1
|
Using Breast Tissue Information and Subject-Specific Finite-Element Models to Optimize Breast Compression Parameters for Digital Mammography. ELECTRONICS 2022. [DOI: 10.3390/electronics11111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Digital mammography has become a first-line diagnostic tool for clinical breast cancer screening due to its high sensitivity and specificity. Mammographic compression force is closely associated with image quality and patient comfort. Therefore, optimizing breast compression parameters is essential. Subjects were recruited for digital mammography and breast magnetic resonance imaging (MRI) within a month. Breast MRI images were used to calculate breast volume and volumetric breast density (VBD) and construct finite element models. Finite element analysis was performed to simulate breast compression. Simulated compressed breast thickness (CBT) was compared with clinical CBT and the relationships between compression force, CBT, breast volume, and VBD were established. Simulated CBT had a good linear correlation with the clinical CBT (R2 = 0.9433) at the clinical compression force. At 10, 12, 14, and 16 daN, the mean simulated CBT of the breast models was 5.67, 5.13, 4.66, and 4.26 cm, respectively. Simulated CBT was positively correlated with breast volume (r > 0.868) and negatively correlated with VBD (r < –0.338). The results of this study provides a subject-specific and evidence-based suggestion of mammographic compression force for radiographers considering image quality and patient comfort.
Collapse
|
2
|
Axelsson R, Tomic H, Zackrisson S, Tingberg A, Isaksson H, Bakic PR, Dustler M. Finite element model of mechanical imaging of the breast. J Med Imaging (Bellingham) 2022; 9:033502. [PMID: 35647217 PMCID: PMC9125329 DOI: 10.1117/1.jmi.9.3.033502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 05/02/2022] [Indexed: 03/20/2024] Open
Abstract
Purpose: Malignant breast lesions can be distinguished from benign lesions by their mechanical properties. This has been utilized for mechanical imaging in which the stress distribution over the breast is measured. Mechanical imaging has shown the ability to identify benign or normal cases and to reduce the number of false positives from mammography screening. Our aim was to develop a model of mechanical imaging acquisition for simulation purposes. To that end, we simulated mammographic compression of a computer model of breast anatomy and lesions. Approach: The breast compression was modeled using the finite element method. Two finite element breast models of different sizes were used and solved using linear elastic material properties in open-source virtual clinical trial (VCT) software. A spherical lesion (15 mm in diameter) was inserted into the breasts, and both the location and stiffness of the lesion were varied extensively. The average stress over the breast and the average stress at the lesion location, as well as the relative mean pressure over lesion area (RMPA), were calculated. Results: The average stress varied 6.2-6.5 kPa over the breast surface and 7.8-11.4 kPa over the lesion, for different lesion locations and stiffnesses. These stresses correspond to an RMPA of 0.80 to 1.46. The average stress was 20% to 50% higher at the lesion location compared with the average stress over the entire breast surface. Conclusions: The average stress over the breast and the lesion location corresponded well to clinical measurements. The proposed model can be used in VCTs for evaluation and optimization of mechanical imaging screening strategies.
Collapse
Affiliation(s)
- Rebecca Axelsson
- Lund University, Skåne University Hospital, Medical Radiation Physics, Department of Translational Medicine, Malmö, Sweden
- Lund University, Skåne University Hospital, Diagnostic Radiology, Department of Translational Medicine, Department in Imaging and Functional Medicine, Malmö, Sweden
| | - Hanna Tomic
- Lund University, Skåne University Hospital, Medical Radiation Physics, Department of Translational Medicine, Malmö, Sweden
| | - Sophia Zackrisson
- Lund University, Skåne University Hospital, Diagnostic Radiology, Department of Translational Medicine, Department in Imaging and Functional Medicine, Malmö, Sweden
| | - Anders Tingberg
- Lund University, Skåne University Hospital, Medical Radiation Physics, Department of Translational Medicine, Malmö, Sweden
| | - Hanna Isaksson
- Lund University, Department of Biomedical Engineering, Lund, Sweden
| | - Predrag R. Bakic
- Lund University, Skåne University Hospital, Medical Radiation Physics, Department of Translational Medicine, Malmö, Sweden
- Lund University, Skåne University Hospital, Diagnostic Radiology, Department of Translational Medicine, Department in Imaging and Functional Medicine, Malmö, Sweden
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Magnus Dustler
- Lund University, Skåne University Hospital, Medical Radiation Physics, Department of Translational Medicine, Malmö, Sweden
- Lund University, Skåne University Hospital, Diagnostic Radiology, Department of Translational Medicine, Department in Imaging and Functional Medicine, Malmö, Sweden
| |
Collapse
|
3
|
The Biomechanics of the Fibrocystic Breasts at Finite Compressive Deformation. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.49.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deformation of the human breast, especially that of the female, under variable pressure conditions, has been a recent focus for researchers, both in the computational biomechanics, computational biology and the health sector. When the deformation of the breast is large, it hampers suitable cyst tracing as a mammographic biopsy precontrive data. Finite element methods (FEM) has been instrumental in the currently studied practices to trail nodules dislocation. However, the effect of breast material constitution, especially that of a fibrocystic composition, on the biomechanical response of these nodules has gained less attention. The present study is aimed at developing a finite element fibrocystic breast model within the frame of biosolid mechanics and material hyperelasticity to model the breast deformation at finite strain. The geometry of a healthy stress‐free breast is modelled from a magnetic resonance image (MRI) using tissues deformations measurements and solid modelling technology. Results show that the incompressible Neo-Hookean and Mooney-Rivlin constitutive models can approximate large deformation of a stressed breast. In addition to the areola (i.e. nipple base), the surrounding area of the cyst together with its interface with the breast tissue is the maximum stressed region when the breast is subjected to compressive pressure. This effect can lead to an internal tear of the breast that could degenerate to malignant tissue.
Collapse
|
4
|
Danch-Wierzchowska M, Borys D, Swierniak A. FEM-based MRI deformation algorithm for breast deformation analysis. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Finite element analysis of long-term changes of the breast after augmentation mammoplasty: Implications for implant design. Arch Plast Surg 2019; 46:386-389. [PMID: 31336428 PMCID: PMC6657194 DOI: 10.5999/aps.2019.00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/12/2019] [Indexed: 12/02/2022] Open
Abstract
The development of breast implant technology continues to evolve over time, but changes in breast shape after implantation have not been fully elucidated. Thus, we performed computerized finite element analysis in order to better understand the trajectory of changes and stress variation after breast implantation. The finite element analysis of changes in breast shape involved two components: a static analysis of the position where the implant is inserted, and a dynamic analysis of the downward pressure applied in the direction of gravity during physical activity. Through this finite element analysis, in terms of extrinsic changes, it was found that the dimensions of the breast implant and the position of the top-point did not directly correspond to the trajectory of changes in the breast after implantation. In addition, in terms of internal changes, static and dynamic analysis showed that implants with a lower top-point led to an increased amount of stress applied to the lower thorax. The maximum stress values were 1.6 to 2 times larger in the dynamic analysis than in the static analysis. This finding has important implications for plastic surgeons who are concerned with long-term changes or side effects, such as bottoming-out, after anatomic implant placement.
Collapse
|
6
|
A novel finite element model-based navigation system-supported workflow for breast tumor excision. Med Biol Eng Comput 2019; 57:1537-1552. [PMID: 30980230 DOI: 10.1007/s11517-019-01977-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
In the case of female breast cancer, a breast-conserving excision is often desirable. This surgery is based on preoperatively gathered MRI, mammography, and sonography images. These images are recorded in multiple patient positions, e. g., 2D mammography images in standing position with a compressed breast and 3D MRI images in prone position. In contrast, the surgery happens in supine or beach chair position. Due to these different perspectives and the flexible, thus challenging, breast tissue, the excision puts high demands on the physician. Therefore, this publication presents a novel eight-step excision support workflow that can be used to include information captured preoperatively through medical imaging based on a finite element (FE) model. In addition, an indoor positioning system is integrated in the workflow in order to track surgical devices and the sonography transducer during surgery. The preoperative part of the navigation system-supported workflow is outlined exemplarily based on first experimental results including 3D scans of a patient in different patient positions and her MRI images. Graphical Abstract Finite Element model based navigation system supported workflow for breast tumor excision is based on eight steps and allows inclusion of information from medical images recorded in multiple patient positions.
Collapse
|