1
|
Goswami I, Kim Y, Neiman G, Siemons B, Velazquez JI, Yazgan K, Ng T, Healy KE. Pillar arrays as tunable interfacial barriers for microphysiological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632020. [PMID: 39868155 PMCID: PMC11760782 DOI: 10.1101/2025.01.08.632020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems ( MPS ). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions. Serving as an interface between microfluidic compartments, it facilitates cell aggregation for tissue formation and acts as a tunable diffusion barrier that mimics diffusion in vivo. We demonstrate the utility of barrier design to engineer physiologically relevant cardiac microtissues and a heterotypic model with vasculature within the device. Its tunable properties offer significant potential for drug screening/testing and disease modeling, enabling comparisons of drug permeability and cell migration in MPS tissue with or without vasculature.
Collapse
|
2
|
Feng JJ, Hedtrich S. A similarity scaling approach for organ-on-chip devices. LAB ON A CHIP 2022; 22:3663-3667. [PMID: 36070239 DOI: 10.1039/d2lc00641c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organ-on-chip devices (OoCs) provide more nuanced insights into (patho)physiological processes of the human body than static tissue models, and are currently the most promising approach to emulating human (patho)physiology in vitro. OoC designs vary greatly and questions remain as to how to maximize biomimicry and clinical translatability of the in vitro findings. Scaling is critical, yet has largely been ad hoc, consisting in matching one or a few variables between the OoC and the target organ. This has limited the predictive value of OoCs. Here, we propose a systematic approach based on the principle of similitude widely used in the physical sciences, and present three case studies from the recent literature to demonstrate how the approach works. A lung-on-a-chip and a liver-on-a-chip both satisfied important similarity criteria, and therefore yielded results that were in good agreement with clinical data. A gut-liver system failed to satisfy a key criterion of kinematic similarity, and yielded unphysiological pharmacokinetic responses in vitro. The similarity scaling approach promises to improve markedly the design and operation of organ- and human-on-chip devices.
Collapse
Affiliation(s)
- James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Sarah Hedtrich
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany
- Center of Biological Design, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Vernazza S, Passalacqua M, Tirendi S, Marengo B, Domenicotti C, Sbardella D, Oddone F, Bassi AM. Citicoline Eye Drops Protect Trabecular Meshwork Cells from Oxidative Stress Injury in a 3D In Vitro Glaucoma Model. Int J Mol Sci 2022; 23:11375. [PMID: 36232676 PMCID: PMC9570302 DOI: 10.3390/ijms231911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023] Open
Abstract
Intraocular pressure (IOP) is considered an important modifiable risk factor for glaucoma, which is known as the second leading cause of blindness worldwide. However, lowering the IOP is not always sufficient to preserve vision due to other non-IOP-dependent mechanisms being involved. To improve outcomes, adjunctive therapies with IOP-independent targets are required. To date, no studies have shown the effect of citicoline on the trabecular meshwork (TM), even though it is known to possess neuroprotective/enhancement properties and multifactorial mechanisms of action. Given that reactive oxygen species seem to be involved in glaucomatous cascade, in this present study, an advanced millifluidic in vitro model was used to evaluate if citicoline could exert a valid TM protection against oxidative stress. To this end, the cellular behavior, in terms of viability, apoptosis, mitochondrial state, senescence and pro-inflammatory cytokines, on 3D human TM cells, treated either with H2O2 alone or cotreated with citicoline, was analyzed. Our preliminary in vitro results suggest a counteracting effect of citicoline eye drops against oxidative stress on TM cells, though further studies are necessary to explore citicoline's potential as a TM-target therapy.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | | | | | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
4
|
Barra T, Falanga A, Bellavita R, Laforgia V, Prisco M, Galdiero S, Valiante S. gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier. Front Physiol 2022; 13:932099. [PMID: 36060696 PMCID: PMC9437923 DOI: 10.3389/fphys.2022.932099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
The blood–brain barrier (BBB) selectively protects the central nervous system (CNS) from external insults, but its function can represent a limit for the passage of therapeutic molecules. Numerous in vitro models of the BBB have been realized in order to study the passage of drugs for neurodegenerative diseases, but these in vitro models are not very representative of the physiological conditions because of a limited supply of oxygen and nutrients due to static conditions. To avoid this phenomenon, we used a millifluidic bioreactor model that ensures a circulation of the medium and, therefore, of the nutrients, thanks to the continuous laminar flow. This dynamic model consists of a double-culture chamber separated by a membrane on which brain endothelial cells are cultured in order to evaluate the passage of the drug. Furthermore, in the lower chamber, SH-SY5Y were seeded as 3D spheroids to evaluate the drug passage through these cells. As nanodelivery system, we used liposomes functionalized with viral fusion peptide to evaluate the passage of a neuroprotective agent, pituitary adenylate cyclase-activating polypeptide (PACAP), through the dynamic in vitro model of the BBB. We showed that our nanodelivery system, made of functionalized liposomes and loaded with specific molecules, efficiently crosses the in vitro fluid-dynamic model of the BBB. Our findings represent an important step for further experimental investigations on PACAP administration as a therapeutic agent by an enhanced drug delivery system. Our results can improve the diffusion of good practice in neuroscience laboratories, helping to spread the 3R rules.
Collapse
Affiliation(s)
- Teresa Barra
- Deparment of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Teresa Barra,
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenza Laforgia
- Deparment of Biology, University of Naples Federico II, Naples, Italy
| | - Marina Prisco
- Deparment of Biology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
5
|
Shroff T, Aina K, Maass C, Cipriano M, Lambrecht J, Tacke F, Mosig A, Loskill P. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol 2022; 12:210333. [PMID: 35232251 PMCID: PMC8889168 DOI: 10.1098/rsob.210333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-clinical models to study metabolism including animal models and cell assays are often limited in terms of species translatability and predictability of human biology. This field urgently requires a push towards more physiologically accurate recapitulations of drug interactions and disease progression in the body. Organ-on-chip systems, specifically multi-organ chips (MOCs), are an emerging technology that is well suited to providing a species-specific platform to study the various types of metabolism (glucose, lipid, protein and drug) by recreating organ-level function. This review provides a resource for scientists aiming to study human metabolism by providing an overview of MOCs recapitulating aspects of metabolism, by addressing the technical aspects of MOC development and by providing guidelines for correlation with in silico models. The current state and challenges are presented for two application areas: (i) disease modelling and (ii) pharmacokinetics/pharmacodynamics. Additionally, the guidelines to integrate the MOC data into in silico models could strengthen the predictive power of the technology. Finally, the translational aspects of metabolizing MOCs are addressed, including adoption for personalized medicine and prospects for the clinic. Predictive MOCs could enable a significantly reduced dependence on animal models and open doors towards economical non-clinical testing and understanding of disease mechanisms.
Collapse
Affiliation(s)
- Tanvi Shroff
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Kehinde Aina
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Madalena Cipriano
- Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Alexander Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany,3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Kim M, Jang J. Construction of 3D hierarchical tissue platforms for modeling diabetes. APL Bioeng 2021; 5:041506. [PMID: 34703970 PMCID: PMC8530538 DOI: 10.1063/5.0055128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most serious systemic diseases worldwide, and the majority of DM patients face severe complications. However, many of underlying disease mechanisms related to these complications are difficult to understand with the use of currently available animal models. With the urgent need to fundamentally understand DM pathology, a variety of 3D biomimetic platforms have been generated by the convergence of biofabrication and tissue engineering strategies for the potent drug screening platform of pre-clinical research. Here, we suggest key requirements for the fabrication of physiomimetic tissue models in terms of recapitulating the cellular organization, creating native 3D microenvironmental niches for targeted tissue using biomaterials, and applying biofabrication technologies to implement tissue-specific geometries. We also provide an overview of various in vitro DM models, from a cellular level to complex living systems, which have been developed using various bioengineering approaches. Moreover, we aim to discuss the roadblocks facing in vitro tissue models and end with an outlook for future DM research.
Collapse
Affiliation(s)
- Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jinah Jang
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Scaling of joint mass and metabolism fluctuations in in silico cell-laden spheroids. Proc Natl Acad Sci U S A 2021; 118:2025211118. [PMID: 34526399 PMCID: PMC8463845 DOI: 10.1073/pnas.2025211118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Allometric scaling has many applications, from the prediction of pharmacokinetics in animals and humans to the probing of ecosystem dynamics. Most studies have neglected to account for variations and fluctuations, although they are intrinsic features of all biological systems. To understand how metabolic scaling emerges in the presence of variations, we developed computer-generated models of cell-laden spheroids to define the experimental size range of cell cultures with quantifiable similitudes in terms of fluctuations and metabolic scaling with living organisms. We show that the estimates of scaling exponents may change with increasing variability in both mass and metabolic rate. The computational pipeline described underpins the sound design of statistically meaningful cell-based models, with impacts in both biomedical science and ecology. Variations and fluctuations are characteristic features of biological systems and are also manifested in cell cultures. Here, we describe a computational pipeline for identifying the range of three-dimensional (3D) cell-aggregate sizes in which nonisometric scaling emerges in the presence of joint mass and metabolic rate fluctuations. The 3D cell-laden spheroids with size and single-cell metabolic rates described by probability density functions were randomly generated in silico. The distributions of the resulting metabolic rates of the spheroids were computed by modeling oxygen diffusion and reaction. Then, a method for estimating scaling exponents of correlated variables through statistically significant data collapse of joint probability distributions was developed. The method was used to identify a physiologically relevant range of spheroid sizes, where both nonisometric scaling and a minimum oxygen concentration (0.04 mol⋅m−3) is maintained. The in silico pipeline described enables the prediction of the number of experiments needed for an acceptable collapse and, thus, a consistent estimate of scaling parameters. Using the pipeline, we also show that scaling exponents may be significantly different in the presence of joint mass and metabolic-rate variations typically found in cells. Our study highlights the importance of incorporating fluctuations and variability in size and metabolic rates when estimating scaling exponents. It also suggests the need for taking into account their covariations for better understanding and interpreting experimental observations both in vitro and in vivo and brings insights for the design of more predictive and physiologically relevant in vitro models.
Collapse
|
8
|
Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021; 5:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Despite many ongoing efforts across the full spectrum of pharmaceutical and biotech industries, drug development is still a costly undertaking that involves a high risk of failure during clinical trials. Animal models played vital roles in understanding the mechanism of human diseases. However, the use of these models has been a subject of heated debate, particularly due to ethical matters and the inevitable pathophysiological differences between animals and humans. Current in vitro models lack the sufficient functionality and predictivity of human pharmacokinetics and toxicity, therefore, are not capable to fully replace animal models. The recent development of micro-physiological systems has shown great potential as indispensable tools for recapitulating key physiological parameters of humans and providing in vitro methods for predicting the pharmacokinetics and pharmacodynamics in humans. Integration of Absorption, Distribution, Metabolism, and Excretion (ADME) processes within one close in vitro system is a paramount development that would meet important unmet pharmaceutical industry needs. In this review paper, synthesis of the ADME-centered organ-on-a-chip technology is systemically presented from what is achieved to what needs to be done, emphasizing the requirements of in vitro models that meet industrial needs in terms of the structure and functions.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Roa Saleem Fardous
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, G4 0RE, United Kingdom
| | - Rana Hazaymeh
- Almaarefa University, Riyadh, 13713, Kingdom of Saudi Arabia
| | - Sultan Alshmmari
- Saudi Food and Drug Authority, Riyadh, 13513-7148, Kingdom of Saudi Arabia
| | | |
Collapse
|
9
|
Sun AM, Hoffman T, Luu BQ, Ashammakhi N, Li S. Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Biodes Manuf 2021; 4:757-775. [PMID: 34178414 PMCID: PMC8213042 DOI: 10.1007/s42242-021-00136-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
There is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this challenge, in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening, thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the processes of inflammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that may influence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Argus M. Sun
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- UC San Diego Healthcare, UCSD, La Jolla, CA 92037 USA
| | - Tyler Hoffman
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
| | - Bao Q. Luu
- Pulmonary Diseases and Critical Care, Scripps Green Hospital, Scripps Health, La Jolla, CA 92037 USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Song Li
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 USA
| |
Collapse
|
10
|
Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation. Adv Biol (Weinh) 2021; 5:e2000024. [PMID: 33856745 PMCID: PMC8243895 DOI: 10.1002/adbi.202000024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2021] [Indexed: 12/11/2022]
Abstract
The last few decades have witnessed diversified in vitro models to recapitulate the architecture and function of living organs or tissues and contribute immensely to advances in life science. Two novel 3D cell culture models: 1) Organoid, promoted mainly by the developments of stem cell biology and 2) Organ-on-a-chip, enhanced primarily due to microfluidic technology, have emerged as two promising approaches to advance the understanding of basic biological principles and clinical treatments. This review describes the comparable distinct differences between these two models and provides more insights into their complementarity and integration to recognize their merits and limitations for applicable fields. The convergence of the two approaches to produce multi-organoid-on-a-chip or human organoid-on-a-chip is emerging as a new approach for building 3D models with higher physiological relevance. Furthermore, rapid advancements in 3D printing and numerical simulations, which facilitate the design, manufacture, and results-translation of 3D cell culture models, can also serve as novel tools to promote the development and propagation of organoid and organ-on-a-chip systems. Current technological challenges and limitations, as well as expert recommendations and future solutions to address the promising combinations by incorporating organoids, organ-on-a-chip, 3D printing, and numerical simulation, are also summarized.
Collapse
Affiliation(s)
- Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuminghao Xiao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
11
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
12
|
Saccà SC, Izzotti A, Vernazza S, Tirendi S, Scarfì S, Gandolfi S, Bassi AM. Can Polyphenols in Eye Drops Be Useful for Trabecular Protection from Oxidative Damage? J Clin Med 2020; 9:3584. [PMID: 33172106 PMCID: PMC7694784 DOI: 10.3390/jcm9113584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Polyphenols, with anti-oxidant properties, counteract oxidative stress effects. Increasing evidence has found oxidative stressto be the main risk factor for trabecular meshwork (TM) damage, leading to high-tension glaucoma. Topical anti-oxidants could represent a new target for glaucoma treatment. Our aim is to investigate the protective mechanisms on a human TM culture of a patented polyphenol and fatty acid (iTRAB®)formulation in response to oxidative stress using an advanced invitromodel consisting of 3D-human TM cells, embedded in a natural hydrogel, and a milli-scaled multi-organ device model for constantdynamic conditions. The 3D-human TM cells(3D-HTMCs) were treated daily with 500 µM H2O2or 500 µM H2O2and 0.15% iTRAB®(m/v) for 72 h, and molecular differences in the intracellular reactive oxygen species (iROS), state of the cells, activation of the apoptosis pathway and NF-kB and the expression ofinflammatory and fibrotic markers wereanalyzed at different time-points.Concomitant exposure significantly reduced iROS and restored TM viability, iTRAB® having a significant inhibitory effect on the apoptotic pathway, activation of NF-κB, induction of pro-inflammatory (IL-1α, IL-1ß and TNFα) and pro-fibrotic (TGFβ) cytokines and the matrix metalloproteinase expressions. It is clear that this specific anti-oxidant provides a valid TM protection, suggesting iTRAB® could be an adjuvant therapy in primary open-angle glaucoma (POAG).
Collapse
Affiliation(s)
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
| | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
| | - Sonia Scarfì
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, 43121 Parma, Italy;
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
| |
Collapse
|
13
|
Galet B, Cheval H, Ravassard P. Patient-Derived Midbrain Organoids to Explore the Molecular Basis of Parkinson's Disease. Front Neurol 2020; 11:1005. [PMID: 33013664 PMCID: PMC7500100 DOI: 10.3389/fneur.2020.01005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cell-derived organoids offer an unprecedented access to complex human tissues that recapitulate features of architecture, composition and function of in vivo organs. In the context of Parkinson's Disease (PD), human midbrain organoids (hMO) are of significant interest, as they generate dopaminergic neurons expressing markers of Substantia Nigra identity, which are the most vulnerable to degeneration. Combined with genome editing approaches, hMO may thus constitute a valuable tool to dissect the genetic makeup of PD by revealing the effects of risk variants on pathological mechanisms in a representative cellular environment. Furthermore, the flexibility of organoid co-culture approaches may also enable the study of neuroinflammatory and neurovascular processes, as well as interactions with other brain regions that are also affected over the course of the disease. We here review existing protocols to generate hMO, how they have been used so far to model PD, address challenges inherent to organoid cultures, and discuss applicable strategies to dissect the molecular pathophysiology of the disease. Taken together, the research suggests that this technology represents a promising alternative to 2D in vitro models, which could significantly improve our understanding of PD and help accelerate therapeutic developments.
Collapse
Affiliation(s)
- Benjamin Galet
- Molecular Pathophysiology of Parkinson's Disease Group, Paris Brain Institute (ICM), INSERM U, CNRS UMR 7225, Sorbonne University, Paris, France
| | | | | |
Collapse
|
14
|
Ramadan Q, Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. BIOMICROFLUIDICS 2020; 14:041501. [PMID: 32699563 PMCID: PMC7367691 DOI: 10.1063/5.0011583] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Organ-on-a-chip (OOC) is a very ambitious emerging technology with a high potential to revolutionize many medical and industrial sectors, particularly in preclinical-to-clinical translation in the pharmaceutical arena. In vivo, the function of the organ(s) is orchestrated by a complex cellular structure and physiochemical factors within the extracellular matrix and secreted by various types of cells. The trend in in vitro modeling is to simplify the complex anatomy of the human organ(s) to the minimal essential cellular structure "micro-anatomy" instead of recapitulating the full cellular milieu that enables studying the absorption, metabolism, as well as the mechanistic investigation of drug compounds in a "systemic manner." However, in order to reflect the human physiology in vitro and hence to be able to bridge the gap between the in vivo and in vitro data, simplification should not compromise the physiological relevance. Engineering principles have long been applied to solve medical challenges, and at this stage of organ-on-a-chip technology development, the work of biomedical engineers, focusing on device engineering, is more important than ever to accelerate the technology transfer from the academic lab bench to specialized product development institutions and to the increasingly demanding market. In this paper, instead of presenting a narrative review of the literature, we systemically present a synthesis of the best available organ-on-a-chip technology from what is found, what has been achieved, and what yet needs to be done. We emphasized mainly on the requirements of a "good in vitro model that meets the industrial need" in terms of the structure (micro-anatomy), functions (micro-physiology), and characteristics of the device that hosts the biological model. Finally, we discuss the biological model-device integration supported by an example and the major challenges that delay the OOC technology transfer to the industry and recommended possible options to realize a functional organ-on-a-chip system.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. MICROMACHINES 2020; 11:E599. [PMID: 32570945 PMCID: PMC7345732 DOI: 10.3390/mi11060599] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Following the advancements in microfluidics and lab-on-a-chip (LOC) technologies, a novel biomedical application for microfluidic based devices has emerged in recent years and microengineered cell culture platforms have been created. These micro-devices, known as organ-on-a-chip (OOC) platforms mimic the in vivo like microenvironment of living organs and offer more physiologically relevant in vitro models of human organs. Consequently, the concept of OOC has gained great attention from researchers in the field worldwide to offer powerful tools for biomedical researches including disease modeling, drug development, etc. This review highlights the background of biochip development. Herein, we focus on applications of LOC devices as a versatile tool for POC applications. We also review current progress in OOC platforms towards body-on-a-chip, and we provide concluding remarks and future perspectives for OOC platforms for POC applications.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
| | - Derek H. Rosenzweig
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada
| | - Mohamad Sawan
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montreal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, School of Engineering, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
- NSERC-Industry Chair, CREPEC, Chemical Engineering Department, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
16
|
Lee DW, Lee SH, Choi N, Sung JH. Construction of pancreas–muscle–liver microphysiological system (MPS) for reproducing glucose metabolism. Biotechnol Bioeng 2019; 116:3433-3445. [DOI: 10.1002/bit.27151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Dong Wook Lee
- Department of Chemical EngineeringHongik UniversitySeoul Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano EngineeringHanyang UniversityAnsan Republic of Korea
- Nanosensor Research InstituteHanyang UniversityAnsan Republic of Korea
- Department of BionanotechnologyHanyang UniversityAnsan Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical EngineeringHongik UniversitySeoul Republic of Korea
| |
Collapse
|
17
|
Magliaro C, Rinaldo A, Ahluwalia A. Allometric Scaling of physiologically-relevant organoids. Sci Rep 2019; 9:11890. [PMID: 31417119 PMCID: PMC6695443 DOI: 10.1038/s41598-019-48347-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
The functional and structural resemblance of organoids to mammalian organs suggests that they might follow the same allometric scaling rules. However, despite their remarkable likeness to downscaled organs, non-luminal organoids are often reported to possess necrotic cores due to oxygen diffusion limits. To assess their potential as physiologically relevant in vitro models, we determined the range of organoid masses in which quarter power scaling as well as a minimum threshold oxygen concentration is maintained. Using data on brain organoids as a reference, computational models were developed to estimate oxygen consumption and diffusion at different stages of growth. The results show that mature brain (or other non-luminal) organoids generated using current protocols must lie within a narrow range of masses to maintain both quarter power scaling and viable cores. However, micro-fluidic oxygen delivery methods could be designed to widen this range, ensuring a minimum viable oxygen threshold throughout the constructs and mass dependent metabolic scaling. The results provide new insights into the significance of the allometric exponent in systems without a resource-supplying network and may be used to guide the design of more predictive and physiologically relevant in vitro models, providing an effective alternative to animals in research.
Collapse
Affiliation(s)
- Chiara Magliaro
- Research Center "E. Piaggio", University of Pisa, Largo Lucio Lazzarino, 1, 56122, Pisa, Italy
| | - Andrea Rinaldo
- Laboratory of Ecohydrology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.,Dipartimento ICEA, University of Padova, via Loredan 30, 35131, Padova, Italy
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Largo Lucio Lazzarino, 1, 56122, Pisa, Italy. .,Department of Information Engineering, University of Pisa, Via Caruso, 16, 56122, Pisa, Italy.
| |
Collapse
|
18
|
Sung JH, Wang Y, Shuler ML. Strategies for using mathematical modeling approaches to design and interpret multi-organ microphysiological systems (MPS). APL Bioeng 2019; 3:021501. [PMID: 31263796 PMCID: PMC6586554 DOI: 10.1063/1.5097675] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Recent advances in organ-on-a-chip technology have resulted in numerous examples of microscale systems that faithfully mimic the physiology and pathology of human organs and diseases. The next step in this field, which has already been partially demonstrated at a proof-of-concept level, would be integration of organ modules to construct multiorgan microphysiological systems (MPSs). In particular, there is interest in "body-on-a-chip" models, which recapitulate complex and dynamic interactions between different organs. Integration of multiple organ modules, while faithfully reflecting human physiology in a quantitative sense, will require careful consideration of factors such as relative organ sizes, blood flow rates, cell numbers, and ratios of cell types. The use of a mathematical modeling platform will be an essential element in designing multiorgan MPSs and interpretation of experimental results. Also, extrapolation to in vivo will require robust mathematical modeling techniques. So far, several scaling methods and pharmacokinetic and physiologically based pharmacokinetic models have been applied to multiorgan MPSs, with each method being suitable to a subset of different objectives. Here, we summarize current mathematical methodologies used for the design and interpretation of multiorgan MPSs and suggest important considerations and approaches to allow multiorgan MPSs to recapitulate human physiology and disease progression better, as well as help in vitro to in vivo translation of studies on response to drugs or chemicals.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul 04066, South Korea
| | - Ying Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
19
|
Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schwamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. LAB ON A CHIP 2018; 18:3172-3183. [PMID: 30204191 DOI: 10.1039/c8lc00206a] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human midbrain-specific organoids (hMOs) serve as an experimental in vitro model for studying the pathogenesis of Parkinson's disease (PD). In hMOs, neuroepithelial stem cells (NESCs) give rise to functional midbrain dopaminergic (mDA) neurons that are selectively degenerating during PD. A limitation of the hMO model is an under-supply of oxygen and nutrients to the densely packed core region, which leads eventually to a "dead core". To reduce this phenomenon, we applied a millifluidic culture system that ensures media supply by continuous laminar flow. We developed a computational model of oxygen transport and consumption in order to predict oxygen levels within the hMOs. The modelling predicts higher oxygen levels in the hMO core region under millifluidic conditions. In agreement with the computational model, a significantly smaller "dead core" was observed in hMOs cultured in a bioreactor system compared to those ones kept under conventional shaking conditions. Comparing the necrotic core regions in the organoids with those obtained from the model allowed an estimation of the critical oxygen concentration necessary for ensuring cell vitality. Besides the reduced "dead core" size, the differentiation efficiency from NESCs to mDA neurons was elevated in hMOs exposed to medium flow. Increased differentiation involved a metabolic maturation process that was further developed in the millifluidic culture. Overall, bioreactor conditions that improve hMO quality are worth considering in the context of advanced PD modelling.
Collapse
Affiliation(s)
- Emanuel Berger
- University of Luxembourg (UL), Centre for Systems Biomedicine (LCSB) - Developmental and Cellular Biology group, Luxembourg.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cirit M, Stokes CL. Maximizing the impact of microphysiological systems with in vitro-in vivo translation. LAB ON A CHIP 2018; 18:1831-1837. [PMID: 29863727 PMCID: PMC6019627 DOI: 10.1039/c8lc00039e] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microphysiological systems (MPS) hold promise for improving therapeutic drug approval rates by providing more physiological, human-based, in vitro assays for preclinical drug development activities compared to traditional in vitro and animal models. Here, we first summarize why MPSs are needed in pharmaceutical development, and examine how MPS technologies can be utilized to improve preclinical efforts. We then provide the perspective that the full impact of MPS technologies will be realized only when robust approaches for in vitro-in vivo (MPS-to-human) translation are developed and utilized, and explain how the burgeoning field of quantitative systems pharmacology (QSP) can fill that need.
Collapse
Affiliation(s)
- Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
21
|
Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, Valdez J, Cook CD, Parent T, Snyder S, Yu J, Suter E, Shockley M, Velazquez J, Velazquez JJ, Stockdale L, Papps JP, Lee I, Vann N, Gamboa M, LaBarge ME, Zhong Z, Wang X, Boyer LA, Lauffenburger DA, Carrier RL, Communal C, Tannenbaum SR, Stokes CL, Hughes DJ, Rohatgi G, Trumper DL, Cirit M, Griffith LG. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep 2018. [PMID: 29540740 PMCID: PMC5852083 DOI: 10.1038/s41598-018-22749-0] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs – “4-way”, “7-way”, and “10-way” – each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS “physiome-on-a-chip” approaches in drug discovery.
Collapse
Affiliation(s)
- Collin D Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Geishecker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy Kassis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis R Soenksen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brij M Bhushan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Christian Maass
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolaos Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christi D Cook
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Jiajie Yu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Suter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Shockley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeremy J Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linda Stockdale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia P Papps
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Iris Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas Vann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mario Gamboa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew E LaBarge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Zhong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Catherine Communal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - David L Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Systemic and vascular inflammation in an in-vitro model of central obesity. PLoS One 2018; 13:e0192824. [PMID: 29438401 PMCID: PMC5811040 DOI: 10.1371/journal.pone.0192824] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic disorders due to over-nutrition are a major global health problem, often associated with obesity and related morbidities. Obesity is peculiar to humans, as it is associated with lifestyle and diet, and so difficult to reproduce in animal models. Here we describe a model of human central adiposity based on a 3-tissue system consisting of a series of interconnected fluidic modules. Given the causal link between obesity and systemic inflammation, we focused primarily on pro-inflammatory markers, examining the similarities and differences between the 3-tissue model and evidence from human studies in the literature. When challenged with high levels of adiposity, the in-vitro system manifests cardiovascular stress through expression of E-selectin and von Willebrand factor as well as systemic inflammation (expressing IL-6 and MCP-1) as observed in humans. Interestingly, most of the responses are dependent on the synergic interaction between adiposity and the presence of multiple tissue types. The set-up has the potential to reduce animal experiments in obesity research and may help unravel specific cellular mechanisms which underlie tissue response to nutritional overload.
Collapse
|
23
|
Lee SH, Sung JH. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology. Adv Healthc Mater 2018; 7. [PMID: 28945001 DOI: 10.1002/adhm.201700419] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/04/2017] [Indexed: 12/14/2022]
Abstract
In the drug development process, the accurate prediction of drug efficacy and toxicity is important in order to reduce the cost, labor, and effort involved. For this purpose, conventional 2D cell culture models are used in the early phase of drug development. However, the differences between the in vitro and the in vivo systems have caused the failure of drugs in the later phase of the drug-development process. Therefore, there is a need for a novel in vitro model system that can provide accurate information for evaluating the drug efficacy and toxicity through a closer recapitulation of the in vivo system. Recently, the idea of using microtechnology for mimicking the microscale tissue environment has become widespread, leading to the development of "organ-on-a-chip." Furthermore, the system is further developed for realizing a multiorgan model for mimicking interactions between multiple organs. These advancements are still ongoing and are aimed at ultimately developing "body-on-a-chip" or "human-on-a-chip" devices for predicting the response of the whole body. This review summarizes recently developed organ-on-a-chip technologies, and their applications for reproducing multiorgan functions.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering; Hongik University; Seoul 04066 Republic of Korea
| |
Collapse
|
24
|
Abstract
Accurate prediction of first-pass metabolism is essential for improving the time and cost efficiency of drug development process. Here, we have developed a microfluidic gut-liver co-culture chip that aims to reproduce the first-pass metabolism of oral drugs. This chip consists of two separate layers for gut (Caco-2) and liver (HepG2) cell lines, where cells can be co-cultured in both 2D and 3D forms. Both cell lines were maintained well in the chip, verified by confocal microscopy and measurement of hepatic enzyme activity. We investigated the PK profile of paracetamol in the chip, and corresponding PK model was constructed, which was used to predict PK profiles for different chip design parameters. Simulation results implied that a larger absorption surface area and a higher metabolic capacity are required to reproduce the in vivo PK profile of paracetamol more accurately. Our study suggests the possibility of reproducing the human PK profile on a chip, contributing to accurate prediction of pharmacological effect of drugs.
Collapse
|
25
|
Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, Cirit M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. AAPS JOURNAL 2017; 19:1499-1512. [PMID: 28752430 DOI: 10.1208/s12248-017-0122-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/08/2017] [Indexed: 01/05/2023]
Abstract
Investigation of the pharmacokinetics (PK) of a compound is of significant importance during the early stages of drug development, and therefore several in vitro systems are routinely employed for this purpose. However, the need for more physiologically realistic in vitro models has recently fueled the emerging field of tissue-engineered 3D cultures, also referred to as organs-on-chips, or microphysiological systems (MPSs). We have developed a novel fluidic platform that interconnects multiple MPSs, allowing PK studies in multi-organ in vitro systems along with the collection of high-content quantitative data. This platform was employed here to integrate a gut and a liver MPS together in continuous communication, and investigate simultaneously different PK processes taking place after oral drug administration in humans (e.g., intestinal permeability, hepatic metabolism). Measurement of tissue-specific phenotypic metrics indicated that gut and liver MPSs can be fluidically coupled with circulating common medium without compromising their functionality. The PK of diclofenac and hydrocortisone was investigated under different experimental perturbations, and results illustrate the robustness of this integrated system for quantitative PK studies. Mechanistic model-based analysis of the obtained data allowed the derivation of the intrinsic parameters (e.g., permeability, metabolic clearance) associated with the PK processes taking place in each MPS. Although these processes were not substantially affected by the gut-liver interaction, our results indicate that inter-MPS communication can have a modulating effect (hepatic metabolism upregulation). We envision that our integrative approach, which combines multi-cellular tissue models, multi-MPS platforms, and quantitative mechanistic modeling, will have broad applicability in pre-clinical drug development.
Collapse
Affiliation(s)
- Nikolaos Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Collin D Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | | | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
26
|
Chen WLK, Edington C, Suter E, Yu J, Velazquez JJ, Velazquez JG, Shockley M, Large EM, Venkataramanan R, Hughes DJ, Stokes CL, Trumper DL, Carrier RL, Cirit M, Griffith LG, Lauffenburger DA. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol Bioeng 2017; 114:2648-2659. [PMID: 28667746 PMCID: PMC5614865 DOI: 10.1002/bit.26370] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
Abstract
A capability for analyzing complex cellular communication among tissues is important in drug discovery and development, and in vitro technologies for doing so are required for human applications. A prominent instance is communication between the gut and the liver, whereby perturbations of one tissue can influence behavior of the other. Here, we present a study on human gut‐liver tissue interactions under normal and inflammatory contexts, via an integrative multi‐organ platform comprising human liver (hepatocytes and Kupffer cells), and intestinal (enterocytes, goblet cells, and dendritic cells) models. Our results demonstrated long‐term (>2 weeks) maintenance of intestinal (e.g., barrier integrity) and hepatic (e.g., albumin) functions in baseline interaction. Gene expression data comparing liver in interaction with gut, versus isolation, revealed modulation of bile acid metabolism. Intestinal FGF19 secretion and associated inhibition of hepatic CYP7A1 expression provided evidence of physiologically relevant gut‐liver crosstalk. Moreover, significant non‐linear modulation of cytokine responses was observed under inflammatory gut‐liver interaction; for example, production of CXCR3 ligands (CXCL9,10,11) was synergistically enhanced. RNA‐seq analysis revealed significant upregulation of IFNα/β/γ signaling during inflammatory gut‐liver crosstalk, with these pathways implicated in the synergistic CXCR3 chemokine production. Exacerbated inflammatory response in gut‐liver interaction also negatively affected tissue‐specific functions (e.g., liver metabolism). These findings illustrate how an integrated multi‐tissue platform can generate insights useful for understanding complex pathophysiological processes such as inflammatory organ crosstalk. Biotechnol. Bioeng. 2017;114: 2648–2659. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen L K Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Collin Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Emily Suter
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jiajie Yu
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jeremy J Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jason G Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Michael Shockley
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Emma M Large
- CN Bio Innovations, Welwyn Garden City, Hertfordshire, UK
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David J Hughes
- CN Bio Innovations, Welwyn Garden City, Hertfordshire, UK
| | | | - David L Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
27
|
Lee SH, Sung JH. Microtechnology-Based Multi-Organ Models. Bioengineering (Basel) 2017; 4:bioengineering4020046. [PMID: 28952525 PMCID: PMC5590483 DOI: 10.3390/bioengineering4020046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023] Open
Abstract
Drugs affect the human body through absorption, distribution, metabolism, and elimination (ADME) processes. Due to their importance, the ADME processes need to be studied to determine the efficacy and side effects of drugs. Various in vitro model systems have been developed and used to realize the ADME processes. However, conventional model systems have failed to simulate the ADME processes because they are different from in vivo, which has resulted in a high attrition rate of drugs and a decrease in the productivity of new drug development. Recently, a microtechnology-based in vitro system called "organ-on-a-chip" has been gaining attention, with more realistic cell behavior and physiological reactions, capable of better simulating the in vivo environment. Furthermore, multi-organ-on-a-chip models that can provide information on the interaction between the organs have been developed. The ultimate goal is the development of a "body-on-a-chip", which can act as a whole body model. In this review, we introduce and summarize the current progress in the development of multi-organ models as a foundation for the development of body-on-a-chip.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul 121-791, Korea.
| |
Collapse
|
28
|
Maass C, Stokes CL, Griffith LG, Cirit M. Multi-functional scaling methodology for translational pharmacokinetic and pharmacodynamic applications using integrated microphysiological systems (MPS). Integr Biol (Camb) 2017; 9:290-302. [PMID: 28267162 PMCID: PMC5729907 DOI: 10.1039/c6ib00243a] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microphysiological systems (MPS) provide relevant physiological environments in vitro for studies of pharmacokinetics, pharmacodynamics and biological mechanisms for translational research. Designing multi-MPS platforms is essential to study multi-organ systems. Typical design approaches, including direct and allometric scaling, scale each MPS individually and are based on relative sizes not function. This study's aim was to develop a new multi-functional scaling approach for integrated multi-MPS platform design for specific applications. We developed an optimization approach using mechanistic modeling and specification of an objective that considered multiple MPS functions, e.g., drug absorption and metabolism, simultaneously to identify system design parameters. This approach informed the design of two hypothetical multi-MPS platforms consisting of gut and liver (multi-MPS platform I) and gut, liver and kidney (multi-MPS platform II) to recapitulate in vivo drug exposures in vitro. This allows establishment of clinically relevant drug exposure-response relationships, a prerequisite for efficacy and toxicology assessment. Design parameters resulting from multi-functional scaling were compared to designs based on direct and allometric scaling. Human plasma time-concentration profiles of eight drugs were used to inform the designs, and profiles of an additional five drugs were calculated to test the designed platforms on an independent set. Multi-functional scaling yielded exposure times in good agreement with in vivo data, while direct and allometric scaling approaches resulted in short exposure durations. Multi-functional scaling allows appropriate scaling from in vivo to in vitro of multi-MPS platforms, and in the cases studied provides designs that better mimic in vivo exposures than standard MPS scaling methods.
Collapse
Affiliation(s)
- Christian Maass
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | | | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
29
|
Abstract
About two decades ago, West and coworkers established a model which predicts that metabolic rate follows a three quarter power relationship with the mass of an organism, based on the premise that tissues are supplied nutrients through a fractal distribution network. Quarter power scaling is widely considered a universal law of biology and it is generally accepted that were in-vitro cultures to obey allometric metabolic scaling, they would have more predictive potential and could, for instance, provide a viable substitute for animals in research. This paper outlines a theoretical and computational framework for establishing quarter power scaling in three-dimensional spherical constructs in-vitro, starting where fractal distribution ends. Allometric scaling in non-vascular spherical tissue constructs was assessed using models of Michaelis Menten oxygen consumption and diffusion. The models demonstrate that physiological scaling is maintained when about 5 to 60% of the construct is exposed to oxygen concentrations less than the Michaelis Menten constant, with a significant concentration gradient in the sphere. The results have important implications for the design of downscaled in-vitro systems with physiological relevance.
Collapse
Affiliation(s)
- Arti Ahluwalia
- Department of Information Engineering and Research Center E.Piaggio, University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
31
|
Bale SS, Moore L, Yarmush M, Jindal R. Emerging In Vitro Liver Technologies for Drug Metabolism and Inter-Organ Interactions. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:383-394. [PMID: 27049038 DOI: 10.1089/ten.teb.2016.0031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In vitro liver models provide essential information for evaluating drug metabolism, metabolite formation, and hepatotoxicity. Interfacing liver models with other organ models could provide insights into the desirable as well as unintended systemic side effects of therapeutic agents and their metabolites. Such information is invaluable for drug screening processes particularly in the context of secondary organ toxicity. While interfacing of liver models with other organ models has been achieved, platforms that effectively provide human-relevant precise information are needed. In this concise review, we discuss the current state-of-the-art of liver-based multiorgan cell culture platforms primarily from a drug and metabolite perspective, and highlight the importance of media-to-cell ratio in interfacing liver models with other organ models. In addition, we briefly discuss issues related to development of optimal liver models that include recent advances in hepatic cell lines, stem cells, and challenges associated with primary hepatocyte-based liver models. Liver-based multiorgan models that achieve physiologically relevant coupling of different organ models can have a broad impact in evaluating drug efficacy and toxicity, as well as mechanistic investigation of human-relevant disease conditions.
Collapse
Affiliation(s)
- Shyam Sundhar Bale
- 1 Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children , Boston, Massachusetts
| | - Laura Moore
- 1 Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children , Boston, Massachusetts
| | - Martin Yarmush
- 1 Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children , Boston, Massachusetts.,2 Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| | - Rohit Jindal
- 1 Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children , Boston, Massachusetts
| |
Collapse
|
32
|
Lee SH, Ha SK, Choi I, Choi N, Park TH, Sung JH. Microtechnology-based organ systems and whole-body models for drug screening. Biotechnol J 2016; 11:746-56. [PMID: 27125245 DOI: 10.1002/biot.201500551] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/16/2016] [Accepted: 04/06/2016] [Indexed: 01/09/2023]
Abstract
After drug administration, the drugs are absorbed, distributed, metabolized, and excreted (ADME). Because ADME processes affect drug efficacy, various in vitro models have been developed based on the ADME processes. Although these models have been widely accepted as a tool for predicting the effects of drugs, the differences between in vivo and in vitro systems result in high attrition rates of drugs during the development process and remain a major limitation. Recent advances in microtechnology enable more accurate mimicking of the in vivo environment, where cellular behavior and physiological responses to drugs are more realistic; this has led to the development of novel in vitro systems, known as "organ-on-a-chip" systems. The development of organ-on-a-chip systems has progressed to include the reproduction of multiple organ interactions, which is an important step towards "body-on-a-chip" systems that will ultimately predict whole-body responses to drugs. In this review, we summarize the application of microtechnology for the development of in vitro systems that accurately mimic in vivo environments and reconstruct multiple organ models.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Inwook Choi
- Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do, Republic of Korea
| | - Jong Hwan Sung
- Chemical Engineering, Hongik University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. LAB ON A CHIP 2015; 15:4542-54. [PMID: 26524977 DOI: 10.1039/c5lc01028d] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study we have investigated a photosensitive thermoset (OSTEMER 322-40) as a complementary material to readily fabricate complex multi-layered microdevices for applications in life science. Simple, versatile and robust fabrication of multifunctional microfluidics is becoming increasingly important for the development of customized tissue-, organ- and body-on-a-chip systems capable of mimicking tissue interfaces and biological barriers. In the present work key material properties including optical properties, vapor permeability, hydrophilicity and biocompatibility are evaluated for cell-based assays using fibroblasts, endothelial cells and mesenchymal stem cells. The excellent bonding strength of the OSTEMER thermoset to flexible fluoropolymer (FEP) sheets and poly(dimethylsiloxane) (PDMS) membranes further allows for the fabrication of integrated microfluidic components such as membrane-based microdegassers, microvalves and micropumps. We demonstrate the application of multi-layered, membrane-integrated microdevices that consist of up to seven layers and three membranes that specially confine and separate vascular cells from the epithelial barrier and 3D tissue structures.
Collapse
Affiliation(s)
- Drago Sticker
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|