1
|
Rizzo MG, Briglia M, Zammuto V, Morganti D, Faggio C, Impellitteri F, Multisanti CR, Graziano ACE. Innovation in Osteogenesis Activation: Role of Marine-Derived Materials in Bone Regeneration. Curr Issues Mol Biol 2025; 47:175. [PMID: 40136429 PMCID: PMC11941683 DOI: 10.3390/cimb47030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Marine-derived biomaterials are emerging as promising candidates for tissue regeneration due to their sustainability, biocompatibility, bioactivity, and unique chemical structure. This review provides an overview of different marine-derived inorganic and organic materials, such as calcium carbonate, magnesium salts, silica, polysaccharides, bioactive peptides, and lipid-based compounds, and their effects in promoting osteogenesis. Specifically, the osteoinductive, osteoconductive, and osteointegrative activities of traditional and innovative materials that influence key molecular pathways such as BMP/Smad and Wnt/β-catenin signaling underlying bone formation will be evaluated. This review also prospects innovative approaches, i.e., phage display technology, to optimize marine-derived peptides for targeted bone regeneration. In the context of innovative and sustainable materials, this review suggests some interesting applications of unusual materials able to overcome the limitations of conventional ones and stimulate cellular regeneration of bone tissue by activating specific molecular pathways.
Collapse
Affiliation(s)
- Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
| | - Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (A.C.E.G.)
| | - Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
| | - Dario Morganti
- Consiglio Nazionale delle Ricerche DSFTM, Department of Physical Sciences and Technologies of Matter, Piazzale Aldo Moro, 7, 00185 Roma, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci, 98168 Messina, Italy; (F.I.); (C.R.M.)
| | - Cristiana Roberta Multisanti
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci, 98168 Messina, Italy; (F.I.); (C.R.M.)
| | | |
Collapse
|
2
|
Hopkins T, Midha S, Grossemy S, Screen HRC, Wann AKT, Knight MM. Engineering growth factor gradients to drive spatiotemporal tissue patterning in organ-on-a-chip systems. J Tissue Eng 2025; 16:20417314251326256. [PMID: 40290860 PMCID: PMC12033634 DOI: 10.1177/20417314251326256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/22/2025] [Indexed: 04/30/2025] Open
Abstract
Spatial heterogeneity plays a key role in the development and function of human tissues and therefore needs to be incorporated within in vitro models to maximise physiological relevance and predictive power. Here, we developed and optimised methods to generate spatial heterogeneity of hydrogel-embedded bioactive signalling molecules within organ-on-a-chip (OOAC) systems, to drive spatiotemporal tissue patterning through controlled stem cell differentiation. As an exemplar application, we spatially patterned bone morphogenetic protein-2 (BMP-2) in both closed-channel and open-chamber OOAC formats. The resulting BMP-2 gradient in 3D heparin methacryloyl/gelatin methacryloyl, successfully drove spatially divergent differentiation of human bone marrow-derived stem cells into bone-like and cartilage-like regions, mimicking the process of endochondral ossification in the growth plate. The application of hydrogel-embedded morphogens to drive spatial tissue patterning within OOAC systems represents a significant technological advancement and has broad-ranging applicability for a diverse range of tissues and organs, and a wide variety of OOAC platforms.
Collapse
Affiliation(s)
- Timothy Hopkins
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Swati Midha
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Simon Grossemy
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Hazel R. C. Screen
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Angus K. T. Wann
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Martin M. Knight
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| |
Collapse
|
3
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 PMCID: PMC11641625 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
4
|
Tak HJ, Moon JW, Kim JY, Kang SH, Lee SH. Transition of endochondral bone formation at the normal and botulinum-treated mandibular condyle of growing juvenile rat. Arch Oral Biol 2024; 164:105999. [PMID: 38815512 DOI: 10.1016/j.archoralbio.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE The aim of this study was to understand the temporal and spatial distribution of canonical endochondral ossification (CEO) and non-canonical endochondral ossification (NCEO) of the normal growing rat condyle, and to evaluate their histomorphological changes following the simultaneous hypotrophy of the unilateral masticatory closing muscles with botulinum toxin (BTX). DESIGN 46 rats at postnatal 4 weeks were used for the experiment and euthanized at postnatal 4, 8, and 16 weeks. The right masticatory muscles of rats in experimental group were injected with BTX, the left being injected with saline as a control. The samples were evaluated using 3D morphometric, histological, and immunohistochemical analysis with three-dimensional regional mapping of endochondral ossifications. RESULTS The results showed that condylar endochondral ossification changed from CEO to NCEO at the main articulating surface during the experimental period and that the BTX-treated condyle presented a retroclined smaller condyle with an anteriorly-shifted narrower articulating surface. This articulating region showed a thinner layer of the endochondral cells, and a compact distribution of flattened cells. These were related to the load concentration, decreased cellular proliferation with thin cellular layers, reduced extracellular matrix, increased cellular differentiation toward the osteoblastic bone formation, and accelerated transition of the ossification types from CEO to NCEO. CONCLUSION The results suggest that endochondral ossification under loading tended to show more NCEO, and that masticatory muscular hypofunction by BTX had deleterious effects on endochondral bone formation and changed the condylar growth vector, resulting in a retroclined, smaller, asymmetrical, and deformed condyle with thin cartilage.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, Yonsei University, College of Dentistry, Seoul, the Republic of Korea
| | - Joo-Won Moon
- Oral Science Research Center, Yonsei University, College of Dentistry, Seoul, the Republic of Korea
| | - Jae-Young Kim
- Dept. of Oral and Maxillofacial Surgery, Yonsei University, College of Dentistry, Seoul, the Republic of Korea
| | - Sang-Hoon Kang
- Dept. of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, the Republic of Korea
| | - Sang-Hwy Lee
- Oral Science Research Center, Yonsei University, College of Dentistry, Seoul, the Republic of Korea; Dept. of Oral and Maxillofacial Surgery, Yonsei University, College of Dentistry, Seoul, the Republic of Korea.
| |
Collapse
|
5
|
Marcucio R, Miclau T, Bahney C. A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair. J Dent Res 2023; 102:13-20. [PMID: 36303415 PMCID: PMC9791286 DOI: 10.1177/00220345221125401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While formation and regeneration of the skeleton have been studied for a long period of time, significant scientific advances in this field continue to emerge based on an unmet clinical need to improve options to promote bone repair. In this review, we discuss the relationship between mechanisms of bone formation and bone regeneration. Data clearly show that regeneration is not simply a reinduction of the molecular and cellular programs that were used for development. Instead, the mechanical environment exerts a strong influence on the mode of repair, while during development, cell-intrinsic processes drive the mode of skeletal formation. A major advance in the field has shown that cell fate is flexible, rather than terminal, and that chondrocytes are able to differentiate into osteoblasts and other cell types during development and regeneration. This is discussed in a larger context of regeneration in vertebrates as well as the clinical implication that this shift in understanding presents.
Collapse
Affiliation(s)
- R.S. Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - T. Miclau
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - C.S. Bahney
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
6
|
Fukase N, Duke VR, Lin MC, Stake IK, Huard M, Huard J, Marmor MT, Maharbiz MM, Ehrhart NP, Bahney CS, Herfat ST. Wireless Measurements Using Electrical Impedance Spectroscopy to Monitor Fracture Healing. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166233. [PMID: 36016004 PMCID: PMC9412277 DOI: 10.3390/s22166233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 05/05/2023]
Abstract
There is an unmet need for improved, clinically relevant methods to longitudinally quantify bone healing during fracture care. Here we develop a smart bone plate to wirelessly monitor healing utilizing electrical impedance spectroscopy (EIS) to provide real-time data on tissue composition within the fracture callus. To validate our technology, we created a 1-mm rabbit tibial defect and fixed the bone with a standard veterinary plate modified with a custom-designed housing that included two impedance sensors capable of wireless transmission. Impedance magnitude and phase measurements were transmitted every 48 h for up to 10 weeks. Bone healing was assessed by X-ray, µCT, and histology. Our results indicated the sensors successfully incorporated into the fracture callus and did not impede repair. Electrical impedance, resistance, and reactance increased steadily from weeks 3 to 7-corresponding to the transition from hematoma to cartilage to bone within the fracture gap-then plateaued as the bone began to consolidate. These three electrical readings significantly correlated with traditional measurements of bone healing and successfully distinguished between union and not-healed fractures, with the strongest relationship found with impedance magnitude. These results suggest that our EIS smart bone plate can provide continuous and highly sensitive quantitative tissue measurements throughout the course of fracture healing to better guide personalized clinical care.
Collapse
Affiliation(s)
- Naomasa Fukase
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Victoria R. Duke
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Monica C. Lin
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ingrid K. Stake
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
- Department of Orthopaedic Surgery, Ostfold Hospital Trust, 1714 Graalum, Norway
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Meir T. Marmor
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Michel M. Maharbiz
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Nicole P. Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Chelsea S. Bahney
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Correspondence: (C.S.B.); (S.T.H.)
| | - Safa T. Herfat
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Correspondence: (C.S.B.); (S.T.H.)
| |
Collapse
|
7
|
Xiong G, Yang Y, Guo M. Effect of resveratrol on abnormal bone remodeling and angiogenesis of subchondral bone in osteoarthritis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:417-425. [PMID: 33936363 PMCID: PMC8085829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE The effect of resveratrol on subchondral bone in osteoarthritis was explored by constructing a mouse model of osteoarthritis and giving resveratrol as intervention. METHODS The degree of proteoglycan loss in articular cartilage was assessed by safranine fast green staining. The expressions of Lubricin and Aggrecan, COLX, and MMP-13, the co-expression of CD31 and Endomucin, and the expression of angiogenesis-related factors were determined by immunohistochemistry. TRAP stain and immunostaining were used to assess abnormal subchondral bone resorption and bone formation. Angiography was employed to analyze the effect of resveratrol on the proliferation of subchondral bone vessels. RESULTS Resveratrol inhibited cartilage thickening and the increase of COLX and MMP-13 expression, delayed the loss of proteoglycan, Lubricin, and Aggrecan, and inhibited osteoclast differentiation by up-regulating osteoprotegerin (OPG) and down-regulating the expression of RANKL. Angiography showed that resveratrol can reduce the abnormally elevated number and volume of blood vessels in the subchondral bone. Immunostaining showed that resveratrol inhibited CD31hiEmcnhi angiogenesis and high expression of VEGFA and Angiopoietin-1. CONCLUSION Resveratrol inhibits osteoclast differentiation and reduces active bone resorption by regulating the OPG/RANKL/RANK pathway, and inhibits the abnormal proliferation of CD31hiEmcnhi blood vessels by downregulating the expression of VEGFA and Angiopoiein-1, thereby eliminating the pathologic coupling mechanism of osteogenesis and vascularization, and delaying the progression of osteoarthritis.
Collapse
Affiliation(s)
- Guangyi Xiong
- Department of Pathology, Tianjin HospitalTianjin 300201, China
| | - Yuyan Yang
- Department of Pathology, Tianjin Jinghai District HospitalTianjin 301600, China
| | - Mengyuan Guo
- Experimental Center, The First Subsidiary Hospital of Tianjin TCM UniversityTianjin 300385, China
| |
Collapse
|
8
|
Kanakis I, Alhashmi M, Liu K, Keenan C, Ramos Mucci L, Poulet B, Bou-Gharios G. Cartilage-Specific Cre Recombinase Transgenes/Alleles in the Mouse. Methods Mol Biol 2021; 2245:23-38. [PMID: 33315193 DOI: 10.1007/978-1-0716-1119-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cartilage is a specialized skeletal tissue with a unique extracellular matrix elaborated by its resident cells, chondrocytes. The tissue presents in several forms, including growth plate and articular cartilage, wherein chondrocytes follow a differential differentiation program and have different fates. The induction of gene modifications in cartilage specifically relies on mouse transgenes and knockin alleles taking advantages of transcriptional elements primarily active in chondrocytes at a specific differentiation stage or in a specific cartilage type. These transgenes/alleles have been widely used to study the roles of specific genes in cartilage development, adult homeostasis, and pathology. As cartilage formation is critical for postnatal life, the inactivation or significant alteration of key cartilaginous genes is often neonatally lethal and therefore hampers postnatal studies. Gold standard approaches to induce postnatal chondrocyte-specific gene modifications include the Cre-loxP and Tet-ON/OFF systems. Selecting the appropriate promoter/enhancer sequences to drive Cre expression is of crucial importance and determines the specificity of conditional gain- or loss-of-function models. In this chapter, we discuss a series of transgenes and knockin alleles that have been developed for gene manipulation in cartilage and we compare their expression patterns and efficiencies.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Mohammad Alhashmi
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Ke Liu
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Craig Keenan
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Lorenzo Ramos Mucci
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Blandine Poulet
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - George Bou-Gharios
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
9
|
Pinet K, McLaughlin KA. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev Biol 2019; 451:134-145. [DOI: 10.1016/j.ydbio.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
10
|
Abstract
PURPOSE OF REVIEW The goal of the review is to summarize the current knowledge on the process of chondrocyte-to-osteoblast transdifferentiation during endochondral bone formation and its potential implications in fracture healing and disease. RECENT FINDINGS Lineage tracing experiments confirmed the transdifferentiation of chondrocytes into osteoblasts. More recent studies lead to the discovery of molecules involved in this process, as well as to the hypothesis that these cells may re-enter a stem cell-like phase prior to their osteoblastic differentiation. This review recapitulates the current knowledge regarding chondrocyte transdifferentiating into osteoblasts, the developmental and postnatal events where transdifferentiation appears to be relevant, and the molecules implicated in this process.
Collapse
Affiliation(s)
- Lena Ingeborg Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany.
| |
Collapse
|
11
|
Kanakis I, Liu K, Poulet B, Javaheri B, van 't Hof RJ, Pitsillides AA, Bou-Gharios G. Targeted Inhibition of Aggrecanases Prevents Articular Cartilage Degradation and Augments Bone Mass in the STR/Ort Mouse Model of Spontaneous Osteoarthritis. Arthritis Rheumatol 2019; 71:571-582. [PMID: 30379418 DOI: 10.1002/art.40765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/25/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Cartilage destruction in osteoarthritis (OA) is mediated mainly by matrix metalloproteinases (MMPs) and ADAMTS. The therapeutic candidature of targeting aggrecanases has not yet been defined in joints in which spontaneous OA arises from genetic susceptibility, as in the case of the STR/Ort mouse, without a traumatic or load-induced etiology. In addition, we do not know the long-term effect of aggrecanase inhibition on bone. We undertook this study to assess the potential aggrecanase selectivity of a variant of tissue inhibitor of metalloproteinases 3 (TIMP-3), called [-1A]TIMP-3, on spontaneous OA development and bone formation in STR/Ort mice. METHODS Using the background of STR/Ort mice, which develop spontaneous OA, we generated transgenic mice that overexpress [-1A]TIMP-3, either ubiquitously or conditionally in chondrocytes. [-1A]TIMP-3 has an extra alanine at the N-terminus that selectively inhibits ADAMTS but not MMPs. We analyzed a range of OA-related measures in all mice at age 40 weeks. RESULTS Mice expressing high levels of [-1A]TIMP-3 were protected against development of OA, while those expressing low levels were not. Interestingly, we also found that high levels of [-1A]TIMP-3 transgene overexpression resulted in increased bone mass, particularly in females. This regulation of bone mass was at least partly direct, as adult mouse primary osteoblasts infected with [-1A]TIMP-3 in vitro showed elevated rates of mineralization. CONCLUSION The results provide evidence that [-1A]TIMP-3-mediated inhibition of aggrecanases can protect against cartilage degradation in a naturally occurring mouse model of OA, and they highlight a novel role that aggrecanase inhibition may play in increased bone mass.
Collapse
Affiliation(s)
| | - Ke Liu
- University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
12
|
Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 2018; 53:212-223. [PMID: 30312659 DOI: 10.1016/j.cellsig.2018.10.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) can be regarded as a chronic, painful and degenerative disease that affects all tissues of a joint and one of the major endpoints being loss of articular cartilage. In most cases, OA is associated with a variable degree of synovial inflammation. A variety of different cell types including chondrocytes, synovial fibroblasts, adipocytes, osteoblasts and osteoclasts as well as stem and immune cells are involved in catabolic and inflammatory processes but also in attempts to counteract the cartilage loss. At the molecular level, these changes are regulated by a complex network of proteolytic enzymes, chemokines and cytokines (for review: [1]). Here, interleukin-1 signaling (IL-1) plays a central role and its effects on the different cell types involved in OA are discussed in this review with a special focus on the chondrocyte.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany.
| |
Collapse
|