1
|
Schaaf C, Sussel L. A Cure for Type 1 Diabetes: Are We There Yet? Diabetes Technol Ther 2025. [PMID: 39911033 DOI: 10.1089/dia.2024.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Type 1 diabetes (T1D) affects over 2 million people in the United States and has no known cure. The discovery and first use of insulin in humans 102 years ago marked a revolutionary course of treatment for the disease, and although the formulations and delivery systems have advanced, insulin administration remains the standard of care today. While improved treatment options represent notable progress in T1D management, finding a functional cure for the disease remains the ultimate goal. Approaches to curing T1D have historically focused on blunting the autoimmune response, although sustained effects of immune modulation have proven elusive. Islet transplant therapies have also proven effective, although a lack of available donor tissue and the need for immunosuppression to prevent both host-graft rejection and the autoimmune response have reserved such treatments for those who already require immunosuppressive regimens for other reasons or undergo severe hypoglycemic events in conjunction with hypoglycemic unawareness. With the advent of human stem cell research, the focus has shifted toward generating an abundance of allogeneic, functional beta-like cells that can be transplanted into the patients. Immunoisolation devices have also shown some promise as a method of preventing immune rejection and the autoimmune destruction of transplanted cells. Finally, advances in new immune therapies, if used in the early stages of T1D progression, have proven to delay the onset of diabetes. Stem cell-based therapies are a promising approach to curing T1D. The ongoing clinical trials show some success, although they currently require immunosuppressant agents. Encapsulation devices provide a method of immunoisolation that does not require immunosuppression; however, the devices tested thus far eventually lead to cell death and fibrotic tissue growth. Substantial research efforts are underway to develop new approaches to protect the stem cell-derived beta cells upon transplantation.
Collapse
Affiliation(s)
- Christopher Schaaf
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| |
Collapse
|
2
|
Capuani S, Campa‐Carranza JN, Hernandez N, Chua CYX, Grattoni A. Modeling of a Bioengineered Immunomodulating Microenvironment for Cell Therapy. Adv Healthc Mater 2025; 14:e2304003. [PMID: 38215451 PMCID: PMC11239796 DOI: 10.1002/adhm.202304003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Cell delivery and encapsulation platforms are under development for the treatment of Type 1 Diabetes among other diseases. For effective cell engraftment, these platforms require establishing an immune-protected microenvironment as well as adequate vascularization and oxygen supply to meet the metabolic demands of the therapeutic cells. Current platforms rely on 1) immune isolating barriers and indirect vascularization or 2) direct vascularization with local or systemic delivery of immune modulatory molecules. Supported by experimental data, here a broadly applicable predictive computational model capable of recapitulating both encapsulation strategies is developed. The model is employed to comparatively study the oxygen concentration at different levels of vascularization, transplanted cell density, and spatial distribution, as well as with codelivered adjuvant cells. The model is then validated to be predictive of experimental results of oxygen pressure and local and systemic drug biodistribution in a direct vascularization device with local immunosuppressant delivery. The model highlights that dense vascularization can minimize cell hypoxia while allowing for high cell loading density. In contrast, lower levels of vascularization allow for better drug localization reducing systemic dissemination. Overall, it is shown that this model can serve as a valuable tool for the development and optimization of platform technologies for cell encapsulation.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of Science (UCAS)Beijing100049China
| | - Jocelyn Nikita Campa‐Carranza
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- School of Medicine and Health SciencesTecnologico de MonterreyMonterreyNL64710Mexico
| | - Nathanael Hernandez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of SurgeryHouston Methodist HospitalHoustonTX77030USA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
3
|
Wykoff CC, Kuppermann BD, Regillo CD, Chang M, Hariprasad SM, Duker JS, Altaf S, Saïm S. Extended Intraocular Drug-Delivery Platforms for the Treatment of Retinal and Choroidal Diseases. JOURNAL OF VITREORETINAL DISEASES 2024; 8:577-586. [PMID: 39318989 PMCID: PMC11418737 DOI: 10.1177/24741264241267065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Purpose: To review sustained-release intraocular platforms used to treat diseases of the retina and choroid. Methods: A literature review of the current applications of biomaterials for sustained-release therapy in retinal and choroidal diseases was performed. Results: Retinal and choroidal diseases, such as neovascular age-related macular degeneration (nAMD), diabetic retinopathy (DR), diabetic macular edema (DME), and uveitis, are commonly treated using intravitreal (IVT) therapies that require frequent IVT injections. Multiple sustained-release options for IVT therapy have been approved by the US Food and Drug Administration for the treatment of inflammatory eye diseases, including noninfectious uveitis, infectious diseases, and exudative retinal diseases (eg, retinal venous occlusive disease and DME) using drugs such as fluocinolone acetonide, ganciclovir, and dexamethasone. The platforms for these drugs are biodegradable or nonbiodegradable. They use biomaterials such as polymers and hydrogels and are typically implanted surgically or injected into the vitreous, where they release the drug gradually over months or years. Building on these technologies, novel platforms are being studied that are intended to treat conditions including nAMD, DR, DME, and uveitis. These platforms are being tested for their safety, efficacy, and ability to reduce the injection and visit burden. Conclusions: Multiple sustained-release ocular drug-delivery platforms are currently commercially available, and many new sustained-release IVT platforms are being investigated. The hope is that meaningfully reducing the injection burden by extending intervals between treatments while maintaining optimal efficacy will improve long-term outcomes.
Collapse
Affiliation(s)
- Charles C. Wykoff
- Retina Consultants of Texas; Retina Consultants of America; Blanton Eye Institute, Houston, Methodist Hospital, Houston, TX, USA
| | | | - Carl D. Regillo
- Mid Atlantic Retina, Wills Eye Hospital Retina Service, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Seenu M. Hariprasad
- University of Chicago, Department of Ophthalmology and Visual Science, Chicago, IL, USA
| | - Jay S. Duker
- EyePoint Pharmaceuticals, Watertown, MA, USA
- New England Eye Center, Tufts University, Boston, MA, USA
| | - Syed Altaf
- EyePoint Pharmaceuticals, Watertown, MA, USA
| | - Saïd Saïm
- EyePoint Pharmaceuticals, Watertown, MA, USA
| |
Collapse
|
4
|
Ermakova P, Vasilchikova E, Baten'kin M, Bogomolova A, Konev A, Anisimova N, Egoshina A, Zakharina M, Tselousova J, Naraliev N, Kuchin D, Lugovaya L, Zagainov V, Chesnokov S, Kashina A, Zagaynova E. Probing of New Polymer-Based Microcapsules for Islet Cell Immunoisolation. Polymers (Basel) 2024; 16:2479. [PMID: 39274113 PMCID: PMC11397890 DOI: 10.3390/polym16172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Islet allotransplantation offers a promising cell therapy for type 1 diabetes, but challenges such as limited donor availability and immunosuppression persist. Microencapsulation of islets in polymer-coated alginate microcapsules is a favored strategy for immune protection and maintaining islet viability. This study introduces Poly [2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) as an innovative coating material for microcapsules. PMETAC enhances biocompatibility and durability, marking a significant advancement in islet encapsulation. Our approach combines alginate with PMETAC to create Langerhans islet microcapsules, simplifying material composition and preparation and ultimately lowering costs and increasing clinical applicability. Our comprehensive evaluation of the stability (including osmotic stability, thermal stability, and culture condition stability) and cytotoxicity of a novel microencapsulation system based on alginate-PMETAC-alginate offers insights into its potential application in islet immunoisolation strategies. Microcapsules with PMETAC content ranging from 0.01 to 1% are explored in the current work. The results indicate that the coatings made with 0.4% PMETAC show the most promising outcomes, remaining stable in the mentioned tests and exhibiting the required permeability. It was shown that the islets encapsulated in this manner retain viability and functional activity. Thus, alginate microcapsules coated with 0.4% PMETAC are suitable for further animal trials. While our findings are promising, further studies, including animal testing, will be necessary to evaluate the clinical applicability of our encapsulation method.
Collapse
Affiliation(s)
- Polina Ermakova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Ekaterina Vasilchikova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal State Educational Institution of Higher Educational Institution "National Research Nizhny, Novgorod State University Named after N.I. Lobachevsky", 603105 Nizhny Novgorod, Russia
| | - Maxim Baten'kin
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Alexandra Bogomolova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Alexey Konev
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Natalia Anisimova
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Alena Egoshina
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Mariya Zakharina
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Julia Tselousova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Nasipbek Naraliev
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Denis Kuchin
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Hospital Named after N.A. Semashko, 603005 Nizhny Novgorod, Russia
| | - Liya Lugovaya
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- State Budgetary Healthcare Institution "Nizhny Novgorod Regional Clinical Oncology Dispensary", 603163 Nizhny Novgorod, Russia
| | - Sergey Chesnokov
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Aleksandra Kashina
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, 119334 Moscow, Russia
| | - Elena Zagaynova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, 119334 Moscow, Russia
| |
Collapse
|
5
|
Qin T, Hu S, Kong D, Lakey JR, de Vos P. Pancreatic stellate cells support human pancreatic β-cell viability in vitro and enhance survival of immunoisolated human islets exposed to cytokines. Mater Today Bio 2024; 27:101129. [PMID: 39022526 PMCID: PMC11253154 DOI: 10.1016/j.mtbio.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic islet transplantation is proposed as a cure for type 1 diabetes mellitus (T1D). Despite its success in optimal regulation of glucose levels, limitations in longevity of islet grafts still require innovative solutions. Inflammatory stress post-transplantation and loss of extracellular matrix attribute to the limited β-cell survival. Pancreatic stellate cells (PSCs), identified as pancreatic-specific stromal cells, have the potential to play a crucial role in preserving islet survival. Our study aimed to determine the effects of PSCs co-cultured with human CM β-cells and human islets under inflammatory stress induced by a cytokine cocktail of IFN-γ, TNF-α and IL-1β. Transwell culture inserts were utilized to assess the paracrine impact of PSCs on β-cells, alongside co-cultures enabling direct interaction between PSCs and human islets. We found that co-culturing PSCs with human CM β-cells and human cadaveric islets had rescuing effects on cytokine-induced stress. Effects were different under normoglycemic and hyperglycemic conditions. PSCs were associated with upregulation of β-cell mitochondrial activity and suppression of inflammatory gene expression. The rescuing effects exist both in indirect and direct co-culture methods. Furthermore, we tested whether PSCs have rescuing effects on human islets in conventional alginate-based microcapsules and in composite microcapsules composed of alginate-pectin collagen type IV, laminin sequence RGD, Nec-1, and amino acid. PSCs partially prevented cytokine-induced stress in both systems, but beneficial effects were stronger in composite capsules. Our findings show novel effects of PSCs on islet health. Islets and PSCs coculturing or co-transplantation might mitigate the inflammation stress and improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Defu Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jonathan R.T. Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, 92868, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
6
|
Smink AM, Medina JD, de Haan BJ, García AJ, de Vos P. Necrostatin-1 releasing nanoparticles: In vitro and in vivo efficacy for supporting immunoisolated islet transplantation outcomes. J Biomed Mater Res A 2024; 112:288-295. [PMID: 37776226 DOI: 10.1002/jbm.a.37623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Immunoisolation of pancreatic islets in alginate microcapsules allows for transplantation in the absence of immunosuppression but graft survival time is still limited. This limited graft survival is caused by a combination of tissue responses to the encapsulating biomaterial and islets. A significant loss of islet cells occurs in the immediate period after transplantation and is caused by a high susceptibility of islet cells to inflammatory stress during this period. Here we investigated whether necrostatin-1 (Nec-1), a necroptosis inhibitor, can reduce the loss of islet cells under stress in vitro and in vivo. To this end, we developed a Nec-1 controlled-release system using poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) as the application of Nec-1 in vivo is limited by low stability and possible side effects. The PLGA NPs stably released Nec-1 for 6 days in vitro and protected beta cells against hypoxia-induced cell death in vitro. Treatment with these Nec-1 NPs at days 0, 6, and 12 post-islet transplantation in streptozotocin-diabetic mice confirmed the absence of side effects as graft survival was similar in encapsulated islet grafts in the absence and presence of Nec-1. However, we found no further prolongation of graft survival of encapsulated grafts which might be explained by the high biocompatibility of the alginate encapsulation system that provoked a very mild tissue response. We expect that the Nec-1-releasing NPs could find application to immunoisolation systems that elicit stronger inflammatory responses, such as macrodevices and vasculogenic biomaterials.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Juan D Medina
- Petit Institute for Bioengineering and Bioscience, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Qin T, Hu S, de Vos P. A composite capsule strategy to support longevity of microencapsulated pancreatic β cells. BIOMATERIALS ADVANCES 2023; 155:213678. [PMID: 37944447 DOI: 10.1016/j.bioadv.2023.213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic islet microencapsulation allows transplantation of insulin producing cells in absence of systemic immunosuppression, but graft survival is still limited. In vivo studies have demonstrated that many islet-cells die in the immediate period after transplantation. Here we test whether intracapsular inclusion of ECM components (collagen IV and RGD) with necrostatin-1 (Nec-1), as well as amino acids (AA) have protective effects on islet survival. Also, the inclusion of pectin was tested as it enhances the mitochondrial health of β-cells. To enhance the longevity of encapsulated islets, we studied the impact of the incorporation of the mentioned components into the alginate-based microcapsules in vitro. The efficacy of the different composite microcapsules on MIN6 β-cell or human islet-cell survival and function, as well as suppression of DAMP-induced immune activation, were determined. Finally, we examined the mitochondrial dynamic genes. This was done in the absence and presence of a cytokine cocktail. Here, we found that composite microcapsules of APENAA improved insulin secretion and enhanced the mitochondrial activity of β-cells. Under cytokine exposure, they prevented the cytokine-induced decrease of mitochondrial activity as well as viability till day 5. The rescuing effects of the composite capsules were accompanied by alleviated mitochondrial dynamic gene expression. The composite capsule strategy of APENAA might support the longevity of microencapsulated β-cells by lowering susceptibility to inflammatory stress. Our data demonstrate that combining strategies to support β-cells by changing the intracapsular microenvironment might be an effective way to preserve islet graft longevity in the immediate period after transplantation.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands.
| | - Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands; Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
8
|
Sremac M, Luo H, Deng H, Parr MFE, Hutcheson J, Verde PS, Alagpulinsa DA, Kitzmann JM, Papas KK, Brauns T, Markmann JF, Lei J, Poznansky MC. Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: A pilot study. Xenotransplantation 2023; 30:e12826. [PMID: 37712342 DOI: 10.1111/xen.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4+ or CD8+ T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.
Collapse
Affiliation(s)
- Marinko Sremac
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hao Luo
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Hongping Deng
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Madeline F E Parr
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Pushkar S Verde
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Alagpulinsa
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jenna Miner Kitzmann
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Klearchos K Papas
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Markmann
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ji Lei
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Abbaszadeh S, Nosrati-Siahmazgi V, Musaie K, Rezaei S, Qahremani M, Xiao B, Santos HA, Shahbazi MA. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond. Adv Drug Deliv Rev 2023; 200:115050. [PMID: 37549847 DOI: 10.1016/j.addr.2023.115050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.
Collapse
Affiliation(s)
- Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Saman Rezaei
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715 China.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
10
|
Lu K, Brauns T, Sluder AE, Poznansky MC, Dogan F. Combinatorial islet protective therapeutic approaches in β-cell transplantation: Rationally designed solutions using a target product profile. FASEB Bioadv 2023; 5:287-304. [PMID: 37415930 PMCID: PMC10320848 DOI: 10.1096/fba.2023-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
While progress has been made in the development of islet cell transplantation (ICT) as a viable alternative to the use of exogenous insulin therapy in the treatment of type 1 diabetes, it has not yet achieved its full potential in clinical studies. Ideally, ICT would enable lifelong maintenance of euglycemia without the need for exogenous insulin, blood glucose monitoring or systemic immune suppression. To achieve such an optimal result, therapeutic approaches should simultaneously promote long-term islet viability, functionality, and localized immune protection. In practice, however, these factors are typically tackled individually. Furthermore, while the requirements of optimal ICT are implicitly acknowledged across numerous publications, the literature contains few comprehensive articulations of the target product profile (TPP) for an optimal ICT product, including key characteristics of safety and efficacy. This review aims to provide a novel TPP for ICT and presents promising tried and untried combinatorial approaches that could be used to achieve the target product profile. We also highlight regulatory barriers to the development and adoption of ICT, particularly in the United States, where ICT is only approved for use in academic clinical trials and is not reimbursed by insurance carriers. Overall, this review argues that the clear definition of a TPP in addition to the use of combinatorial approaches could help to overcome the clinical barriers to the widespread adoption of ICT for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Katie Lu
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| | - Timothy Brauns
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Ann E. Sluder
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Fatma Dogan
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
11
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
12
|
Zhang ZJ, Ding LY, Zuo XL, Feng H, Xia Q. A new paradigm in transplant immunology: At the crossroad of synthetic biology and biomaterials. MED 2023:S2666-6340(23)00142-3. [PMID: 37244257 DOI: 10.1016/j.medj.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Solid organ transplant (SOT) recipients require meticulously tailored immunosuppressive regimens to minimize graft loss and mortality. Traditional approaches focus on inhibiting effector T cells, while the intricate and dynamic immune responses mediated by other components remain unsolved. Emerging advances in synthetic biology and material science have provided novel treatment modalities with increased diversity and precision to the transplantation community. This review investigates the active interface between these two fields, highlights how living and non-living structures can be engineered and integrated for immunomodulation, and discusses their potential application in addressing the challenges in SOT clinical practice.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China
| | - Lu-Yue Ding
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China; Punan Branch (Shanghai Punan Hospital), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China.
| |
Collapse
|
13
|
Kuwabara R, Qin T, Alberto Llacua L, Hu S, Boekschoten MV, de Haan BJ, Smink AM, de Vos P. Extracellular matrix inclusion in immunoisolating alginate-based microcapsules promotes longevity, reduces fibrosis, and supports function of islet allografts in vivo. Acta Biomater 2023; 158:151-162. [PMID: 36610609 DOI: 10.1016/j.actbio.2022.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Immunoisolation of pancreatic-islets in alginate-microcapsules is applied to treat diabetes. However, long-term islet function is limited, which might be due to damaged and lack of contact with pancreatic extracellular matrix (ECM) components. Herein we investigated the impact of collagen IV combined with laminin sequences, either RGD, LRE, or PDSGR, on graft-survival of microencapsulated bioluminescent islets in vivo. Collagen IV with RGD had the most pronounced effect. It enhanced after 8-week implantation in immune-incompetent mice the bioluminescence of allogeneic islets by 3.2-fold, oxygen consumption rate by 14.3-fold and glucose-induced insulin release by 9.6-fold. Transcriptomics demonstrated that ECM enhanced canonical pathways involving insulin-secretion and that it suppressed pathways related to inflammation and hypoxic stress. Also, 5.8-fold fewer capsules were affected by fibrosis. In a subsequent longevity study in immune-competent mice, microencapsulated allografts containing collagen IV and RGD had a 2.4-fold higher functionality in the first week after implantation and remained at least 2.1-fold higher during the study. Islets in microcapsules containing collagen IV and RGD survived 211 ± 24.1 days while controls survived 125 ± 19.7 days. Our findings provide in vivo evidence for the efficacy of supplementing immunoisolating devices with specific ECM components to enhance functionality and longevity of islet-grafts in vivo. STATEMENT OF SIGNIFICANCE: Limitations in duration of survival of immunoisolated pancreatic islet grafts is a major obstacle for application of the technology to treat diabetes. Accumulating evidence supports that incorporation of extracellular matrix (ECM) molecules in the capsules enhances longevity of pancreatic islets. After selection of the most efficacious laminin sequence in vitro, we show in vivo that inclusion of collagen IV and RGD in alginate-based microcapsules enhances survival, insulin secretion function, and mitochondrial function. It also suppresses fibrosis by lowering proinflammatory cytokines secretion. Moreover, transcriptomic analysis shows that ECM-inclusion promotes insulin-secretion related pathways and attenuates inflammation and hypoxic stress related pathways in islets. We show that inclusion of ECM in immunoisolating devices is a promising strategy to promote long-term survival of islet-grafts.
Collapse
Affiliation(s)
- Rei Kuwabara
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands; Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tian Qin
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands.
| | - L Alberto Llacua
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Shuxian Hu
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| | - Bart J de Haan
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Alexandra M Smink
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Paul de Vos
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
14
|
Lu T, Xia B, Chen G. Advances in polymer-based cell encapsulation and its applications in tissue repair. Biotechnol Prog 2023; 39:e3325. [PMID: 36651921 DOI: 10.1002/btpr.3325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cell microencapsulation is a more widely accepted area of biological encapsulation. In most cases, it involves fixing cells in polymer scaffolds or semi-permeable hydrogel capsules, providing the environment for protecting cells, allowing the exchange of nutrients and oxygen, and protecting cells against the attack of the host immune system by preventing the entry of antibodies and cytotoxic immune cells. Hydrogel encapsulation provides a three-dimensional (3D) environment similar to that experienced in vivo, so it can maintain normal cellular functions to produce tissues similar to those in vivo. Embedded cells can be genetically modified to release specific therapeutic products directly at the target site, thereby eliminating the side effects of systemic treatments. Cellular microcarriers need to meet many extremely high standards regarding their biocompatibility, cytocompatibility, immunoseparation capacity, transport, mechanical, and chemical properties. In this article, we discuss the biopolymer gels used in tissue engineering applications and the brief introduction of cell encapsulation for therapeutic protein production. Also, we review polymer biomaterials and methods for preparing cell microcarriers for biomedical applications. At the same time, in order to improve the application performance of cell microcarriers in vivo, we also summarize the main limitations and improvement strategies of cell encapsulation. Finally, the main applications of polymer cell microcarriers in regenerative medicine are summarized.
Collapse
Affiliation(s)
- Tangfang Lu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Paez-Mayorga J, Campa-Carranza JN, Capuani S, Hernandez N, Liu HC, Chua CYX, Pons-Faudoa FP, Malgir G, Alvarez B, Niles JA, Argueta LB, Shelton KA, Kezar S, Nehete PN, Berman DM, Willman MA, Li XC, Ricordi C, Nichols JE, Gaber AO, Kenyon NS, Grattoni A. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat Commun 2022; 13:7951. [PMID: 36572684 PMCID: PMC9792517 DOI: 10.1038/s41467-022-35629-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent, male rat model. We demonstrated that allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and functional, reverting diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE holds promise as a viable approach for safe and effective islet transplantation and long-term T1D management.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of the Chinese Academy of Sciences (UCAS), Shijingshan, Beijing, China
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | | | - Gulsah Malgir
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Bella Alvarez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jean A Niles
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Lissenya B Argueta
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sarah Kezar
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Dora M Berman
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Xian C Li
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - A Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Norma S Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
16
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
17
|
Jamil S, Dastagir G, Foudah AI, Alqarni MH, Yusufoglu HS, Alkreathy HM, Ertürk Ö, Shah MAR, Khan RA. Carduus edelbergii Rech. f. Mediated Fabrication of Gold Nanoparticles; Characterization and Evaluation of Antimicrobial, Antioxidant and Antidiabetic Potency of the Synthesized AuNPs. Molecules 2022; 27:molecules27196669. [PMID: 36235206 PMCID: PMC9572856 DOI: 10.3390/molecules27196669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Due to the high expense, less effectiveness and more side effects of available synthetic medicine, the researchers and communities are focusing on phyto-based natural bioactive compounds, which are considered safer for the treatment of syndromes and chronic diseases. Aim: The current project was aimed to determine the phytochemicals constituents available in the aerial parts of methanol extract of Carduus edelbergii via GC-MS, fabrication of AuNPs mediated with the mentioned extract; characterization and evaluation of antimicrobial, antioxidant and antidiabetic potency of the synthesized AuNPs. Methods: Confirmation of green synthesis of AuNPs, functional groups responsible for the reduction in Au+, size and crystallinity, morphology and quantity of gold (Au) were carried out by Ultraviolet-Visible (UV-Vis) spectroscopy, Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and dispersive X-ray (EDX), respectively, whereas in vitro antioxidant characteristics were assessed by DPPH and ABTS assays. Wistar albino rats were used to test the anti-diabetic properties of the methanol extract and AuNPs. Results: GC-MS revealed that the diluted methanol extract of Carduus edelbergii consists of about 19 chemical constituents. Among the identified compounds, the 13-Docosenoic acid, methyl ester, (Z)—has the highest concentration (38.16%), followed by 9-Octadecenoic acid, methyl ester, (E)—(15.72%) and n-Hexadecanoic acid (15.07%). Methanol extract and its fabricated nanoparticles showed significant antioxidant and antimicrobial activities. In vivo antidiabetic study revealed a noteworthy (p < 0.05) decline in body weight and HDL and elevated concentration of blood glucose, bilirubin, creatinine, urea, triglyceride, VLDL, LDL, ALP, ALT and AST in diabetic control. The said changes were recovered significantly (p < 0.05) by treatment of diabetic rats with methanol extract (150 and 300 mg/Kg BW) and AuNPs of Carduus edelbergii (5 and 10 mg/Kg BW). Conclusion: The green synthesized AuNPs exhibit significant antioxidant, antimicrobial and antidiabetic characteristics.
Collapse
Affiliation(s)
- Shahid Jamil
- Department of Botany, University of Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Dastagir
- Department of Botany, University of Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Ibrahim Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hasan Soliman Yusufoglu
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 81418, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ömer Ertürk
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Ordu University, Ordu 52200, Turkey
| | - Muhammad Abdur Rehman Shah
- Department of Biotechnology, University of Science and Technology Bannu, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Rahmat Ali Khan
- Department of Biotechnology, University of Science and Technology Bannu, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
- Correspondence:
| |
Collapse
|
18
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
19
|
Vieira S, Silva-Correia J, Reis RL, Oliveira JM. Engineering Hydrogels for Modulation of Material-Cell Interactions. Macromol Biosci 2022; 22:e2200091. [PMID: 35853666 DOI: 10.1002/mabi.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, make this 3D hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022; 8:gels8070431. [PMID: 35877516 PMCID: PMC9316786 DOI: 10.3390/gels8070431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
For many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision. In this review, the anatomy and physiology of the cornea are described to point out the main roles of the corneal layers to be compensated and all the requirements expected from the material to be manufactured. Then, a deep investigation of alginate as a suitable alternative to donor tissue was conducted. Thanks to its adaptability, transparency and low immunogenicity, alginate has emerged as a promising candidate for the realization of bioengineered materials for corneal regeneration. Chemical modifications and the blending of alginate with other functional compounds allow the control of its mechanical, degradation and cell-proliferation features, enabling it to go beyond its limits, improving its functionality in the field of corneal tissue engineering and regenerative medicine.
Collapse
|
21
|
Qin T, Hu S, Smink AM, de Haan BJ, Silva-Lagos LA, Lakey JR, de Vos P. Inclusion of extracellular matrix molecules and necrostatin-1 in the intracapsular environment of alginate-based microcapsules synergistically protects pancreatic β cells against cytokine-induced inflammatory stress. Acta Biomater 2022; 146:434-449. [PMID: 35500812 DOI: 10.1016/j.actbio.2022.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
Abstract
Immunoisolation of pancreatic islets in alginate-based microcapsules is a promising approach for grafting of islets in absence of immunosuppression. However, loss and damage to the extracellular matrix (ECM) during islet isolation enhance susceptibility of islets for inflammatory stress. In this study, a combined strategy was applied to reduce this stress by incorporating ECM components (collagen type IV/RGD) and necroptosis inhibitor, necrostatin-1 (Nec-1) in alginate-based microcapsules in vitro. To demonstrate efficacy, viability and function of MIN6 β-cells and human islets in capsules with collagen type IV/RGD and/or Nec-1 was investigated in presence and absence of IL-1β, IFN-γ and TNF-α. The combination of collagen type IV/RGD and Nec-1 had higher protective effects than the molecules alone. Presence of collagen type IV/RGD and Nec-1 in the intracapsular environment reduced cytokine-induced overproduction of free radical species and unfavorable shifts in mitochondrial dynamics. In addition, the ECM components collagen type IV/RGD prevented a cytokine induced suppression of the FAK/Akt pathway. Our data indicate that the inclusion of collagen type IV/RGD and Nec-1 in the intracapsular environment prevents islet-cell loss when exposed to inflammatory stress, which might contribute to higher survival of β-cells in the immediate period after transplantation. This approach of inclusion of stress reducing agents in the intracapsular environment of immunoisolating devices may be an effective way to enhance the longevity of encapsulated islet grafts. STATEMENT OF SIGNIFICANCE: Islet-cells in immunoisolated alginate-based microcapsules are very susceptible to inflammatory stress which impacts long-term survival of islet grafts. Here we show that incorporation of ECM components (collagen type IV/RGD) and necrostatin-1 (Nec-1) in the intracapsular environment of alginate-based capsules attenuates this susceptibility and promotes islet-cell survival. This effect induced by collagen type IV/RGD and Nec-1 was probably due to lowering free radical production, preventing mitochondrial dysfunction and by maintaining ECM/integrin/FAK/Akt signaling and Nec-1/RIP1/RIP3 signaling. Our study provides an effective strategy to extend longevity of islet grafts which might be of great potential for future clinical application of immunoisolated cells.
Collapse
|
22
|
Domingo-Lopez DA, Lattanzi G, H. J. Schreiber L, Wallace EJ, Wylie R, O'Sullivan J, Dolan EB, Duffy GP. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Adv Drug Deliv Rev 2022; 185:114280. [PMID: 35405298 DOI: 10.1016/j.addr.2022.114280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections. Advances in glucose monitors, hormone delivery systems, and control algorithms generate more autonomous and personalised treatments through hybrid and fully automated closed-loop systems, which significantly reduce hypo- and hyperglycaemic episodes and their subsequent complications. Bi-hormonal systems that co-deliver glucagon or amylin with insulin aim to reduce hypoglycaemic events or increase time spent in target glycaemic range, respectively. Stimuli responsive materials for the controlled delivery of insulin or glucagon are a promising alternative to glucose monitors and insulin pumps. By their self-regulated mechanism, these "smart" drugs modulate their potency, pharmacokinetics and dosing depending on patients' glucose levels. Islet transplantation is a potential cure for T1DM as it restores endogenous insulin and glucagon production, but its use is not yet widespread due to limited islet sources and risks of chronic immunosuppression. New encapsulation strategies that promote angiogenesis and oxygen delivery while protecting islets from recipients' immune response may overcome current limiting factors.
Collapse
|
23
|
Holdcraft RW, Graham MJ, Bemrose MA, Mutch LA, Martis PC, Janecek JL, Hall RD, Smith BH, Gazda LS. Long-term efficacy and safety of porcine islet macrobeads in nonimmunosuppressed diabetic cynomolgus macaques. Xenotransplantation 2022; 29:e12747. [PMID: 35384085 DOI: 10.1111/xen.12747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Although human islet transplantation has proven to provide clinical benefits, especially the near complete amelioration of hypoglycemia, the supply of human islets is limited and insufficient to meet the needs of all people that could benefit from islet transplantation. Porcine islets, secreting insulin nearly identical to that of human insulin, have been proposed as a viable supply of unlimited islets. Further, encapsulation of the porcine islets has been shown to reduce or eliminate the use of immunosuppressive therapy that would be required to prevent rejection of the foreign islet tissue. The goal of the current study was to determine the long-term safety and efficacy of agarose encapsulated porcine islets (macrobeads) in diabetic cynomolgus macaques, in a study emulating a proposed IND trial in which daily exogenous insulin therapy would be reduced by 50% with no loss of glucose regulation. Four of six animals implanted with macrobeads demonstrated ≥ 30% reduction in insulin requirements in year 1 of follow-up. Animals were followed for 2, 3.5, and 7.4 years with no serious adverse events, mortality or evidence of pathogen transmission. This study supports the continued pursuit of encapsulated porcine islet therapy as a promising treatment option for diabetes mellitus.
Collapse
Affiliation(s)
| | - Melanie J Graham
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Lucas A Mutch
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Jody L Janecek
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
24
|
Quizon MJ, García AJ. Engineering β Cell Replacement Therapies for Type 1 Diabetes: Biomaterial Advances and Considerations for Macroscale Constructs. ANNUAL REVIEW OF PATHOLOGY 2022; 17:485-513. [PMID: 34813353 DOI: 10.1146/annurev-pathol-042320-094846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While significant progress has been made in treatments for type 1 diabetes (T1D) based on exogenous insulin, transplantation of insulin-producing cells (islets or stem cell-derived β cells) remains a promising curative strategy. The current paradigm for T1D cell therapy is clinical islet transplantation (CIT)-the infusion of islets into the liver-although this therapeutic modality comes with its own limitations that deteriorate islet health. Biomaterials can be leveraged to actively address the limitations of CIT, including undesired host inflammatory and immune responses, lack of vascularization, hypoxia, and the absence of native islet extracellular matrix cues. Moreover, in efforts toward a clinically translatable T1D cell therapy, much research now focuses on developing biomaterial platforms at the macroscale, at which implanted platforms can be easily retrieved and monitored. In this review, we discuss how biomaterials have recently been harnessed for macroscale T1D β cell replacement therapies.
Collapse
Affiliation(s)
- Michelle J Quizon
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
| |
Collapse
|
25
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|
26
|
Paez-Mayorga J, Lukin I, Emerich D, de Vos P, Orive G, Grattoni A. Emerging strategies for beta cell transplantation to treat diabetes. Trends Pharmacol Sci 2021; 43:221-233. [PMID: 34887129 DOI: 10.1016/j.tips.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Beta cell replacement has emerged as an attractive therapeutic alternative to traditional exogenous insulin administration for management of type 1 diabetes (T1D). Beta cells deliver insulin dynamically based on individual glycometabolic requirements, providing glycemic control while significantly reducing patient burden. Although transplantation into the portal circulation is clinically available, poor engraftment, low cell survival, and immune rejection have sparked investigation of alternative strategies for beta cell transplantation. In this review, we focus on current micro- and macroencapsulation technologies for beta cell transplantation and evaluate their advantages and challenges. Specifically, we comment on recent methods to ameliorate graft hypoxia including enhanced vascularization, reduction of pericapsular fibrotic overgrowth (PFO), and oxygen supplementation. We also discuss emerging beta cell-sourcing strategies to overcome donor shortage and provide insight into potential approaches to address outstanding challenges in the field.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | | | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
28
|
Len’shina NA, Konev AN, Baten’kin AA, Bardina PS, Cherkasova EI, Kashina AV, Zagainova EV, Zagainov VE, Chesnokov SA. Alginate Functionalization for the Microencapsulation of Insulin Producing Cells. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Navarro Chica CE, Qin T, de Haan BJ, Faas MM, Smink AM, Sierra L, López BL, de Vos P. In Vitro Studies of Squalene‐Gusperimus Nanoparticles in Islet‐Containing Alginate Microcapsules to Regulate the Immune Response in the Immediate Posttransplant Period. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Carlos E. Navarro Chica
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
- Grupo de Investigación Ciencia de los Materiales Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Calle 70 No. 52-21 Medellín Antioquia Colombia
| | - Tian Qin
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Bart J. de Haan
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Marijke M. Faas
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Ligia Sierra
- Grupo de Investigación Ciencia de los Materiales Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Calle 70 No. 52-21 Medellín Antioquia Colombia
| | - Betty L. López
- Grupo de Investigación Ciencia de los Materiales Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Calle 70 No. 52-21 Medellín Antioquia Colombia
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| |
Collapse
|
31
|
Olack BJ, Alexander M, Swanson CJ, Kilburn J, Corrales N, Flores A, Heng J, Arulmoli J, Omori K, Chlebeck PJ, Zitur L, Salgado M, Lakey JRT, Niland JC. Optimal Time to Ship Human Islets Post Tissue Culture to Maximize Islet. Cell Transplant 2021; 29:963689720974582. [PMID: 33231091 PMCID: PMC7885128 DOI: 10.1177/0963689720974582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Access to functional high-quality pancreatic human islets is critical to advance diabetes research. The Integrated Islet Distribution Program (IIDP), a major source for human islet distribution for over 15 years, conducted a study to evaluate the most advantageous times to ship islets postisolation to maximize islet recovery. For the evaluation, three experienced IIDP Islet Isolation Centers each provided samples from five human islet isolations, shipping 10,000 islet equivalents (IEQ) at four different time periods postislet isolation (no 37°C culture and shipped within 0 to 18 hours; or held in 37°C culture for 18 to 42, 48 to 96, or 144 to 192 hours). A central evaluation center compared samples for islet quantity, quality, and viability for each experimental condition preshipment and postshipment, as well as post 37°C culture 18 to 24 hours after shipment receipt. Additional evaluations included measures of functional potency by static glucose-stimulated insulin release (GSIR), represented as a stimulation index. Comparing the results of the four preshipment holding periods, the greatest IEQ loss postshipment occurred with the shortest preshipment times. Similar patterns emerged when comparing preshipment to postculture losses. In vitro islet function (GSIR) was not adversely impacted by increased tissue culture time. These data indicate that allowing time for islet recovery postisolation, prior to shipping, yields less islet loss during shipment without decreasing islet function.
Collapse
Affiliation(s)
- Barbara J Olack
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Carol J Swanson
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Julie Kilburn
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Antonio Flores
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | - Keiko Omori
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Peter J Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Zitur
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joyce C Niland
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| |
Collapse
|
32
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
33
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
34
|
Encapsulation Strategies for Pancreatic Islet Transplantation without Immune Suppression. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Zhang H, Tian Y, Shi X, Yuan W, Liu L, Yang Y. Effect of Liver Kinase B1 on Osteogenic/Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in High Glucose Environment. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) present reduced proliferation under high glucose condition. Liver kinase B1 (LKB1) can maintain the homeostasis of hematopoietic stem cells. However, whether LKB1 regulates BMSCs osteogenic/adipogenic differentiation under high glucose is unclear.
Rat BMSCs were isolated and separated into control group, high glucose group, and LKB1 group (BMSCs were transfected with pc-DNA 3.1-LKB1 plasmid under high glucose condition) followed by analysis of LKB1 expression by Real time PCR and Western blot, osteocalcin, type I collagen, RUNX2 and
OPN mRNA level by real-time PCR, FABP4 and PPARγ2 level by western blot. In high glucose group, LKB1 expression was significantly decreased, with reduced expression of osteocalcin, type I collagen, RUNX2 and OPN mRNA and elevated FABP4 and PPARγ2 level compared to control group
(P < 0.05). Transfection of LKB1 plasmid reduced LKB1 expression, upregulated osteocalcin, type I collagen, RUNX2 and OPN mRNA and downregulated FABP4 and PPARγ2. Compared with the high glucose group, there was a statistical difference (P <0.05). High glucose can
inhibit LKB1 expression and BMSCs osteogenic differentiation, and promote adipogenic differentiation. Upregulating LKB1 expression can promote BMSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics Department One, The No. 2 Hospital of Baoding, Baoding City, Hebei Province, 071051, China
| | - Yuan Tian
- Department of Orthopedics Department One, The No. 2 Hospital of Baoding, Baoding City, Hebei Province, 071051, China
| | - Xiaolin Shi
- Department of Orthopedics Department One, The No. 2 Hospital of Baoding, Baoding City, Hebei Province, 071051, China
| | - Weidong Yuan
- Department of Orthopedics Department One, The No. 2 Hospital of Baoding, Baoding City, Hebei Province, 071051, China
| | - Lei Liu
- Department of Orthopedics Department One, The No. 2 Hospital of Baoding, Baoding City, Hebei Province, 071051, China
| | - Yongming Yang
- Department of Orthopedics Department One, The No. 2 Hospital of Baoding, Baoding City, Hebei Province, 071051, China
| |
Collapse
|
36
|
Kuwabara R, Hu S, Smink AM, Orive G, Lakey JRT, de Vos P. Applying Immunomodulation to Promote Longevity of Immunoisolated Pancreatic Islet Grafts. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:129-140. [PMID: 33397201 DOI: 10.1089/ten.teb.2020.0326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet transplantation is a promising therapy for insulin-dependent diabetes, but large-scale application is hampered by the lack of a consistent source of insulin-producing cells and need for lifelong administration of immunosuppressive drugs, which are associated with severe side effects. To avoid chronic immunosuppression, islet grafts can be enveloped in immunoisolating polymeric membranes. These immunoisolating polymeric membranes protect islet grafts from cell-mediated rejection while allowing diffusion of oxygen, nutrients, and insulin. Although clinical trials have shown the safety and feasibility of encapsulated islets to control glucose homeostasis, the strategy does up till now not support long-term graft survival. This partly can be explained by a significant loss of insulin-producing cells in the immediate period after implantation. The loss can be prevented by combining immunoisolation with immunomodulation, such as combined administration of immunomodulating cytokines or coencapsulation of immunomodulating cell types such as regulatory T cells, mesenchymal stem cells, or Sertoli cells. Also, administration of specific antibodies or apoptotic donor leucocytes is considered to create a tolerant microenvironment around immunoisolated grafts. In this review, we describe the outcomes and limitations of these approaches, as well as the recent progress in immunoisolating devices. Impact statement Immunoisolation by enveloping islets in semipermeable membranes allows for successful transplantation of islet grafts in the absence of chronic immunosuppression, but the duration of graft survival is still not permanent. The reasons for long-term final graft failure is not fully understood, but combining immunoisolation with immunomodulation of tissues or host immune system has been proposed to enhance the longevity of grafts. This article reviews the recent progress and challenges of immunoisolation, as well as the benefits and feasibility of combining encapsulation approaches with immunomodulation to promote longevity of encapsulated grafts.
Collapse
Affiliation(s)
- Rei Kuwabara
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuxian Hu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jonathan R T Lakey
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Santos AP, Chevallier SS, de Haan B, de Vos P, Poncelet D. Impact of electrostatic potential on microcapsule-formation and physicochemical analysis of surface structure: Implications for therapeutic cell-microencapsulation. J Biomater Appl 2021; 36:638-647. [PMID: 33541171 DOI: 10.1177/0885328221988979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-encapsulation is used for preventing therapeutic cells from being rejected by the host. The technology to encapsulate cells in immunoprotective biomaterials, such as alginate, commonly involves application of an electrostatic droplet generator for reproducible manufacturing droplets of similar size and with similar surface properties. As many factors influencing droplet formation are still unknown, we investigated the impact of several parameters and fitted them to equations to make procedures more reproducible and allow optimal control of capsule size and properties. We demonstrate that droplet size is dependent on an interplay between the critical electric potential (Uc,), the needle size, and the distance between the needle and the gelation bath, and that it can be predicted with the equations proposed. The droplet formation was meticulously studied and followed by a high-speed camera. The X-ray photoelectron analysis demonstrated optimal gelation and substitution of sodium with calcium on alginate surfaces while the atomic force microscopy analysis demonstrated a low but considerable variation in surface roughness and low surface stiffness. Our study shows the importance of documenting critical parameters to guarantee reproducible manufacturing of beads with constant and adequate size and preventing batch-to-batch variations.
Collapse
Affiliation(s)
- Ana Paula Santos
- Planta Piloto de Procesos Industriales Microbiologicos, Avenida Belgrano y pasaje Caseros, Tucumán, Argentina
| | | | - Bart de Haan
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Denis Poncelet
- Oniris Nantes - Site de la Géraudière, Nantes, Pays de la Loire France.,EncapProcess, Suce sur Erdre, Pays de la Loire, France
| |
Collapse
|
38
|
Izeia L, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Ostrovidov S, Paolone G, Peppas NA, De Vos P, Emerich D, Orive G. Cell-laden alginate hydrogels for the treatment of diabetes. Expert Opin Drug Deliv 2021; 17:1113-1118. [PMID: 32515621 DOI: 10.1080/17425247.2020.1778667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Diabetes mellitus is an ever-increasing medical condition that currently suffers 1 of 11 adults who may have lifelong commitment with insulin injections. Cell-laden hydrogels releasing insulin may provide the ultimate means of correcting diabetes. Here, we provide insights of this cell-based approach including latest preclinical and clinical progress both from academia and industry. AREA COVERED The present article focuses on reviewing latest advances in cell-laden hydrogels both from the technological and biological perspective. The most relevant clinical results including clinical trials are also discussed. EXPERT OPINION Current progress in technological issues (stem cells, devices, biomaterials) have contributed cell encapsulation science to have a very relevant progress in the field of diabetes treatment.
Collapse
Affiliation(s)
- Lukin Izeia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz, Spain
| | - Tatiane Eufrasio-da-Silva
- Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Department of Health Technology, Institute of Biotherapeutic Engineering and Drug Targeting, Center for Intestinal Absorption and Transport of Biopharmaceuticals Technical University of Denmark , Lyngby, Denmark
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT) Department of Radiological Sciences, University of California , Los Angeles, CA, USA
| | - Giovanna Paolone
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona , Verona, Italy
| | - Nicholas A Peppas
- Departments of Pharmaceutics, Chemical and Biomedical Engineering, The University of Texas at Austin , Austin, TX, USA
| | - Paul De Vos
- Pathology and Medical Biology Section, Immunoendocrinology, University of Groningen , Groningen, The Netherlands
| | - Dwaine Emerich
- Gloriana Therapeutics, Inc. (Formerly NsGene Inc.) , Providence, RI, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (Upv/ehu-fundación Eduardo Anitua) , Vitoria, Spain.,The Academia, Singapore Eye Research Institute , Discovery Tower, Singapore
| |
Collapse
|
39
|
Hu S, Kuwabara R, Navarro Chica CE, Smink AM, Koster T, Medina JD, de Haan BJ, Beukema M, Lakey JRT, García AJ, de Vos P. Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials 2020; 266:120460. [PMID: 33099059 DOI: 10.1016/j.biomaterials.2020.120460] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/03/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.
Collapse
Affiliation(s)
- Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands.
| | - Rei Kuwabara
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Carlos E Navarro Chica
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Taco Koster
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Juan D Medina
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Boulevard West Suite 1600, Orange, CA, 92868, USA; Department of Biomedical Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA, 92697, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
40
|
Paez‐Mayorga J, Capuani S, Farina M, Lotito ML, Niles JA, Salazar HF, Rhudy J, Esnaola L, Chua CYX, Taraballi F, Corradetti B, Shelton KA, Nehete PN, Nichols JE, Grattoni A. Enhanced In Vivo Vascularization of 3D-Printed Cell Encapsulation Device Using Platelet-Rich Plasma and Mesenchymal Stem Cells. Adv Healthc Mater 2020; 9:e2000670. [PMID: 32864893 DOI: 10.1002/adhm.202000670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Indexed: 12/14/2022]
Abstract
The current standard for cell encapsulation platforms is enveloping cells in semipermeable membranes that physically isolate transplanted cells from the host while allowing for oxygen and nutrient diffusion. However, long-term viability and function of encapsulated cells are compromised by insufficient oxygen and nutrient supply to the graft. To address this need, a strategy to achieve enhanced vascularization of a 3D-printed, polymeric cell encapsulation platform using platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) is investigated. The study is conducted in rats and, for clinical translation relevance, in nonhuman primates (NHP). Devices filled with PRP, MSCs, or vehicle hydrogel are subcutaneously implanted in rats and NHP and the amount and maturity of penetrating blood vessels assessed via histopathological analysis. In rats, MSCs drive the strongest angiogenic response at early time points, with the highest vessel density and endothelial nitric oxide synthase (eNOS) expression. In NHP, PRP and MSCs result in similar vessel densities but incorporation of PRP ensues higher levels of eNOS expression. Overall, enrichment with PRP and MSCs yields extensive, mature vascularization of subcutaneous cell encapsulation devices. It is postulated that the individual properties of PRP and MSCs can be leveraged in a synergistic approach for maximal vascularization of cell encapsulation platforms.
Collapse
Affiliation(s)
- Jesus Paez‐Mayorga
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- School of Medicine and Health Sciences Tecnologico de Monterrey Monterrey NL 64849 Mexico
| | - Simone Capuani
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Marco Farina
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Electronics and Telecommunications Politecnico di Torino Torino TO 10129 Italy
| | - Maria Luisa Lotito
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino TO 10129 Italy
| | - Jean A. Niles
- University of Texas Medical Branch Galveston TX 77550 USA
| | - Hector F. Salazar
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Jessica Rhudy
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Lucas Esnaola
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | | | - Francesca Taraballi
- Regenerative Medicine Program Houston Methodist Research Institute Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston TX 77030 USA
| | - Bruna Corradetti
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea Wales SA2 8QA UK
| | - Kathryn A. Shelton
- Department of Comparative Medicine Michael E. Keeling Center for Comparative Medicine and Research MD Anderson Cancer Center Bastrop TX 78602 USA
| | - Pramod N. Nehete
- Department of Comparative Medicine Michael E. Keeling Center for Comparative Medicine and Research MD Anderson Cancer Center Bastrop TX 78602 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston Houston TX 77030 USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Surgery Houston Methodist Hospital Houston TX 77030 USA
- Department of Radiation Oncology Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
41
|
Berney T, Berishvili E. I've got you under my skin. Nat Metab 2020; 2:993-994. [PMID: 32895575 DOI: 10.1038/s42255-020-0268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland.
- Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland.
- Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
42
|
Razavi M, Ren T, Zheng F, Telichko A, Wang J, Dahl JJ, Demirci U, Thakor AS. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound. Stem Cell Res Ther 2020; 11:405. [PMID: 32948247 PMCID: PMC7501701 DOI: 10.1186/s13287-020-01897-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The aim of this study was to examine the effect of a three-step approach that utilizes the application of adipose tissue-derived mesenchymal stem cells (AD-MSCs), encapsulation, and pulsed focused ultrasound (pFUS) to help the engraftment and function of transplanted islets. METHODS In step 1, islets were co-cultured with AD-MSCs to form a coating of AD-MSCs on islets: here, AD-MSCs had a cytoprotective effect on islets; in step 2, islets coated with AD-MSCs were conformally encapsulated in a thin layer of alginate using a co-axial air-flow method: here, the capsule enabled AD-MSCs to be in close proximity to islets; in step 3, encapsulated islets coated with AD-MSCs were treated with pFUS: here, pFUS enhanced the secretion of insulin from islets as well as stimulated the cytoprotective effect of AD-MSCs. RESULTS Our approach was shown to prevent islet death and preserve islet functionality in vitro. When 175 syngeneic encapsulated islets coated with AD-MSCs were transplanted beneath the kidney capsule of diabetic mice, and then followed every 3 days with pFUS treatment until day 12 post-transplantation, we saw a significant improvement in islet function with diabetic animals re-establishing glycemic control over the course of our study (i.e., 30 days). In addition, our approach was able to enhance islet engraftment by facilitating their revascularization and reducing inflammation. CONCLUSIONS This study demonstrates that our clinically translatable three-step approach is able to improve the function and viability of transplanted islets.
Collapse
Affiliation(s)
- Mehdi Razavi
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Tanchen Ren
- Department of Radiology, Bio-Acoustic MEMS in Medicine Laboratory (BAMM), Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Fengyang Zheng
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Arsenii Telichko
- Department of Radiology, Dahl Ultrasound Laboratory, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Jing Wang
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Jeremy J Dahl
- Department of Radiology, Dahl Ultrasound Laboratory, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Utkan Demirci
- Department of Radiology, Bio-Acoustic MEMS in Medicine Laboratory (BAMM), Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
43
|
Chauhan PS, Yadav D, Tayal S, Jin JO. Therapeutic Advancements in the Management of Diabetes Mellitus with Special Reference to Nanotechnology. Curr Pharm Des 2020; 26:4909-4916. [PMID: 32851952 DOI: 10.2174/1381612826666200826135401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
For improvisation of diabetic's quality of life, nanotechnology is facilitating the development of advanced glucose sensors as well as efficient insulin delivery systems. Our prime focus of the review is to highlight the advancement in diabetic research with special reference to nanotechnology at its interface. Recent studies are more focused on enhancing sensitivity, accuracy, and response by employing metal as well as nanoparticles based glucose sensors. Moreover, the review focuses on nanoscale based approaches i.e. closed-loop insulin delivery systems, which detect any fluctuation in blood glucose levels and allow controlled release of a drug, thus are also called self-regulating insulin release system. Additionally, this review summarizes the role of nanotechnology in the diagnosis and treatment of diabetic complications through little advancement in the existing techniques. To improve health, as well as the quality of life in diabetic's new sensing systems for blood glucose level evaluation and controlled administration of drugs through efficient drug delivery systems should be explored.
Collapse
Affiliation(s)
- Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior (M.P.), India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Shivam Tayal
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
44
|
Kogawa R, Nakamura K, Mochizuki Y. A New Islet Transplantation Method Combining Mesenchymal Stem Cells with Recombinant Peptide Pieces, Microencapsulated Islets, and Mesh Bags. Biomedicines 2020; 8:biomedicines8090299. [PMID: 32825661 PMCID: PMC7555598 DOI: 10.3390/biomedicines8090299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Microencapsulated islet transplantation was widely studied as a promising treatment for type 1 diabetes mellitus. However, micro-encapsulated islet transplantation has the following problems—early dysfunction of the islets due to the inflammatory reaction at the transplantation site, and hyponutrition and hypoxia due to a lack of blood vessels around the transplantation site, and difficulty in removal of the islets. On the other hand, we proposed a cell transplantation technique called CellSaic, which was reported to enhance the vascular induction effect of mesenchymal stem cells (MSCs) in CellSaic form, and to enhance the effect of islet transplantation through co-transplantation. Therefore, we performed islet transplantation in diabetic mice by combining three components—microencapsulated islets, MSC-CellSaic, and a mesh bag that encapsulates them and enables their removal. Mesh pockets were implanted in the peritoneal cavity of Balb/c mice as implantation sites. After 4 weeks of implantation, a pocket was opened and transplanted with (1) pancreatic islets, (2) microencapsulated islets, and (3) microencapsulated islets + MSC-CellSaic. Four weeks of observation of blood glucose levels showed that the MSC-CellSaic co-transplant group showed a marked decrease in blood glucose levels, compared to the other groups. A three-component configuration of microcapsules, MSC-CellSaic, and mesh bag was shown to enhance the efficacy of islet transplantation.
Collapse
|
45
|
Villarruel Mendoza LA, Scilletta NA, Bellino MG, Desimone MF, Catalano PN. Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications. Front Bioeng Biotechnol 2020; 8:827. [PMID: 32850709 PMCID: PMC7405504 DOI: 10.3389/fbioe.2020.00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/27/2023] Open
Abstract
In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.
Collapse
Affiliation(s)
| | - Natalia Antonela Scilletta
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
| | | | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Paolo Nicolas Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
46
|
Marfil‐Garza BA, Polishevska K, Pepper AR, Korbutt GS. Current State and Evidence of Cellular Encapsulation Strategies in Type 1 Diabetes. Compr Physiol 2020; 10:839-878. [DOI: 10.1002/cphy.c190033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Skrzypek K, Groot Nibbelink M, Liefers-Visser J, Smink AM, Stoimenou E, Engelse MA, de Koning EJP, Karperien M, de Vos P, van Apeldoorn A, Stamatialis D. A High Cell-Bearing Capacity Multibore Hollow Fiber Device for Macroencapsulation of Islets of Langerhans. Macromol Biosci 2020; 20:e2000021. [PMID: 32567161 DOI: 10.1002/mabi.202000021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/02/2020] [Indexed: 01/03/2023]
Abstract
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin-producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface-to-volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.
Collapse
Affiliation(s)
- Katarzyna Skrzypek
- Bioartificial Organs, Biomaterials Science and Technology Department, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Milou Groot Nibbelink
- Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Jolanda Liefers-Visser
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Alexandra M Smink
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Eleftheria Stoimenou
- Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Marten A Engelse
- Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Eelco J P de Koning
- Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands.,Hubrecht Institute, Utrecht, 3584CT, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Paul de Vos
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Aart van Apeldoorn
- Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Dimitrios Stamatialis
- Bioartificial Organs, Biomaterials Science and Technology Department, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| |
Collapse
|
48
|
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019; 7:380. [PMID: 31850335 PMCID: PMC6901392 DOI: 10.3389/fbioe.2019.00380] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cell encapsulation is a bioengineering technology that provides live allogeneic or xenogeneic cells packaged in a semipermeable immune-isolating membrane for therapeutic applications. The concept of cell encapsulation was first proposed almost nine decades ago, however, and despite its potential, the technology has yet to deliver its promise. The few clinical trials based on cell encapsulation have not led to any licensed therapies. Progress in the field has been slow, in part due to the complexity of the technology, but also because of the difficulties encountered when trying to prevent the immune responses generated by the various microcapsule components, namely the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors used to genetically engineer encapsulated cells. While the immune responses induced by polymers such as alginate can be minimized using highly purified materials, the need to cope with the immunogenicity of encapsulated cells is increasingly seen as key in preventing the immune rejection of microcapsules. The encapsulated cells are recognized by the host immune cells through a bidirectional exchange of immune mediators, which induce both the adaptive and innate immune responses against the engrafted capsules. The potential strategies to cope with the immunogenicity of encapsulated cells include the selective diffusion restriction of immune mediators through capsule pores and more recently inclusion in microcapsules of immune modulators such as CXCL12. Combining these strategies with the use of well-characterized cell lines harboring the immunomodulatory properties of stem cells should encourage the incorporation of cell encapsulation technology in state-of-the-art drug development.
Collapse
Affiliation(s)
- Assem Ashimova
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sergey Yegorov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
49
|
Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N, Moazzeni SM. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:120. [PMID: 31630272 DOI: 10.1007/s10856-019-6319-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/08/2019] [Indexed: 05/17/2023]
Abstract
Nowadays, due to a growing number of tissue injuries, in particular, skin wounds, induction and promotion of tissue healing responses can be considered as a crucial step towards a complete regeneration. Recently, biomaterial design has been oriented towards promoting a powerful, effective, and successful healing. Biomaterials with wound management abilities have been developed for different applications such as providing a native microenvironment and supportive matrices that induce the growth of tissue, creating physical obstacles against microbial contamination, and to be used as delivery systems for therapeutic reagents. Until now, numerous strategies aiming to accelerate the wound healing process have been utilized and studied with their own pros and cons. In this review, tissue remodeling phenomena, wound healing mechanisms, and their related factors will be discussed. In addition, different methods for induction and acceleration of healing via cell therapy, bioactive therapeutic delivery, and/or biomaterial-based approaches will be reviewed.
Collapse
Affiliation(s)
- Shirin Nour
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - S Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|