1
|
Aguilar MI, Yarovsky I. Quest for New Generation Biocompatible Materials: Tailoring β-Peptide Structure and Interactions via Synergy of Experiments and Modelling. J Mol Biol 2024; 436:168646. [PMID: 38848868 DOI: 10.1016/j.jmb.2024.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Peptide-based self-assembly has been used to produce a wide range of nanostructures. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been shown to undergo supramolecular self-assembly, and have been used to produce materials for applications in tissue engineering, cell culture and drug delivery. In order to engineer new materials with specific structure and function, theoretical molecular modelling can provide significant insights into the collective balance of non-covalent interactions that drive the self-assembly and determine the structure of the resultant supramolecular materials under different conditions. However, this approach has only recently become feasible for peptide-based self-assembled nanomaterials, particularly those that incorporate non α-amino acids. This perspective provides an overview of the challenges associated with computational modelling of the self-assembly of β-peptides and the recent success using a combination of experimental and computational techniques to provide insights into the self-assembly mechanisms and fully atomistic models of these new biocompatible materials.
Collapse
Affiliation(s)
- Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
2
|
Mekhtiev AA, Asadova SM. Impact of dihydropyrimidinase-related protein 2 in memory formation on rats and its possible role in neuronal back remodeling. IBRO Neurosci Rep 2024; 16:155-161. [PMID: 38304064 PMCID: PMC10831146 DOI: 10.1016/j.ibneur.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
The article concerns the problem of molecular mechanisms of memory formation. In this study the effects of polyclonal antibodies to serotonin-modulating anticonsolidation protein (SMAP) complex and its component dihydropyrimidinase-related protein 2 (DRP2) have been analyzed. Intra-cerebral administration of polyclonal anti-SMAP antibody significantly enhanced elaboration and strengthened memory formation in two complex behavioral conditioned models. At the same time, intra-cerebral administration of anti-SMAP antibody resulted in an increase of the content of nerve growth factor (NGF) in the water-soluble fraction of the hippocampus while intra-cerebral administration of anti-DRP2 antibody caused a decrease in the content of β-III tubulin (a marker of differentiated neurons) in the hippocampus and in the left parietal cortex of untrained rats. The obtained results indicate that DRP2 might participate in regulation of the processes of back remodeling of mature nerve cells of adult organisms, occurring during training of rats in the behavioral paradigm used in this study under the effects of anti-SMAP and anti-DRP2 antibodies. Conclusion is made that back remodeling (dedifferentiation) of mature nerve cells, apparently, is engaged in memory formation.
Collapse
Affiliation(s)
- Arif A. Mekhtiev
- Academician Abdulla Garayev Institute of Physiology, Ministry of Science and Education, Baku, Azerbaijan
| | - Shamsiyya M. Asadova
- Academician Abdulla Garayev Institute of Physiology, Ministry of Science and Education, Baku, Azerbaijan
| |
Collapse
|
3
|
Williams-Noonan BJ, Kulkarni K, Todorova N, Franceschi M, Wilde C, Borgo MPD, Serpell LC, Aguilar MI, Yarovsky I. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311103. [PMID: 38489817 DOI: 10.1002/adma.202311103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Indexed: 03/17/2024]
Abstract
β-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of β-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent β-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated β3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated β3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated β3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.
Collapse
Affiliation(s)
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Matteo Franceschi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher Wilde
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
4
|
Słyk Ż, Wrzesień R, Barszcz S, Gawrychowski K, Małecki M. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications. Biomed Pharmacother 2024; 170:116061. [PMID: 38154269 DOI: 10.1016/j.biopha.2023.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Gelatin-based formulations are utilized in neurosurgical procedures, with Medisponge® serving as an illustration of a secure and biocompatible hemostatic formulation. Noteworthy are combined hemostatic products that integrate pharmacological agents with gelatin. Gelatin matrices, which host biologically active substances, provide a platform for a variety of molecules. Biopolymers function as carriers for chemicals and genes, a facet particularly pertinent in brain cancer therapy, as gene therapy complement conventional approaches. The registration of Zolgensma underscores the efficacy of rAAV vectors in therapeutic gene delivery to the CNS. rAAVs, renowned for their safety, stability, and neuron-targeting capabilities, predominate in CNS gene therapy studies. The effectiveness of rAAV vector therapy varies based on the serotype and administration route. Local gene therapy employing hydrogel (e.g., post-tumor resection) enables the circumvention of the blood-brain barrier and restricts formulation diffusion. This study formulates gelatin rAAV gene formulations and evaluates vector transduction potential. Transduction efficiency was assessed using ex vivo mouse brains and in vitro cancer cell lines. In vitro, the transduction of rAAV vectors in gelatin matrices was quantified through qPCR, measuring the itr and Gfp expression. rAAVDJ and rAAV2 demonstrated superior transduction in ex vivo and in vitro models. Among the cell lines tested (Hs683, B16-F10, NIH:OVCAR-3), gelatin matrix F1 exhibited selective transduction, particularly with Hs683 human glioma cells, surpassing the performance Medisponge®. This research highlights the exploration of local brain cancer therapy, emphasizing the potential of gelatin as an rAAV vector carrier for gene therapy. The functional transduction activity of gelatin rAAV formulations is demonstrated.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Barszcz
- Department of Neurosurgery, Children's Clinical Hospital, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Gawrychowski
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Isik M, Okesola BO, Eylem CC, Kocak E, Nemutlu E, D'Este M, Mata A, Derkus B. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids. Acta Biomater 2023; 171:223-238. [PMID: 37793600 DOI: 10.1016/j.actbio.2023.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Organoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids.
Collapse
Affiliation(s)
- Melis Isik
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Babatunde O Okesola
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara 06230, Turkey
| | - Engin Kocak
- Division of Analytical Chemistry, Faculty of Gulhane Pharmacy, Health Science University, Ankara 06018, Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara 06230, Turkey; Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Alvaro Mata
- School of Pharmacy University of Nottingham, University Park, Nottingham NG7 2RD, UK; Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey.
| |
Collapse
|
6
|
Evans D, Barcons AM, Basit RH, Adams C, Chari DM. Evaluating the Feasibility of Hydrogel-Based Neural Cell Sprays. J Funct Biomater 2023; 14:527. [PMID: 37888192 PMCID: PMC10607175 DOI: 10.3390/jfb14100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Neurological injuries have poor prognoses with serious clinical sequelae. Stem cell transplantation enhances neural repair but is hampered by low graft survival (ca. 80%) and marker expression/proliferative potential of hydrogel-sprayed astrocytes was retained. Combining a cell spray format with polymer encapsulation technologies could form the basis of a non-invasive graft delivery method, offering potential advantages over current cell delivery approaches.
Collapse
Affiliation(s)
- Daisy Evans
- Keele University School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Aina Mogas Barcons
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3AZ, UK;
| | - Raja Haseeb Basit
- Department of General Surgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
| | - Christopher Adams
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Divya Maitreyi Chari
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
7
|
McFetridge ML, Kulkarni K, Lee TH, Del Borgo MP, Aguilar MI, Ricardo SD. Elucidating the cell penetrating properties of self-assembling β-peptides. NANOSCALE 2023; 15:14971-14980. [PMID: 37661822 DOI: 10.1039/d3nr03673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Self-assembling lipopeptide hydrogels have been widely developed for the delivery of therapeutics due to their rapid gelation, injectability, and highly controlled physicochemical properties. Lipopeptides are also known for their membrane-associating and cell penetrating properties, which may impact on their application in cell-encapsulation. Self-assembling lipidated-β3-peptide materials developed in our laboratory have previously been used in cell culture as 2D substrates, thus as a continuation of this work we aimed to encapsulate cells in 3D by forming a hydrogel. We therefore assessed the self-assembling lipidated-β3-peptides for cell-penetrating properties in mesenchymal stems cells (MSC) using fluorescence microscopy and membrane association with surface plasmon resonance spectroscopy (SPR). The results demonstrated that lipidated β3-peptides penetrate the MSC plasma membrane and localise to the mitochondrial network. While self-assembling lipopeptide hydrogels have shown tremendous potential for delivery of therapeutics, further optimisation may be required to minimise the membrane uptake of the lipidated-β3-peptides for cell encapsulation applications.
Collapse
Affiliation(s)
- Meg L McFetridge
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
8
|
Park HH, Kim BH, Leem SH, Park YH, Hoe HS, Nam Y, Kim S, Shin SJ, Moon M. Characterization of age- and stage-dependent impaired adult subventricular neurogenesis in 5XFAD mouse model of Alzheimer's disease. BMB Rep 2023; 56:520-525. [PMID: 37482752 PMCID: PMC10547970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aβ. Although Aβ-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aβ-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aβ accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aβ accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aβ deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression. [BMB Reports 2023; 56(9): 520-525].
Collapse
Affiliation(s)
- Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
9
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
10
|
Ohno Y, Nakajima C, Ajioka I, Muraoka T, Yaguchi A, Fujioka T, Akimoto S, Matsuo M, Lotfy A, Nakamura S, Herranz-Pérez V, García-Verdugo JM, Matsukawa N, Kaneko N, Sawamoto K. Amphiphilic peptide-tagged N-cadherin forms radial glial-like fibers that enhance neuronal migration in injured brain and promote sensorimotor recovery. Biomaterials 2023; 294:122003. [PMID: 36736095 DOI: 10.1016/j.biomaterials.2023.122003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
The mammalian brain has very limited ability to regenerate lost neurons and recover function after injury. Promoting the migration of young neurons (neuroblasts) derived from endogenous neural stem cells using biomaterials is a new and promising approach to aid recovery of the brain after injury. However, the delivery of sufficient neuroblasts to distant injured sites is a major challenge because of the limited number of scaffold cells that are available to guide neuroblast migration. To address this issue, we have developed an amphiphilic peptide [(RADA)3-(RADG)] (mRADA)-tagged N-cadherin extracellular domain (Ncad-mRADA), which can remain in mRADA hydrogels and be injected into deep brain tissue to facilitate neuroblast migration. Migrating neuroblasts directly contacted the fiber-like Ncad-mRADA hydrogel and efficiently migrated toward an injured site in the striatum, a deep brain area. Furthermore, application of Ncad-mRADA to neonatal cortical brain injury efficiently promoted neuronal regeneration and functional recovery. These results demonstrate that self-assembling Ncad-mRADA peptides mimic both the function and structure of endogenous scaffold cells and provide a novel strategy for regenerative therapy.
Collapse
Affiliation(s)
- Yuya Ohno
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Takahiro Muraoka
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan; Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Atsuya Yaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Teppei Fujioka
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Saori Akimoto
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Misaki Matsuo
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sayuri Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
11
|
Dara D, Drabovich AP. Assessment of risks, implications, and opportunities of waterborne neurotoxic pesticides. J Environ Sci (China) 2023; 125:735-741. [PMID: 36375955 DOI: 10.1016/j.jes.2022.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pesticides are a well-known family of chemicals that have contaminated water systems globally. Four common subfamilies of pesticides include organochlorines, organophosphates, pyrethroids, and carbamate insecticides which have been shown to adversely affect the human nervous system. Studies have shown a link between pesticide exposure and decreased viability, proliferation, migration, and differentiation of murine neural stem cells. Besides human exposure directly through water systems, additional factors such as pesticide bioaccumulation, biomagnification and potential synergism due to co-exposure to other environmental contaminants must be considered. A possible avenue to investigate the molecular mechanisms and biomolecules impacted by the various classes of pesticides includes the field of -omics. Discovery of the precise molecular mechanisms behind pesticide-mediated neurodegenerative disorders may facilitate development of targeted therapeutics. Likewise, discovery of pesticide biodegradation pathways may enable novel approaches for water system bioremediation using genetically engineered microorganisms. In this mini-review, we discuss recently established harmful impacts of various categories of pesticides on the nervous system and the application of -omics field for discovery, validation, and mitigation of pesticide neurotoxicity.
Collapse
Affiliation(s)
- Delaram Dara
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta T6G 2G3, Canada.
| |
Collapse
|
12
|
Alhowail A. Mechanisms Underlying Cognitive Impairment Induced by Prenatal Alcohol Exposure. Brain Sci 2022; 12:brainsci12121667. [PMID: 36552126 PMCID: PMC9775935 DOI: 10.3390/brainsci12121667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alcohol is one of the most commonly used illicit substances among pregnant women. Clinical and experimental studies have revealed that prenatal alcohol exposure affects fetal brain development and ultimately results in the persistent impairment of the offspring's cognitive functions. Despite this, the rate of alcohol use among pregnant women has been progressively increasing. Various aspects of human and animal behavior, including learning and memory, are dependent on complex interactions between multiple mechanisms, such as receptor function, mitochondrial function, and protein kinase activation, which are especially vulnerable to alterations during the developmental period. Thus, the exploration of the mechanisms that are altered in response to prenatal alcohol exposure is necessary to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral impairments manifest following alcohol abuse during pregnancy. There is evidence that prenatal alcohol exposure results in vast alterations in mechanisms such as long-term potentiation, mitochondrial function, and protein kinase activation in the brain of offspring. However, to the best of our knowledge, there are very few recent reviews that focus on the cognitive effects of prenatal alcohol exposure and the associated mechanisms. Therefore, in this review, we aim to provide a comprehensive summary of the recently reported alterations to various mechanisms following alcohol exposure during pregnancy, and to draw potential associations with behavioral changes in affected offspring.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia
| |
Collapse
|
13
|
Kim HS, Shin SM, Kim S, Nam Y, Yoo A, Moon M. Relationship between adult subventricular neurogenesis and Alzheimer’s disease: Pathologic roles and therapeutic implications. Front Aging Neurosci 2022; 14:1002281. [PMID: 36185481 PMCID: PMC9518691 DOI: 10.3389/fnagi.2022.1002281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by irreversible cognitive declines. Senile plaques formed by amyloid-β (Aβ) peptides and neurofibrillary tangles, consisting of hyperphosphorylated tau protein accumulation, are prominent neuropathological features of AD. Impairment of adult neurogenesis is also a well-known pathology in AD. Adult neurogenesis is the process by which neurons are generated from adult neural stem cells. It is closely related to various functions, including cognition, as it occurs throughout life for continuous repair and development of specific neural pathways. Notably, subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, transports neurons to several brain regions such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. These migrating neurons can affect cognitive function and behavior in different neurodegenerative diseases. Despite several studies indicating the importance of adult SVZ neurogenesis in neurodegenerative disorders, the pathological alterations and therapeutic implications of impaired adult neurogenesis in the SVZ in AD have not yet been fully explained. In this review, we summarize recent progress in understanding the alterations in adult SVZ neurogenesis in AD animal models and patients. Moreover, we discuss the potential therapeutic approaches for restoring impaired adult SVZ neurogenesis. Our goal is to impart to readers the importance of adult SVZ neurogenesis in AD and to provide new insights through the discussion of possible therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Min Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
- *Correspondence: Minho Moon,
| |
Collapse
|
14
|
Kulkarni K, Minehan RL, Gamot T, Coleman HA, Bowles S, Lin Q, Hopper D, Northfield SE, Hughes RA, Widdop RE, Aguilar MI, Parkington HC, Del Borgo MP. Esterase-Mediated Sustained Release of Peptide-Based Therapeutics from a Self-Assembled Injectable Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58279-58290. [PMID: 34756031 DOI: 10.1021/acsami.1c14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated β3-tripeptide is presented. The drug-loaded β3-peptide was successfully co-assembled with a functionally inert lipidated β3-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days. The esterase-mediated sustained release of the bioactive brain-derived neurotrophic factor (BDNF) peptide mimics from the hydrogel resulted in increased neuronal survival and normal neuronal function of peripheral neurons. These studies define a versatile strategy for the facile synthesis and co-assembly of self-assembling β3-peptide-based hydrogels with the ability to control drug release using endogenous esterases with potential in vivo applications for sustained localized drug delivery.
Collapse
Affiliation(s)
- Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rachel L Minehan
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tanesh Gamot
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Harold A Coleman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Simon Bowles
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qingqing Lin
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Denham Hopper
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan E Northfield
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A Hughes
- Pharmacy and Pharmaceutical Sciences Education, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Mirzaei S, Kulkarni K, Zhou K, Crack PJ, Aguilar MI, Finkelstein DI, Forsythe JS. Biomaterial Strategies for Restorative Therapies in Parkinson's Disease. ACS Chem Neurosci 2021; 12:4224-4235. [PMID: 34634903 DOI: 10.1021/acschemneuro.1c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder, in which dopaminergic midbrain neurons degenerate, leading to dopamine depletion that is associated with neuronal death. In this Review, we initially describe the pathogenesis of PD and established therapies that unfortunately only delay progression of the disease. With a rapidly escalating incidence in PD, there is an urgent need to develop new therapies that not only halt progression but even reverse degeneration. Biomaterials are playing critical roles in these new therapies which include controlled and site-specific delivery of neurotrophins, increased engraftment of implanted neural stem cells, and redirection of endogenous stem cell populations away from their niche to encourage reparative mechanisms. This Review will therefore cover important design features of biomaterials used in regenerative medicine and tissue engineering strategies targeted at PD.
Collapse
Affiliation(s)
- Samaneh Mirzaei
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kun Zhou
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Peter J. Crack
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Karavasili C, Fatouros DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv Drug Deliv Rev 2021; 174:387-405. [PMID: 33965460 DOI: 10.1016/j.addr.2021.04.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.
Collapse
|
17
|
Lin MS, Chiu IH, Lin CC. Ultrarapid Inflammation of the Olfactory Bulb After Spinal Cord Injury: Protective Effects of the Granulocyte Colony-Stimulating Factor on Early Neurodegeneration in the Brain. Front Aging Neurosci 2021; 13:701702. [PMID: 34248610 PMCID: PMC8267925 DOI: 10.3389/fnagi.2021.701702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The correlation among olfactory dysfunction, spinal cord injury (SCI), subjective cognitive decline, and neurodegenerative dementia has been established. Impaired olfaction is considered a marker for neurodegeneration. Hence, there is a need to examine if SCI leads to olfactory dysfunction. In this study, the brain tissue of mice with spinal cord hemisection injury was subjected to microarray analysis. The mRNA expression levels of olfactory receptors in the brain began to decline at 8 h post-SCI. SCI promoted neuroinflammation, downregulated the expression of olfactory receptors, decreased the number of neural stem cells (NSCs), and inhibited the production of neurotrophic factors in the olfactory bulbs at 8 h post-SCI. In particular, the SCI group had upregulated mRNA and protein expression levels of glial fibrillary acidic protein (GFAP; a marker of astrocyte reactivation) and pro-inflammatory mediators [IL-1β, IL-6, and Nestin (marker of NSCs)] in the olfactory bulb compared to levels in the sham control group. The mRNA expression levels of olfactory receptors (Olfr1494, Olfr1324, Olfr1241, and Olfr979) and neurotrophic factors [brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and nerve growth factor (NGF)] were downregulated in the olfactory bulb of the SCI group mice at 8 h post-SCI. The administration of granulocyte colony-stimulating factor (G-CSF) mitigated these SCI-induced pathological changes in the olfactory bulb at 8 h post-SCI. These results indicate that the olfactory bulb is vulnerable to environmental damage even if the lesion is located at sites distant from the brain, such as the spinal cord. Additionally, SCI initiated pathological processes, including inflammatory response, and impaired neurogenesis, at an early stage. The findings of this study will provide a basis for future studies on pathological mechanisms of early neurodegenerative diseases involving the olfactory bulb and enable early clinical drug intervention.
Collapse
Affiliation(s)
- Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan.,Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan.,Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| | - I-Hsiang Chiu
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
| |
Collapse
|
18
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
19
|
Payne JAE, Kulkarni K, Izore T, Fulcher AJ, Peleg AY, Aguilar MI, Cryle MJ, Del Borgo MP. Staphylococcus aureus entanglement in self-assembling β-peptide nanofibres decorated with vancomycin. NANOSCALE ADVANCES 2021; 3:2607-2616. [PMID: 36134162 PMCID: PMC9419598 DOI: 10.1039/d0na01018a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 06/16/2023]
Abstract
The increasing resistance of pathogenic microbes to antimicrobials and the shortage of antibiotic drug discovery programs threaten the clinical use of antibiotics. This threat calls for the development of new methods for control of drug-resistant microbial pathogens. We have designed, synthesised and characterised an antimicrobial material formed via the self-assembly of a population of two distinct β-peptide monomers, a lipidated tri-β-peptide (β3-peptide) and a novel β3-peptide conjugated to a glycopeptide antibiotic, vancomycin. The combination of these two building blocks resulted in fibrous assemblies with distinctive structures determined by atomic force microscopy and electron microscopy. These fibres inhibited the growth of methicillin resistant Staphylococcus aureus (MRSA) and associated directly with the bacteria, acting as a peptide nanonet with fibre nucleation sites on the bacteria observed by electron microscopy and confocal microscopy. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity and establish an innovative strategy to develop self-assembled antimicrobial materials for future biomedical application.
Collapse
Affiliation(s)
- Jennifer A E Payne
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Thierry Izore
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University Clayton Victoria 3800 Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University Clayton Victoria 3800 Australia
- Department of Infectious Diseases, The Alfred Hospital, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Max J Cryle
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
20
|
Stem cell-based therapy treating glioblastoma multiforme. Hematol Oncol Stem Cell Ther 2021; 14:1-15. [PMID: 32971031 DOI: 10.1016/j.hemonc.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GB) is one of the most malignant types of central nervous system tumours, classified as grade IV by the World Health Organization. Despite the therapeutic advances, the prognosis is ominous, with a median survival of about 12-15 months post diagnosis. Although therapeutic options available can increase the survival, they are ineffective in treating patients with GB. Impairing factors such as the blood-brain barrier, cancer stem cells, and infiltration into brain parenchyma lead to failure of current therapies. Therefore, clinicians need novel/alternative effective strategies to treat GB. Due to their ability to preserve healthy tissues and to provide an effective and long-lasting response, stem cells (SCs) with tropism for tumour cells have attracted considerable attention in the scientific community. As is the case here, SCs can be used to target brain tumour cancer cells, especially high-grade malignant gliomas like GB, by overcoming the resistance and exerting benefits for patients affected with such lethal disease. Herein, we will discuss the research knowledge regarding SC-based therapy for the treatment of GB, focalising our attention on SCs and SC-released extracellular vesicles modified to express/load different antitumour payloads, as well as on SCs exploited as a diagnostic tool. Advantages and unresolved issues of anticancer SC-based therapy will also be considered.
Collapse
|
21
|
Nakajima C, Sawada M, Sawamoto K. Postnatal neuronal migration in health and disease. Curr Opin Neurobiol 2020; 66:1-9. [PMID: 32717548 DOI: 10.1016/j.conb.2020.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Postnatal neuronal migration modulates neuronal circuit formation and function throughout life and is conserved among species. Pathological conditions activate the generation of neuroblasts in the ventricular-subventricular zone (V-SVZ) and promote their migration towards a lesion. However, the neuroblasts generally terminate their migration before reaching the lesion site unless their intrinsic capacity is modified or the environment is improved. It is important to understand which factors impede neuronal migration for functional recovery of the brain. We highlight similarities and differences in the mechanisms of neuroblast migration under physiological and pathological conditions to provide novel insights into endogenous neuronal regeneration.
Collapse
Affiliation(s)
- Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
| |
Collapse
|
22
|
Rinaldi S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020; 25:E3276. [PMID: 32708440 PMCID: PMC7397133 DOI: 10.3390/molecules25143276] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Collapse
Affiliation(s)
- Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
23
|
Xu J, Duan Z, Qi X, Ou Y, Guo X, Zi L, Wei Y, Liu H, Ma L, Li H, You C, Tian M. Injectable Gelatin Hydrogel Suppresses Inflammation and Enhances Functional Recovery in a Mouse Model of Intracerebral Hemorrhage. Front Bioeng Biotechnol 2020; 8:785. [PMID: 32760708 PMCID: PMC7371925 DOI: 10.3389/fbioe.2020.00785] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high morbidity and mortality. However, there is no effective therapy method to improve its clinical outcomes to date. Here we report an injectable gelatin hydrogel that is capable of suppressing inflammation and enhancing functional recovery in a mouse model of ICH. Thiolated gelatin was synthesized by EDC chemistry and then the hydrogel was formed through Michael addition reaction between the thiolated gelatin and polyethylene glycol diacrylate. The hydrogel was characterized by scanning electron microscopy, porosity, rheology, and cytotoxicity before evaluating in a mouse model of ICH. The in vivo study showed that the hydrogel injection into the ICH lesion reduced the neuron loss, attenuated the neurological deficit post-operation, and decreased the activation of the microglia/macrophages and astrocytes. More importantly, the pro-inflammatory M1 microglia/macrophages polarization was suppressed while the anti-inflammatory M2 phenotype was promoted after the hydrogel injection. Besides, the hydrogel injection reduced the release of inflammatory cytokines (IL-1β and TNF-α). Moreover, integrin β1 was confirmed up-regulated around the lesion that is positively correlated with the M2 microglia/macrophages. The related mechanism was proposed and discussed. Taken together, the injectable gelatin hydrogel suppressed the inflammation which might contribute to enhance the functional recovery of the ICH mouse, making it a promising application in the clinic.
Collapse
Affiliation(s)
- Jiake Xu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongxin Duan
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Qi
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Ou
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Guo
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Zi
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wei
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Tian
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Morton LD, Hillsley A, Austin MJ, Rosales AM. Tuning hydrogel properties with sequence-defined, non-natural peptoid crosslinkers. J Mater Chem B 2020; 8:6925-6933. [PMID: 32436556 DOI: 10.1039/d0tb00683a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The native extracellular matrix (ECM) is composed of hierarchically structured biopolymers containing precise monomer sequences and chain shapes to yield bioactivity. Recapitulating this structure in synthetic hydrogels is of particular interest for tissue engineering and in vitro disease models to accurately mimic biological microenvironments. However, despite extensive research on hydrogels, it remains a challenge to recapitulate the hierarchical structure of native ECM with completely synthetic hydrogel platforms. Toward this end, this work presents a synthetic hydrogel system using commercially available poly(ethylene glycol) macromers with sequence-defined poly(N-substituted glycines) (peptoids) as crosslinkers. We demonstrate that bulk hydrogel mechanics, specifically as shear storage modulus, can be controlled by altering peptoid sequence and structure. Notably, the helical peptoid sequence investigated here increases the storage modulus of the resulting hydrogels with increasing helical content and chain length, in a fashion similar to helical peptide-crosslinked hydrogels. In addition, the resulting hydrogels are shown to be hydrolytically and enzymatically stable due to the N-substituted peptidomimetic backbone of the crosslinkers. We further demonstrate the potential utility of these peptoid-crosslinked hydrogels as a viable cell culture platform using seeded human dermal fibroblasts in comparison to peptide-crosslinked hydrogels as a control. Taken together, our system offers a strategy toward ECM mimics that replicate the hierarchy of biological matrices with completely synthetic, sequence-defined molecules.
Collapse
Affiliation(s)
- Logan D Morton
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| | | | | | | |
Collapse
|
25
|
Purvis EM, O'Donnell JC, Chen HI, Cullen DK. Tissue Engineering and Biomaterial Strategies to Elicit Endogenous Neuronal Replacement in the Brain. Front Neurol 2020; 11:344. [PMID: 32411087 PMCID: PMC7199479 DOI: 10.3389/fneur.2020.00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis in the postnatal mammalian brain is known to occur in the dentate gyrus of the hippocampus and the subventricular zone. These neurogenic niches serve as endogenous sources of neural precursor cells that could potentially replace neurons that have been lost or damaged throughout the brain. As an example, manipulation of the subventricular zone to augment neurogenesis has become a popular strategy for attempting to replace neurons that have been lost due to acute brain injury or neurodegenerative disease. In this review article, we describe current experimental strategies to enhance the regenerative potential of endogenous neural precursor cell sources by enhancing cell proliferation in neurogenic regions and/or redirecting migration, including pharmacological, biomaterial, and tissue engineering strategies. In particular, we discuss a novel replacement strategy based on exogenously biofabricated "living scaffolds" that could enhance and redirect endogenous neuroblast migration from the subventricular zone to specified regions throughout the brain. This approach utilizes the first implantable, biomimetic tissue-engineered rostral migratory stream, thereby leveraging the brain's natural mechanism for sustained neuronal replacement by replicating the structure and function of the native rostral migratory stream. Across all these strategies, we discuss several challenges that need to be overcome to successfully harness endogenous neural precursor cells to promote nervous system repair and functional restoration. With further development, the diverse and innovative tissue engineering and biomaterial strategies explored in this review have the potential to facilitate functional neuronal replacement to mitigate neurological and psychiatric symptoms caused by injury, developmental disorders, or neurodegenerative disease.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Sun B, Ariawan AD, Warren H, Goodchild SC, In Het Panhuis M, Ittner LM, Martin AD. Programmable enzymatic oxidation of tyrosine-lysine tetrapeptides. J Mater Chem B 2020; 8:3104-3112. [PMID: 32207762 DOI: 10.1039/d0tb00250j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to control the response of self-assembled systems upon exposure to external stimuli has been a long-standing goal of supramolecular chemistry. Short peptides are an attractive platform to realise this objective due to their chemical diversity and modular nature. Here, we synthesise a library of Fmoc-capped tetrapeptides, each containing two tyrosine and two lysine residues and varying in their amino acid sequence. Despite having similar secondary structure, these tetrapeptides form structures which are highly sequence dependent, yielding aggregates, nanofibres or monomers. This in turn highly affects the rate and degree of oxidative polymerisation by the enzyme tyrosinase, with self-assembled nanofibres exhibiting a greater degree of polymerisation. We monitor the formation of tyrosine oxidation products over time, finding that the precipitation of polymers is driven by quinone-based species. This affects the electrochemical properties of the oxidised peptide polymers, as determined through electrical impedance spectroscopy. Finally, intrinsic fluorescence microscale thermophoresis studies confirm that the degree of oxidative polymerisation is highly dependent on tyrosine solvent accessibility and the presence of peptide monomers. The ability to tune the kinetics of enzymatically active substrates and understand their polymerisation pathways on a molecular level is important for the creation of programmable, enzyme responsive biomaterials.
Collapse
Affiliation(s)
- Biyun Sun
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | | | | | |
Collapse
|