E, Karnezos T, Berghaus R, Jones M, Baxter J, Hofacre C. Combination of probiotic and prebiotic impacts Salmonella Enteritidis infection in layer hens. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Faustino M, Durão J, Pereira CF, Pintado ME, Carvalho AP. Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae - A sustainable source of functional ingredients. Carbohydr Polym 2021; 272:118467. [PMID: 34420726 DOI: 10.1016/j.carbpol.2021.118467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Sustainable industry practices and circular economy concepts encourage the transformation of production waste into by-products. Saccharomyces cerevisiae is widely used in fermentation industry worldwide, generating large amounts of spent yeast which is mainly directed to animal feed or discarded as waste. Instead of becoming and environmental problem, spent yeast can be directed to the extraction of valuable compounds such as mannans and mannan oligosaccharides (MOS). This review presents a compilation of the studies up to date regarding the different chemical, enzymatic, mechanical or physical processes addressed for mannans extraction and MOS production. Additionally, the existing studies on the chemical modification of mannans aimed to improve specific characteristics are also discussed. Finally, the more relevant bioactivities and potential applications of mannans, MOS and mannose are presented, together with products on the market containing these compounds.
Collapse
Affiliation(s)
- Margarida Faustino
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
8
|
Ogunade IM, Taiwo G, Estrada-Reyes ZM, Yun J, Pech-Cervantes AA, Peters SO. Effects of a blend of mannan and glucan on growth performance, apparent nutrient digestibility, energy status, and whole-blood immune gene expression of beef steers during a 42-d receiving period. Transl Anim Sci 2021; 5:txaa226. [PMID: 33542996 PMCID: PMC7846145 DOI: 10.1093/tas/txaa226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 11/14/2022] Open
Abstract
We examined the effects of dietary supplementation of a blend of mannan and glucan on the growth performance, energy status, and whole-blood immune gene expression of newly weaned beef steers during a 42-d receiving period. Forty-eight newly weaned Angus crossbred steers (2-d post-weaning; 199 ± 13 kg of initial body weight [BW]) from a single source were stratified by BW and randomly assigned to one of the two treatments: basal diet with no additive (CON; n = 24) or a basal diet top-dressed with 5 g of a blend of mannan and glucan (MANGLU; n = 24). Average daily gain (ADG) and feed efficiency (FE) from days 1 to 14, 15 to 42, and 1 to 42 were calculated from daily dry matter intake (DMI) and weekly BW. Blood samples were collected on days 0, 14, and 42 for measurement of plasma glucose and nonesterified fatty acids (NEFA). Blood samples collected on days 14 and 42 were composited for each steer for untargeted carbonyl-metabolome analysis (measurement of carbonyl-containing metabolites). Expression of 84 immune-related genes was analyzed on blood samples collected on day 42. Beginning on days 37 to 42, total mixed ration, refusals, and fecal samples were collected once daily to determine apparent total tract digestibility of DM, CP, NDF, and ADF using indigestible NDF as an internal marker. Over the 42-d feeding trial, supplemental MANGLU tended to increase final BW (P = 0.07) and ADG (P = 0.06). Compared to CON, beef steers fed supplemental MANGLU had greater (P = 0.01) DMI during the first 14 d, greater DM digestibility (P = 0.03), and tended to have greater NDF digestibility (P = 0.09). No treatment effects (P > 0.10) on plasma glucose and NEFA on days 14 and 42 were detected; however, carbonyl-metabolome analysis revealed increased (FDR ≤ 0.05) plasma concentrations of galactose and glyceraldehydes, and altered (FDR ≤ 0.05) concentrations of some microbiome-derived metabolites in beef steers fed MANGLU. Compared with CON, MANGLU increased (P ≤ 0.05) the expression of five immune-related genes involved in recognition of and mounting immune defense against microbial pathogens. In conclusion, the results of this study demonstrated that supplemental MANGLU enhances beef cattle immunocompetence and productivity during feedlot receiving period.
Collapse
Affiliation(s)
- Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV
| | - Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV
| | - Zaira M Estrada-Reyes
- College of Agricultural, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA
| | - Jiang Yun
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Andres A Pech-Cervantes
- College of Agricultural, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA
| |
Collapse
|
9
|
Price PT, Gaydos T, Legendre H, Krehling J, Macklin K, Padgett JC. Production Layer Salmonella Enteritidis Control through Dry Fed Pre & Probiotic Products. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- PT Price
- Phileo by Lesaffre, USA; Clemson University, USA
| | | | | | | | | | | |
Collapse
|
10
|
Administration of direct-fed Bacillus cultures and refined functional carbohydrates to broiler chickens improves growth performance and promotes positive shifts in gastrointestinal microbiota. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Van den Abbeele P, Duysburgh C, Rakebrandt M, Marzorati M. Dried yeast cell walls high in beta-glucan and mannan-oligosaccharides positively affect microbial composition and activity in the canine gastrointestinal tract in vitro. J Anim Sci 2020; 98:skaa173. [PMID: 32497185 PMCID: PMC7295327 DOI: 10.1093/jas/skaa173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
The outer cell wall of yeast is characterized by high levels of β-glucans and mannan-oligosaccharides (MOS), which have been linked with beneficial effects on intestinal health and immune status in dogs. In this study, a standardized in vitro simulation of the canine gastrointestinal tract (Simulator of the Canine Intestinal Microbial Ecosystem; SCIME) was used to evaluate the effect of a Saccharomyces cerevisiae-based product, consisting of 27.5% β-glucans and 22.5% MOS, on the activity (as assessed by measurement of fermentative metabolites) and composition (as assessed by 16S-targeted Illumina sequencing) of canine intestinal microbiota. The S. cerevisiae-based product was tested at three different dosages, i.e., 0.5, 1.0, and 2.0 g/d. A dose-dependent fermentation pattern was observed along the entire length of the colon, as shown by the increased production of the health-related acetate, propionate, and butyrate for the three concentrations tested (0.5, 1.0, and 2.0 g/d). A consistent finding for all three tested concentrations was the increased propionate production (P < 0.05) in the simulated proximal and distal colon. These changes in terms of fermentative metabolites could be linked to specific microbial alterations at the family level, such as the specific stimulation of the propionate-producing families Porphyromonadaceae and Prevotellaceae upon in vitro exposure to the S. cerevisiae-based product. Other consistent changes in community composition upon repeated exposure included the decrease in the Enterobacteriaceae and the Fusobacteriaceae families, which both contain several potentially opportunistic pathogens. Altogether, the generated data support a possible health-promoting role of a product high in β-glucans and MOS when supplemented to the dogs' diet.
Collapse
Affiliation(s)
| | | | | | - Massimo Marzorati
- ProDigest bvba, Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Saksrithai K, Willits NH, King AJ. Production performance of laying hens at peak lay, sulfur compounds in manure, and selected serum profiles: efficacy of Lactobacillus species as probiotics. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ContextProbiotics have potential to improve health of laying hens, thus improving the overall quality of eggs. AimsA study was conducted to evaluate the use of probiotics containing Lactobacillus species to improve egg quality and serum biochemistry, and to lower the concentration of sulfur-containing gas compounds from poultry manure. MethodsNinety-six White Leghorn W-36 laying hens (32 weeks old) were randomly assigned to two feeding treatments: Control and Control + Probiotics. A combination of probiotics (Lactobacillus paracasei, L. plantarum and L. rhamnosus totalling 1 × 1012 CFU/kg feed) was provided for 8 weeks. At Weeks 0, 4 and 8, eggs were analysed for weight, shell thickness, albumen height and Haugh unit. Faecal matter was analysed for total sulfur, sulfate-sulfur and 20 reduced sulfur compounds. Blood serum was analysed for amylase, calcium, phosphate, total cholesterol and triglycerides. Key resultsNo significant differences were observed between the two treatments for any of the parameters. Five sulfide gases were detected in manure: hydrogen sulfide (H2S), dimethyl sulfide (CH3)2S, methyl mercaptan (CH3SH), carbonyl sulfide (COS) and carbon disulfide (CS2). Ratios of various detectable gases were computed. Trends for ratios H2S:(CH3)2S, H2S:CS2, and H2S:COS from manure for both treatments were >1, whereas the ratios H2S:CH3SH and (CH3)2S:CH3SH were <1. ConclusionOverall, probiotics did not enhance production, egg quality or the serum profile. ImplicationsPossibly, the concentration of probiotics was too high, limiting bacterial colonisation and beneficial effects.
Collapse
|
13
|
Rodrigues JM, Duarte MER, Noseda MD. Modified soybean meal polysaccharide with high adhesion capacity to Salmonella. Int J Biol Macromol 2019; 139:1074-1084. [PMID: 31398402 DOI: 10.1016/j.ijbiomac.2019.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Carbohydrates are known to act as analog receptors for bacteria and therefore are promising alternatives for the control and prevention of bacterial infections. The present study evaluated the chemical structure of modified soybean meal polysaccharides and their capacity to adhere enterobacteria (Salmonella Typhimurium) and to interfere with the bacteria adhesion to the known analogue receptors, using in vitro assays. For this, soybean meal suspensions were subjected to a thermochemical extraction process and structural analyses showed that the fraction with higher adhesion and adhesion-inhibition potential, SAP, was constituted by two types of polysaccharides: a partially depolymerized pectin, of high molar mass, composed of xylogalacturonan and rhamnogalacturonan regions (SAP1, 545.5 kDa), and a (1 → 4)-linked-β-D-galactan of low molar mass (SAP2, 8.7 kDa). The results showed a high affinity of Salmonella for galactans, while high molar mass pectins showed no adhesion capacity. The chemical compositions of the fractions suggested that galactose could be responsible for the recognition process in the adhesion process. Other factors, such as structure and degree of polymerization of the polymers, may also be influencing the adhesion process. Modified soybean meal polysaccharides appear to be a promising alternative agent to antibiotics for the control and prevention of foodborne diseases.
Collapse
Affiliation(s)
- Jenifer Mota Rodrigues
- Bioprocess Engineering and Biotechnology Dept., Federal University of Paraná, PO Box: 19011, 81531-990 Curitiba, Paraná, Brazil; Biochemistry and Molecular Biology Dept., Federal University of Paraná, PO Box: 19046, 81531-980 Curitiba, Paraná, Brazil
| | - Maria Eugênia Rabello Duarte
- Biochemistry and Molecular Biology Dept., Federal University of Paraná, PO Box: 19046, 81531-980 Curitiba, Paraná, Brazil.
| | - Miguel Daniel Noseda
- Biochemistry and Molecular Biology Dept., Federal University of Paraná, PO Box: 19046, 81531-980 Curitiba, Paraná, Brazil.
| |
Collapse
|
14
|
Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933909000063] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
|
16
|
Santovito E, Greco D, Marquis V, Raspoet R, D'Ascanio V, Logrieco AF, Avantaggiato G. Antimicrobial Activity of Yeast Cell Wall Products AgainstClostridium perfringens. Foodborne Pathog Dis 2019; 16:638-647. [DOI: 10.1089/fpd.2018.2596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elisa Santovito
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Donato Greco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | - Ruth Raspoet
- Phileo-Lesaffre Animal Care, Marcq-en-Baroeul, France
| | - Vito D'Ascanio
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Antonio F. Logrieco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | |
Collapse
|
17
|
Kolenda R, Ugorski M, Grzymajlo K. Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask. Front Microbiol 2019; 10:1017. [PMID: 31139165 PMCID: PMC6527747 DOI: 10.3389/fmicb.2019.01017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Initial attachment to host intestinal mucosa after oral infection is one of the most important stages during bacterial pathogenesis. Adhesive structures, widely present on the bacterial surface, are mainly responsible for the first contact with host cells and of host-pathogen interactions. Among dozens of different bacterial adhesins, type 1 fimbriae (T1F) are one of the most common adhesive organelles in the members of the Enterobacteriaceae family, including Salmonella spp., and are important virulence factors. Those long, thin structures, composed mainly of FimA proteins, are responsible for recognizing and binding high-mannose oligosaccharides, which are carried by various glycoproteins and expressed at the host cell surface, via FimH adhesin, which is presented at the top of T1F. In this review, we discuss investigations into the functions of T1F, from the earliest work published in 1958 to operon organization, organelle structure, T1F biogenesis, and the various functions of T1F in Salmonella-host interactions. We give special attention to regulation of T1F expression and their role in binding of Salmonella to cells, cell lines, organ explants, and other surfaces with emphasis on biofilm formation and discuss T1F role as virulence factors based on work using animal models. We also discuss the importance of allelic variation in fimH to Salmonella pathogenesis, as well as role of FimH in Salmonella host specificity.
Collapse
Affiliation(s)
- Rafal Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
18
|
Hofacre CL, Berghaus RD, Jalukar S, Mathis GF, Smith JA. Effect of a Yeast Cell Wall Preparation on Cecal and Ovarian Colonization With Salmonella enteritidis in Commercial Layers. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfy030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
19
|
Walker G, Jalukar S, Brake J. The effect of refined functional carbohydrates from enzymatically hydrolyzed yeast on the transmission of environmental Salmonella Senftenberg among broilers and proliferation in broiler housing. Poult Sci 2018; 97:1412-1419. [DOI: 10.3382/ps/pex430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
|
20
|
Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS One 2017; 12:e0182805. [PMID: 28837669 PMCID: PMC5570483 DOI: 10.1371/journal.pone.0182805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
Prebiotics are defined as fermentable food ingredients that selectively stimulate beneficial bacteria in the lower gastrointestinal tract of the host. The purpose of this study was to assess growth performance of broilers and the cecal microbial populations of an antibiotic, BMD50, supplemented birds compared to broiler chickens fed the prebiotic, Biolex® MB40. Weight response data including feed conversion ratios (FCR), carcasses without giblets (WOG), wing, skin, white meat were collected during processing. Extracted DNA from cecal contents was utilized for microbiome analysis via an Illumina Miseq. In conclusion, white meat yield of Biolex® MB40 supplemented group exhibited significant improvement compared to both negative control (NC) and BMD50 supplemented groups. In addition, antibiotic significantly decreased level of Lactobacillus in 2 wk compared to other groups. A significantly higher percentage of Campylobacter was observed from the 4 wk old birds treated with antibiotic BMD50 compared to the NC and prebiotic group. Retention of broiler performance and improvement of white meat yield suggest that the prebiotic MB40 appears to be a potential alternative to replace the antibiotic growth promoter.
Collapse
|
21
|
Walker G, Jalukar S, Brake J. Effect of refined functional carbohydrates from enzymatically hydrolyzed yeast on the presence of Salmonella spp. in the ceca of broiler breeder females. Poult Sci 2017; 96:2684-2690. [DOI: 10.3382/ps/pex054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/01/2017] [Indexed: 11/20/2022] Open
|
22
|
Cortés-Coronado R, Gómez-Rosales S, Angeles MDL, Casaubon-Huguenin M, Sørensen-Dalgaard T. Influence of a yeast fermented product on the serum levels of the mannan-binding lectin and the antibodies against the Newcastle disease virus in Ross broilers. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfw044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Kim DY, Chung CW, Cho HY, Rhee YH, Shin DH, Son KH, Park HY. Biocatalytic characterization of an endo-β-1,4-mannanase produced by Paenibacillus sp. strain HY-8. Biotechnol Lett 2016; 39:149-155. [DOI: 10.1007/s10529-016-2228-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
|
24
|
Rajani J, Dastar B, Samadi F, Karimi Torshizi MA, Abdulkhani A, Esfandyarpour S. Effect of extracted galactoglucomannan oligosaccharides from pine wood (Pinus brutia) on Salmonella typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. Br Poult Sci 2016; 57:682-692. [PMID: 27419477 DOI: 10.1080/00071668.2016.1200013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An in vitro and in vivo study was conducted to evaluate the fermentability of isolated galactoglucomannan oligosaccharides (GGMs) and the influence of their feeding on shedding and colonisation of Salmonella typhimurium, growth performance and intestinal morphology in broiler chicks. The in vitro data demonstrated that three probiotic lactic acid bacteria namely Lactobacillus casei, L. plantarum and Enterococcus faecium were able to ferment the extracted oligosaccharides and other tested sugars on a basal de Man Rogosa Sharpe media free from carbohydrate. For the in vivo experiment, 144 one-d-old male Ross 308 broiler chicks were divided into 6 experimental treatments (with 4 replicates) including two positive and negative controls which received a basal maize-soybean diet without any additives, supplementation of three levels of isolated GGMs (0.1%, 0.2% and 0.3%) and a commercial mannanoligosaccharide (MOS) at 0.2% to the basal diet. All birds except those in the negative control group were challenged orally with 1 × 108 cfu of S. typhimurium at 3-d post-hatch. The results revealed that challenge with S. typhimurium resulted in a significant reduction in body weight gain, feed intake, villus height, villus height to crypt depth ratio and villus surface area in all of infected chicks. Birds that were given GGMs or MOS showed better growth performance, increased villus height and villus surface area and decreased S. typhimurium colonisation than the positive control birds. GGM at 0.2% level was more effective than the other treatments in improving growth rate as well as gut health of broiler chicks.
Collapse
Affiliation(s)
- J Rajani
- a Department of Animal and Poultry Nutrition, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - B Dastar
- a Department of Animal and Poultry Nutrition, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - F Samadi
- b Department of Animal and Poultry Physiology, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - M A Karimi Torshizi
- c Department of Poultry Science, Faculty of Agriculture , Tarbiat Modares University , Tehran , Iran
| | - A Abdulkhani
- d Department of Wood and Paper Science and Technology, College of Agriculture and Natural Resources , University of Tehran , Karaj , Iran
| | - S Esfandyarpour
- a Department of Animal and Poultry Nutrition, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| |
Collapse
|
25
|
Navidshad B, Liang JB, Jahromi MF, Akhlaghi A, Abdullah N. A comparison between a yeast cell wall extract (Bio-Mos®) and palm kernel expeller as mannan-oligosac-charides sources on the performance and ileal microbial population of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Ramirez-Hernandez A, Rupnow J, Hutkins RW. Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract. J Food Prot 2015; 78:1496-505. [PMID: 26219363 DOI: 10.4315/0362-028x.jfp-15-087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen.
Collapse
Affiliation(s)
- Alejandra Ramirez-Hernandez
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919, USA
| | - John Rupnow
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919, USA
| | - Robert W Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919, USA.
| |
Collapse
|
27
|
A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. JOURNAL OF APPLIED ANIMAL NUTRITION 2015. [DOI: 10.1017/jan.2015.6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SummaryMannan-oligosaccharides (MOS), as zootechnical feed ingredients, are widely used in animal nutrition. MOS has been commercially available since the launch of Bio-Mos® in the early 1990's and has a substantial body of scientific papers and practical examples of its efficacy. Since 1999, the use of MOS in animal feed has become more prominent, mainly due to the European ban on prophylactic antibiotic growth promoters in animal feed. MOS, with its ability to bind and limit the colonisation of gut pathogens, has proven to be an effective solution for antibiotic-free diets, as well as providing support for immunity and digestion. MOS has been shown to improve gastrointestinal health, thus improving wellbeing, energy levels and performance. Most MOS products, particularly those that have been scientifically developed, derive from the cell wall of the yeast,Saccharomyces cerevisiae. In 2009, a mannose-rich fraction (MRF) product was commercially launched as a ‘second generation’ of these MOS-type products, with enhanced activities in immune modulation and intestinal health. The purpose of this paper is to review the existing data on the benefits of MOS for all species of animals, discuss its mechanisms of actionin vivoand compare the benefits of using second generation MRF to original MOS.
Collapse
|
28
|
Comparison of performance and intestinal morphology of broilers using step-down supplementation with a mannan-rich fraction versus bacitracin methylene disalicylate. JOURNAL OF APPLIED ANIMAL NUTRITION 2014. [DOI: 10.1017/jan.2014.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryTwo experiments were conducted to compare effects of utilising step-down dosing of a mannan-rich fraction (MRF) of yeast cell wall or the antimicrobial growth promoter (AGP) bacitracin methylene disalicylate (BMD) when chicks were raised on built-up litter. Chicks were randomly assigned to one of three treatment groups (12 pen replicates; 50 birds per pen): basal diet (control) or basal diet plus MRF (Actigen™; Alltech Inc., Nicholasville, KY) or BMD (Alpharma Inc., Fort Lee, NJ). In experiment two, intestinal morphology and litter scores were determined on d 42. In experiment one, MRF and BMD increased BW gain at d 21 and d 42 compared with control (P ≤ 0.05) and d 42 BW was greater in BMD birds than controls (P ≤ 0.05). Adjusted FCRs were lower in MRF and BMD birds from d 0 to d 42 (P = 0.06). In experiment two, there was no effect of treatment on d 21 BW, but MRF and BMD improved adjusted FCR (P = 0.02) compared with control. By d 35, both MRF and BMD birds had greater BWs than controls (P = 0.04). At d 42, MRF-supplemented birds had greater BW than controls (P ≤ 0.05). D 35 and d 42 FCR improved with MRF or BMD compared with control (P ≤ 0.01). Litter conditions improved (P ≤ 0.05) when birds were fed diets with BMD and MRF compared with control-fed birds. Jejunal morphology, including villi height (P ≤ 0.05), villi height: crypt depth ratio (P ≤ 0.05), and goblet cell numbers (P ≤ 0.05) improved with MRF and BMD compared with control. Both MRF and BMD improved broiler performance, potentially related to the improvements observed in intestinal morphology. In conclusion, step-down supplementation with MRF may offer a potential alternative to AGP to improve performance in broilers raised in commercial settings.
Collapse
|
29
|
Quantitative evaluation of E. coli F4 and Salmonella Typhimurium binding capacity of yeast derivatives. AMB Express 2013; 3:62. [PMID: 24148308 PMCID: PMC3816590 DOI: 10.1186/2191-0855-3-62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/09/2013] [Indexed: 11/23/2022] Open
Abstract
The target of the present study was to quantify the capacity of different commercially available yeast derivatives to bind E. coli F4 and Salmonella Typhimurium. In addition, a correlation analysis was performed for the obtained binding numbers and the mannan-, glucan- and protein contents of the products, respectively. In a subsequent experiment, different yeast strains were fermented and treated by autolysis or French press to obtain a concentrated yeast cell wall. The capacity of yeast cell wall products to bind E. coli F4 and Salmonella Typhimurium was assessed with a quantitative microbiological microplate-based assay by measuring the optical density (OD) as the growth parameter of adhering bacteria. Total mannan and glucan were determined by HPLC using an isocratic method and a Refractive Index (RI) Detector. Total protein was determined by Total Kjeldahl Nitrogen (TKN). Statistical analyses were performed with IBM SPSS V19 using Spearman correlation and Mann Whitney U Test. Different yeast derivatives show different binding numbers, which indicate differences in product quality. Interestingly, the binding numbers for Salmonella Typhimurium are consistently higher (between one and two orders of magnitude) than for E. coli F4. We could demonstrate some statistical significant correlations between the mannan- and glucan content of different yeast derivatives and pathogen binding numbers; however, for the different yeast strains fermented under standardized laboratory conditions, no statistically significant correlations between the mannan- and glucan content and the binding numbers for E. coli and Salmonella Typhimurium were found. Interestingly, we could demonstrate that the yeast autolysis had a statistically significant difference on E. coli binding in contrast to the French press treatment. Salmonella binding was independent of these two treatments. As such, we could not give a clear statement about the binding factors involved. We propose that many more factors apart from mannan- and glucan content, such as cell wall structure, strain diversity, structural diversity, structural surroundings, and non-specific interactions play important roles in pathogen immobilization.
Collapse
|
30
|
Badia R, Lizardo R, Martínez P, Brufau J. Oligosaccharide structure determines prebiotic role of β-galactomannan against Salmonella enterica ser. Typhimurium in vitro. Gut Microbes 2013; 4:72-5. [PMID: 23137964 PMCID: PMC3555890 DOI: 10.4161/gmic.22728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Prebiotics and probiotics are considered natural alternatives to dietary antibiotics in animal production. Plant extracts and yeast cell walls are mannose-rich products that can be used as substrate for adhesion of Gram-negative bacteria. We assessed whether the structure of these saccharides is relevant to develop their role as prebiotics and therefore, their suitability to be used as alternatives to antibiotics to prevent intestinal infections in pigs. The prebiotic functionality of β-galactomannan (βGM), mannanoligosaccharide from yeast Saccharomyces cerevisiae (Mannan SC) and monosaccharide D-Mannose were studied in porcine intestinal epithelial cells (IPI-2I) challenged with Salmonella enterica ser. Typhimurium. Results showed that in vitro challenge with Salmonella induces the secretion of proinflammatory cytokine IL6 and chemokine CXCL8 compared with control without infection. Both βGM and Mannan SC, attenuate Salmonella-induced secretion of IL6 and CXCL8. Interestingly, cells treated with D-mannose showed similar levels of proinflammatory IL6 and CXCL8 compared with the control of infection. These data suggest that prebiotic role of βGM is related to its oligosaccharide structure.
Collapse
Affiliation(s)
- Roger Badia
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA); Nutrició de Monogastrics; Constantí, Spain,Immunologia Aplicada; Institut de Biotecnologia i de Biomedicina (IBB); Universitat Autonòma de Barcelona (UAB); Bellaterra, Spain
| | - Rosil Lizardo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA); Nutrició de Monogastrics; Constantí, Spain
| | - Paz Martínez
- Immunologia Aplicada; Institut de Biotecnologia i de Biomedicina (IBB); Universitat Autonòma de Barcelona (UAB); Bellaterra, Spain
| | - Joaquim Brufau
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA); Nutrició de Monogastrics; Constantí, Spain,Correspondence to: Joaquim Brufau,
| |
Collapse
|
31
|
Khan A, Yousaf M, Rehman H, Zaneb H, Pasha T, Fatima N, Khushal A, Ijaz A, Ashraf K, Afzal M. Response of maternally isolated rock pigeons (Columba livia domestica) to different dietary concentrations of mannan-oligosaccharide. Poult Sci 2012; 91:1598-603. [DOI: 10.3382/ps.2011-02042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Ganner A, Schatzmayr G. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. Appl Microbiol Biotechnol 2012; 95:289-97. [DOI: 10.1007/s00253-012-4140-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/28/2022]
|
33
|
Effects of carob bean gum on performance, nutrient digestibility and Salmonella enterica var. Enteritidis colonisation in chickens. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Decreased colonization of chicks by Salmonella enterica serovar Gallinarum expressing mannose-sensitive FimH adhesin from Salmonella enterica serovar Enteritidis. Vet Microbiol 2012; 158:205-10. [PMID: 22364838 DOI: 10.1016/j.vetmic.2012.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 02/01/2023]
Abstract
To investigate the role of non-hemagglutinating type 1 fimbriae in the pathogenesis of Salmonella Gallinarum, the isogenic mutant elaborating type 1 fimbriae with mannose-sensitive (MS) variant of the FimH adhesin from Salmonella Enteritidis and the mutant strain with no FimH expression were constructed. Their binding to chicken leukocytes in vitro and invasiveness in 1-day-old chicks were studied. Our results demonstrated that S. Gallinarum type 1 fimbriae with an endogenous variant of the FimH adhesin mediated mannose-resistant (MR) binding to avian leukocytes and did not bind to human epithelial cells. However, after allelic replacement of the FimH, mutated fimbriae with S. Enteritidis variant of the FimH adhesin bound to both cell types in a mannose-dependent manner. In chick model, S. Gallinarum expressing wild-type FimH variant colonized cecal tonsils and bursa of Fabricius more effectively and invaded the spleen and liver in greater numbers than S. Gallinarum fimH knockout strain or mutant expressing MS FimH variant from S. Enteritidis. The invasive potential of the latter was greatly reduced in chicks since no viable bacteria expressing MS variant of the adhesin could be recovered from intestinal lymphoid tissues or liver over a 6 days course of infection. Together, these results demonstrate that the S. Gallinarum type 1 fimbriae with the endogenous MR variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in chicks indicating the importance of these adhesive structures in the virulence of S. Gallinarum.
Collapse
|
35
|
Effects of Dietary Antibiotics, Actigen ® Yeast Cell Wall Derivative, or Both on Broiler Chicken Live Performance in a Fifty-Two Day Pen Trial on Built-up Litter. J Poult Sci 2012. [DOI: 10.2141/jpsa.0110175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Abd El-Khalek E, Kalmar ID, De Vroey M, Ducatelle R, Pasmans F, Werquin G, Janssens GPJ. Indirect evidence for microbiota reduction through dietary mannanoligosaccharides in the pigeon, an avian species without functional caeca. J Anim Physiol Anim Nutr (Berl) 2011; 96:1084-90. [DOI: 10.1111/j.1439-0396.2011.01223.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Che TM, Johnson RW, Kelley KW, Dawson KA, Moran CA, Pettigrew JE. Effects of mannan oligosaccharide on cytokine secretions by porcine alveolar macrophages and serum cytokine concentrations in nursery pigs. J Anim Sci 2011; 90:657-68. [PMID: 21984710 DOI: 10.2527/jas.2011-4310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study explored the hypothesis that mannan oligosaccharide (MOS) acts to reduce systemic inflammation in pigs by evaluating cytokine production of alveolar macrophages (AM) and serum cytokine concentrations. A total of 160 pigs were fed diets containing 0.2 or 0.4% MOS for 2 or 4 wk postweaning compared with control diets without MOS. Dietary MOS did not affect the serum concentration of tumor necrosis factor (TNF)-α and tended (P = 0.081) to increase that of IL-10. These cytokine concentrations also changed over time (P < 0.001). After 2-wk feeding of the control or MOS diets, AM were collected and stimulated ex vivo with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (PLIC) as infection models. The LPS-stimulated AM from MOS-fed pigs (n = 12) secreted less TNF-α (P < 0.001) and more IL-10 (P = 0.026) than those from control-fed pigs (n = 6). However, dietary MOS had less effect on ex vivo TNF-α and IL-10 production by PLIC-stimulated AM (P = 0.091 and P > 0.10, respectively. Further, effects of MOS were examined in 4 in vitro experiments. In Exp. 1 (n = 4 pigs), MOS and mannan-rich fraction (MRF), when added to AM cultures, were able to increase TNF-α production. This direct effect of MOS was not due to endotoxin contamination as verified in Exp. 2 (n = 6 pigs) using polymyxin B, an inhibitor of LPS activation of toll-like receptor 4. Polymyxin B inhibited production of TNF-α by AM after treatment with LPS (P < 0.001), but not after treatment with MOS in the absence of LPS (P > 0.70). In Exp. 3 (n = 6 pigs), when MOS was directly applied in vitro, the pattern of cytokine production by LPS-activated AM was similar to that observed ex vivo, as MOS suppressed LPS-induced TNF-α (P < 0.001) and enhanced LPS-induced IL-10 (P = 0.028). In Exp. 4 (n = 6 pigs), when MRF replaced MOS, AM-produced TNF-α induced by LPS or PLIC was suppressed by MRF (P = 0.015 or P < 0.001, respectively). These data establish that MOS and MRF suppress LPS-induced TNF-α secretions by AM. Generally, the study suggests that MOS may be a potent immunomodulator because it directly activates AM to secrete TNF-α and alters the cytokine responses of bacterial endotoxin-induced AM in both ex vivo and in vitro systems. In particular, feeding MOS to pigs for 2 wk reduces TNF-α and increases IL-10 concentrations after ex vivo treatment of AM with LPS. These immunomodulatory properties of MOS may have important implications for both host defense and avoidance of harmful overstimulation of the immune system.
Collapse
Affiliation(s)
- T M Che
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves. Trop Anim Health Prod 2011; 44:617-22. [PMID: 21805307 DOI: 10.1007/s11250-011-9944-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Thirty-six Holstein cross calves 5 days of age in their preruminant stage were used to study the effect of feeding prebiotic (mannanoligosaccharide) on their performance up to the age of 2 months. Treatment and control groups consisted of 18 calves each. Treatment group was supplemented with 4 g prebiotic (mannanoligosaccharide)/calf/day. Performance was evaluated by measuring average body weight (BW) gain, feed intake [dry matter (DM), total digestible nutrient (TDN) and crude protein(CP)], feed conversion efficiency (DM, TDN, and CP), fecal score, fecal coliform count and feeding cost. Body weight measured weekly, feed intake measured twice daily, proximate analysis of feeds and fodders analyzed weekly, fecal score monitored daily and fecal coliform count done weekly. There was a significant increase in average body weight gain, feed intake and feed conversion efficiency; and a significant decrease in severity of scours as measured by fecal score and fecal coliform count in the treatment group compared with control group (P < 0.01). Feed cost/kg BW gain was significantly lower in the treatment group compared to control group (P < 0.01). The results suggest that prebiotic (mannanoligosaccharide) can be supplemented to the calves for better performance.
Collapse
|
39
|
Kiarie E, Bhandari S, Scott M, Krause DO, Nyachoti CM. Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli (K88). J Anim Sci 2010; 89:1062-78. [PMID: 21148775 DOI: 10.2527/jas.2010-3424] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of Saccharomyces cerevisiae fermentation products (YFP) on growth performance and gastrointestinal (GIT) microbial ecology in 90 weanling pigs orally challenged with Escherichia coli K88(+) (ETEC) were investigated. The YFP were an original YFP product (XPC) and a water-suspendable yeast fermentation prototype (WSYFP) from a commercial company. Treatments consisted of a negative control (NC, no in-feed or in-water additive), carbadox (AB, 55 mg of carbadox/kg of feed), XPC (in feed, 0.2%), and WSYFP (in water, 0.5, 1, or 2 g/pig per day), and each was allotted to 5 pens (3 pigs/pen). The diets met the 1998 NRC specifications. Pigs were acclimated to treatments for a 7-d period before an ETEC challenge. On d 8, blood was collected from pigs to determine the baseline packed cell volume (PCV) measurement, and pigs were orally challenged with ETEC. At various time points postchallenge, blood samples were taken, performance measures and fecal consistency scores were recorded, and gut digesta and tissue samples were taken to evaluate GIT morphology, microbial ecology, and metabolites. Preplanned contrasts were used for comparison. Pigs receiving YFP had greater ADFI than NC pigs on d 3 (424 vs. 378 g/d; P = 0.01) and d 7 (506 vs. 458 g/d; P = 0.03) postchallenge. This effect of YFP on ADFI was similar to that of AB on d 3, but pigs receiving AB ate more (576 vs. 506 g/d; P = 0.03) at d 7 than pigs receiving YFP. Pigs exhibited reduced (P < 0.001) PCV upon ETEC challenge; however, pigs receiving additives sustained a greater (P < 0.05) PCV at 72 h compared with the NC group. Compared with the NC pigs, pigs receiving YFP showed a smaller (P < 0.05) number of ileal mucosa adherent ETEC and prevalence of the order Enterobacteriales in the ileal digesta, which corresponded to less (5.09 vs. 6.97 mg/dL; P = 0.03) colonic ammonia on d 7 postchallenge. Most of the indices for ileal digesta bacterial richness and diversity were greater (P < 0.01) for YFP pigs compared with NC pigs. However, results also indicated that the influence of YFP on the piglet intestinal microenvironment might differ when given in feed or water during ETEC challenge. In conclusion, pigs receiving YFP showed a better appetite in the presence of ETEC, which, together with the greater ileal digesta bacteria richness and diversity and decreased ETEC adhering to the mucosa and reduced colonic ammonia, indicates a healthier GIT environment.
Collapse
Affiliation(s)
- E Kiarie
- Department of Animal Science, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
40
|
Quantitative in vitro assay to evaluate the capability of yeast cell wall fractions from Trichosporon mycotoxinivorans to selectively bind gram negative pathogens. J Microbiol Methods 2010; 83:168-74. [DOI: 10.1016/j.mimet.2010.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/14/2010] [Accepted: 08/17/2010] [Indexed: 11/18/2022]
|
41
|
Posadas SJ, Caz V, Caballero I, Cendejas E, Quilez I, Largo C, Elvira M, De Miguel E. Effects of mannoprotein E1 in liquid diet on inflammatory response and TLR5 expression in the gut of rats infected by Salmonella typhimurium. BMC Gastroenterol 2010; 10:58. [PMID: 20529359 PMCID: PMC2903505 DOI: 10.1186/1471-230x-10-58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 06/08/2010] [Indexed: 12/18/2022] Open
Abstract
Background Mannoproteins are yeast cell wall componend, and rich in mannose. The use of foods rich in mannose as carbohydrate, could have a bioprotective effect against entrobacteria intestinal infection. Nothing is known about mannoproteins' activity in inflammatory bowel processes induced by entrobacteria. This study investigates the effects of mannoprotein administration via a liquid diet on inflammatory response and TLR5 expression during intestinal tissue injury in a rat model of infection with Salmonella typhimurium. Methods Adult Wistar male rats were divided into three groups: control, and mannoprotein E1 at 10 or 15%. Animals were fed with a liquid diet supplemented or not with mannoprotein E1. Groups were infected by intragastrical administration of S. typhimurium. 24 h post-inoculation samples of spleen, ileum and liver were collected for microbiological studies. Gut samples were processed to determine levels of proinflammatory cytokines (mRNA) and TLR5 (mRNA and protein) by quantitative PCR and Western-blot, and the number of proliferative and apoptotic cells determined by immunohistochemistry. Results Ininfected levels of proinflammatory cytokines and TLR5 were higher in untreated controls than in the animals receiving mannoprotein. Proliferation was similar in both groups, whereas apoptosis was higher in controls. Curiosly, the mannoprotein effect was dose dependent. Conclusions Mannoprotein administration in a liquid diet seems to protect intestinal tissue against S. typhimurium infection. This protection seems to expressed as a lower pro-inflammatory response and TLR5 downregulation in gut epithelium, as well as by an inhibition of apoptosis. Nevertheless, the molecular mechanism by which mannoprotein is able to regulate these responses remain unclear. These results could open up new avenues in the use of mannoproteins as prebiotics in the therapeutic strategy for treatment of inflammatory gut processes induced by microbia.
Collapse
Affiliation(s)
- Sinforiano J Posadas
- Experimental Surgery Department, La Paz Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Vandeplas S, Dubois Dauphin R, Beckers Y, Thonart P, Théwis A. Salmonella in chicken: current and developing strategies to reduce contamination at farm level. J Food Prot 2010; 73:774-85. [PMID: 20377971 DOI: 10.4315/0362-028x-73.4.774] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella is a human pathogen that frequently infects poultry flocks. Consumption of raw or undercooked contaminated poultry products can induce acute gastroenteritis in humans. Faced with the public health concerns associated with salmonellosis, the European Union has established a European regulation forcing member states to implement control programs aimed at reducing Salmonella prevalence in poultry production, especially at the primary production level. The purpose of the present review article is to summarize the current research and to suggest future developments in the area of Salmonella control in poultry, which may be of value to the industry in the coming years. The review will focus especially on preventive strategies that have been developed and that aim at reducing the incidence of Salmonella colonization in broiler chickens at the farm level. In addition to the usual preventive hygienic measures, other strategies have been investigated, such as feed and drinking water acidification with organic acids and immune strategies based on passive and active immunity. Modification of the diet by changing ingredients and nutrient composition with the intent of reducing a bird's susceptibility to Salmonella infection also has been examined. Because in ovo feeding accelerates small intestine development and enhances epithelial cell function, this approach could be an efficient tool for controlling enteric pathogens. Feed additives such as antibiotics, prebiotics, probiotics, and synbiotics that modify the intestinal microflora are part of another field of investigation, and their success depends on the additive used. Other control methods such as the use of chlorate products and bacteriophages also are under study.
Collapse
Affiliation(s)
- S Vandeplas
- Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, Gembloux, Belgium.
| | | | | | | | | |
Collapse
|
43
|
Baurhoo B, Ferket P, Zhao X. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult Sci 2009; 88:2262-72. [DOI: 10.3382/ps.2008-00562] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Morales-López R, Auclair E, García F, Esteve-Garcia E, Brufau J. Use of yeast cell walls; beta-1, 3/1, 6-glucans; and mannoproteins in broiler chicken diets. Poult Sci 2009; 88:601-7. [PMID: 19211531 DOI: 10.3382/ps.2008-00298] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two experiments were carried out to evaluate the effect of dietary addition of yeast cell wall (YCW); beta-1, 3/1, 6-glucan (BG); and mannoprotein complex (MP) purified fractions in broilers. In experiment 1, there was a control diet and 5 experimental diets containing, respectively: 10 mg of avilamycin (AVI)/kg of feed, 500 mg of YCW/kg of feed, 95 mg of MP/kg of feed, 145 mg of BG/kg of feed, and 95 mg of MP plus 145 mg of BG/kg of feed. All birds were vaccinated via drinking water against Newcastle disease virus at 9 d of age. At 42 d, chickens fed AVI, YCW, MP + BG, and BG diets had similar BW not significantly different from chickens fed the control diet. The antibody response of Newcastle disease virus vaccine was not affected by any experimental treatment. Broilers fed MP + BG diet had greater thymus weights (P </= 0.05), as a percentage of BW than those from the control and AVI treatments, but similar with respect to YCW and BG treatments. In experiment 2, there was a group-fed basal diet and 3 additional experimental groups receiving the basal diet supplemented with, respectively: 500 mg of YCW/kg of feed, 190 mg of MP/kg of feed, and 227 mg of BG/kg of feed. At 42 d of age, no difference in broiler growth rates was observed. Samples of the jejunum were collected at 21 d of age to determine villus height. Significantly higher villus height was observed in YCW, MP, and BG groups compared with that of the control group. The relative percentage of liver weight (P </= 0.01) was lower in broilers fed YCW than in broilers fed the control diet, but no differences were observed in respect to chickens fed BG. Data of these studies suggested that the changes in thymus and liver relative weights and villus morphology of broilers were induced with the same intensity by the use of complete YCW, MP + BG, and BG supplements.
Collapse
Affiliation(s)
- R Morales-López
- Institute of Research, Food Technology and Agriculture, Department of Animal Nutrition, Centre Mas de Bover, Carr. Reus-Morell, km 3.8, 43120 Constantí (Tarragona), Spain.
| | | | | | | | | |
Collapse
|
45
|
Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. WORLD POULTRY SCI J 2009. [DOI: 10.1017/s0043933909000006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Miyamoto T, Kawaguchi J, Shimotsu S, Kawagishi J, Honjoh KI. Inhibitors of Adhesion Ability of Salmonella Enteritidis. J JPN SOC FOOD SCI 2009. [DOI: 10.3136/nskkk.56.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
. HG, . GH, . GS, . SK. Effect of Dietary Supplementation of Organic Acid and Mannan Oligosaccharide on the Plasma Minerals and Carcass Traits of Japanese Quail (Coturnix coturnix japonica). ACTA ACUST UNITED AC 2008. [DOI: 10.3923/rjvs.2008.44.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Jensen GS, Patterson KM, Yoon I. Yeast culture has anti-inflammatory effects and specifically activates NK cells. Comp Immunol Microbiol Infect Dis 2007; 31:487-500. [PMID: 17915321 DOI: 10.1016/j.cimid.2007.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2007] [Indexed: 11/20/2022]
Abstract
Yeast culture is widely used in animal feed and has been linked to beneficial effects on animal health and production. This study examined the anti-oxidant and immunomodulating effects of a consumable yeast culture, XP, in vitro. An aqueous extract of XP contained anti-oxidants able to enter living cells and quench free radicals. The XP extract induced an increased expression of CD69 and CD25 on NK and NKT cells, and an increased cytotoxic response to K562 tumor cells. The XP extract amplified ProteinA-induced B cell activation in vitro, as measured by induction of the CD86 antigen on B lymphoblasts in 7-day cultures. The data show an anti-inflammatory effect of the XP extract in conjunction with activation of NK cells and B lymphocytes in vitro. Further in vivo studies are needed to examine the impact of XP in animals with bacterial and viral infections, as well as around the time of vaccination.
Collapse
MESH Headings
- Adult
- Anti-Inflammatory Agents/immunology
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Antigens, CD/drug effects
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/drug effects
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antioxidants/metabolism
- Antioxidants/pharmacology
- B7-2 Antigen/drug effects
- B7-2 Antigen/immunology
- B7-2 Antigen/metabolism
- Cell Line, Tumor
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/drug effects
- Interferon-gamma/immunology
- Interleukin-2 Receptor alpha Subunit/drug effects
- Interleukin-2 Receptor alpha Subunit/immunology
- Interleukin-2 Receptor alpha Subunit/metabolism
- K562 Cells
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Middle Aged
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Reactive Oxygen Species/analysis
- Reactive Oxygen Species/immunology
- Yeasts/chemistry
- Yeasts/immunology
- Yeasts/metabolism
Collapse
Affiliation(s)
- G S Jensen
- Holger NIS Inc., 601 13th Avenue NE, Calgary, Alberta, Canada T2E 1C7.
| | | | | |
Collapse
|
49
|
Becker PM, Galletti S, Roubos-van den Hil PJ, van Wikselaar PG. Validation of growth as measurand for bacterial adhesion to food and feed ingredients. J Appl Microbiol 2007; 103:2686-96. [PMID: 17850303 DOI: 10.1111/j.1365-2672.2007.03524.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS A miniaturized adhesion test was designed to study the binding capacity of food and feed ingredients for bacterial cells. METHODS AND RESULTS Bacteria were allowed to adhere to different fibrous materials supplied as well coatings in microtitration plates. The amount of bacteria retained on the materials was determined in an automated way as growth after addition of liquid medium. The test principle was based on an inverse relationship between initial cell densities and the appearance of growth: The higher adhering cell numbers are, the shorter are the detection times of growth. The growth curves obtained were fitted by nonlinear regression analysis employing a sigmoidal curve model. Growth parameters as (i) the time after incubation at which half of the maximum growth yield was reached; (ii) the time-coordinate of the point of inflection; (iii) the detection time calculated as x-axis intercept of the maximum specific growth rate in the point of inflection; and (iv) the time-coordinate of a growth detection threshold at OD = 0.05 were highly separating for the binding capacity of different food and feed ingredients for bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY With growth as measurand for adhesion, a simple, high-throughput method was developed for the screening of huge numbers of different binding matrices and bacteria.
Collapse
Affiliation(s)
- P M Becker
- Animal Sciences Group, Wageningen UR, Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Pelicano ERL, Souza PA, Souza HBA, Figueiredo DF, Amaral CMC. Morphometry and ultra-structure of the intestinal mucosa of broilers fed different additives. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2007. [DOI: 10.1590/s1516-635x2007000300006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|